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Improving Input Accuracy on Smartphones for Persons who are
Affected by Tremor using Motion Sensors
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Having a hand tremor often complicates interactions with touchscreens on mobile devices. Due to the uncontrollable oscil-
lations of both hands, hitting targets can be hard, and interaction can be slow. Correcting input needs additional time and
mental effort. We propose a method for automatically correcting such inputs based on motion data, gathered both with the
devices’ sensors and a small wearable sensor on the finger used for tapping. The development was informed by interviews
with persons with tremor. Two empirical studies showed that our method, involving both smartphone and finger motion
sensors without changing the user interface, allows users with tremor to select objects with up to 40 % fewer misses.
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1 INTRODUCTION
In recent years, the prevalence of touchscreens has increased to the point where our daily lives are unimag-
inable without them. Smartphones, e.g., are used for text and voice messages, email, social applications, and
calendar management amongst others [30]. Inherent to interacting with touchscreens is direct manipulation of
objects, like touching or tapping. Examples for such manipulations are typing text, selecting elements from lists
and menus, selecting buttons and checkboxes, and activating radio buttons. Successful selection might be influ-
enced by both external and internal factors. External factors may be target size, light conditions, noise, smudge
impeding touch detection and unsteady environments (e.g. public transport).

Internal factors like limited focus on the task, walking, occlusion, and certain user characteristics can also
negatively influence successful target selections. One such characteristic is hand tremor. Through the oscilla-
tion of one or both hands, hand tremor makes it very hard to hold devices in a stable position. Furthermore,
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Fig. 1. Tremor in ones hands makes both holding a smartphone and tapping on the touchscreen cumbersome. Through to
the uncontrollability of the movements, targets are missed and interaction times are longer. We propose using the motion
sensors in the smartphone and a motion sensor placed on ones finger to detect tremor related movements and correct
resulting misses.

the selecting finger’s movements cannot be controlled as precisely as needed for successful interactions with
touchscreens.

The reasons for tremor vary, including neurological diseases like Parkinson’s and essential tremor, but tremor
can also occur as a side effect of medication or as enhanced physiological tremor in stressful situations [28, 34].
Essential tremor, the most common movement disorder [16, 28] affects approximately 0.4 % of the population
of all ages, although its prevalence increases dramatically with age, with 6.3% of people aged 60-65 and 21.7%
of older than 95 years affected [14]. It is estimated that about 7 million in the U.S. are affected by essential
tremor [15]. Considering the estimated 2 billion smartphone users worldwide [8], likely 8 million people with
tremor own a smartphone.

Since smartphones are today foremost used by younger people (30% of 65 or older in the US own a smart-
phone [1]), tremor might be seen as a marginal problem. Yet, it should not be neglected that tremor does affect
young people. Additionally, the number of senior users adopting smartphones has increased [25]. Furthermore,
and even more important, today’s heavy smartphone users are ageing. And it seems unlikely that we will stop
using a technology that became ubiquitous to us. Driven by the demographic change, the portion of the popula-
tion affected by this problem is likely to increase in the future. Besides age, tremor intensity depends on various
factors, including medication, caffeine intake, sleep, strong emotions, and exhaustion [23]. Tremor is not only
more intense in stressful situations, but can exacerbate stress by provoking frustration.

We explored the resulting problems inmobile scenarios by interviewing persons with hand tremor. The results
indicate that tremor often causes missed targets and longer interaction times, forces users to concentrate hard
and can lead to frustration. Prior research has shown that tremor also correlates with text entry performance on
smartphones [24]. So far, correcting input for persons affected by tremor on mobile touchscreens using motion
data is rarely researched. Rather, alternative interaction styles were introduced [36, 43]. While those techniques
are helpful and improve interaction, they also require to learn a new interaction style and possibly changes
to the user interface. Motion sensors of smartphones have been proven to reliably detect and classify types of
tremor [5, 6, 13, 39], although this data has to the best of our knowledge not yet been used to correct misses
caused by tremor. To research the feasibility of using motion sensors to correct misses caused by tremor, we
developed a method based on NoShake [29], accounting for tremor in both hands. We show in two user studies
that with this approach, successful selections can be increased.
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In this paper, we make three main contributions: (1) An assessment of difficulties persons with tremor face
when using mobile touchscreens derived from interviews with persons affected by tremor (n=4). (2) A correc-
tion method for tremor-induced misses, accounting for both hands’ oscillations. The method uses data of smart-
phones’ motion sensors and an off-the-shelf motion sensor fixed to ones finger. (3) Two empirical evaluations
of different versions of said correction. In the first evaluation, we tested different versions of our algorithm with
healthy participants by inducing tremor with electrical muscle stimulation (EMS) (n=28), and compared the per-
formance of the motion sensors to more accurate data from a motion capturing system. Our results show that
off-the-shelf motion sensors are sufficiently accurate to allow tremor correction. In the second study, our method
was tested with participants having a hand tremor (n=6). We show that with the best configuration, involving
both smartphone and finger motion sensors without changing the user interface, misses can be reduced up to
40%.

In the remainder of this paper, we will reflect upon related work and describe the conducted interviews.
Subsequently, we will present our correction approach and both of its evaluations, as well as its limitations.

2 RELATED WORK
2.1 Motor Impairments and Touchscreen Interaction
Touchscreen accessibility for persons with motor impairments has been explored in previous work. Examples
include analysis of tapping behaviour and proposing of correction models [21], surveys and field studies of gen-
eral smartphone usage [22], video analysis [2], and interviews regarding touchscreen accessibility [35]. Results
show that smartphones empower persons with motor impairments [2, 22] and are generally liked and used [35].
However, smartphone use can be hindered by having difficulties accessing them and concerns regarding the
use of speech input when touchscreen use is not feasible [22]. Users might customize the devices or use them
in unintended ways [2]. Using touchscreens may require a higher level of dexterity than users have, and even
accessibility features could be hard to use [35]. Additionally, tapping behaviour varies not only between persons
with different impairments, but also between usage sessions from the same person. This should be considered
when developing correction models [21].

Our method does not apply a general offset correction, but adjusts to users’ current situation and tremor
intensity. Further, we focus on users affected by hand tremor.

2.2 Input Techniques for Persons with Tremor
Nicolau and Jorge [24] analysed text entry performance and tremor intensity in older adults. They found that
with an increased tremor intensity, the number of missed targets also increases. They propose several guidelines
that should be considered to ensure accessible keyboards for people with tremor.

Swabbing [19, 36] is an input technique especially designed for older adults with intention tremor. Elements
are selected with swipe gestures, allowing users to leave their finger on the screen. This provides more stability
and leads to more accurate selections.

Zhong et al. proposed enhanced area touch [43], where ambiguous touches were resolved by asking users to
confirm their selection, either on a magnified version of parts of the user interface or in a list with corresponding
user interface elements. An evaluation showed that using lists decreased error rate while both versions increased
task completion time. Additional feedback from study participants revealed that steep learning curves should be
avoided in such an assistive system.

With Barrier Pointing [10], users get additional support by resting a stylus on the screen and guiding it along
the edges of said screen. This could provide people with tremor with more stability, and thus improve interaction.

Goal Crossing [38] is an alternative to area pointing, where targets are selected when crossed. This allows
users to leave their finger on the screen, which gives them more stability.
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The aforementioned solutions involve changes to the interaction technique or the interface, while our correc-
tion approach can be incorporated into existing interfaces and does not require users to change current input
techniques.

2.3 Tremor Detection with Motion Sensors
Carignan et al. [5, 6] developed a tremor recognition software using smartphones’ motion sensors. They com-
pared their application with tremor detection based on accelerometers used in laboratories and tremor classifica-
tion by medics. Carignan et al. found that tremor can reliably be detected with smartphones. Kostikis et al. [13]
developed a diagnosis tool for Parkinson’s Disease, which also includes tremor detection. They found their tool
being feasible for diagnosis. Since different tremor types have different frequency bands, Woods et al. proposed a
method to distinguish between tremor occurring as a symptom of Parkinson’s Disease and essential tremor [39].

While all of these applications showed that tremor can be detected using modern smartphones, we go a step
further and use the smartphone’s motion sensors to correct misses.

2.4 Improving Accuracy on Touchscreens
Improving touch-based interaction in general is a widely researched field in human computer interaction. Ex-
amples include the work of Xia et al. [41], where touch locations were predicted by tracking the path the finger
followed while tapping. In a Fitts’-Law-based test, Bi and Zhai [3] found that using Bayesian statistics is more
effective when predicting the most likeliest hit target than the visual boundary criterion. Weir et al. [37] pro-
posed using a user specific model for machine learning. Their approach needed 200 training touches. Another
machine-learning-based approach by Buschek et al. [4] only needs 60 touches to learn user behaviour, and can
be transferred between devices. Goel et al. [11] increased writing performance especially while walking based
on displacement and acceleration features as well as finger movement on the screen.

While we also aim at optimizing touch based interaction, and also use similar data to reach that goal, we focus
on improving the accessibility for people affected by hand tremor. Thus, we need to make different considera-
tions. E.g., tremor intensity changes over time, and is not coherent within one person in all situations.

2.5 Using Finger Mounted Devices for Input
In recent years, mounting devices on users’ fingers has become common in HCI research, as a recent survey
article by Shilkrot et al. shows [31]. Devices vary in form, size, used sensors, actions provided and usage domain.
Yet, those devices are intended to be worn on ones finger to increase interaction space or solve interaction
problems. Examples for such devices include the work of Yang et al. [42], who developed a device worn at the
tip of one’s finger used to allow always-available finger input. Kienzle and Hinckley proposed LightRing, a ring
equipped with motion sensors used to detect finger gestures [12]. Xia et al. [40] proposed a finger-mounted
stylus to assist interactions with ultra-small touchscreens.

We also use a finger-mounted device, or rather a finger-mounted motion sensor, to gather motion data of both
tremor oscillations and tapping movements.

3 ASSESSING TREMOR AFFECTED PERSONS’ DIFFICULTIES WITH SMARTPHONES
To gain a better understanding of howpeoplewith tremor usemobile touchscreens, we conducted semi-structured
interviews with four participants affected by essential tremor.

3.1 Procedure
All interviews were held in person at our institute. Interviews were both audio and video recorded. Participants’
interactions with devices were recorded on video. At the beginning of each interview, its purpose was explained.
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Device Type Display Size

Galaxy Nexus

Samsung Galaxy S3 Mini

Nexus 7

Samsung Galaxy Tab 10.1

Sony Ericsson Experia Mini

Samsung SGH-A800

LG Watch Urbane

Smartphone

Tablet

Mobile Phone w/ QUERTY Keyboard

Clamshell Phone w/ 12 Key Keyboard

Smartwatch

Smartphone

Tablet

4.65 in

4.00 in

7.00 in

10.10 in

3.00 in

-

1.30 in

Table 1. List of devices used as probes in the interviews.

Participants then gave their consent and filled in a questionnaire regarding their demographic data and back-
ground information about their tremor. Participants were further asked to draw spirals [27] to assess their tremor
severity. During the following interview, participants were asked about their typical mobile touchscreen usage
behaviour, configurations and customizations they made, and compensation strategies regarding every day sce-
narios like writing, reading, and editing contact information. Participants were invited to demonstrate certain
behaviours with their own devices. Besides, diverse other mobile devices (Table 1) were used as probes to demon-
strate and compare usage behaviours. Each interview lasted between one and one and a half hours. Participants
received e 15 compensation. The interviews were approved by our Institutional Review Board (IRB).

3.2 Participants
Four participants (one female) were recruited through flyers and newspaper ads. Participants’ age ranged be-
tween 25 and 63 years (mean: 36.75 (15.27 SD)). All participants had essential tremor for between 10 and 60
years. All participants were right handed and owned a smartphone, three reporting using it often. Table 2 shows
the demographic data, tremor intensity according to the spiral drawing, and prior experience with mobile touch-
screens for each participant.

3.3 Findings
All audio recordingswere transcribed to text, while the link to the accompanying video recordings of participants
handling devices was kept through annotations. The interviews were coded by three researchers using open and
sub-sequential axial coding. During an iterative process, codes were discussed, compared and refined in order to
achieve a consistent interpretation of the interviews, leading to categories and general themes. Conflicts were
resolved through discussion and revisiting of transcripts and recordings.

3.3.1 Need for stabilisation. Due to the uncontrollable oscillations of both hands, participants found it hard to
hold devices in stable positions. Thus, they all developed strategies to stabilize the device and the hand interacting
with the device. Those strategies included approaches to reduce the oscillations and placing the device on still
surfaces, when available. Oscillations of the hands were reduced by additionally stabilizing hands and arms. This
was achieved by pressing the upper arms to the torso, as can be seen in Figure 2. This position is likely to be
adopted in mobile scenarios and where no surface is available. If still surfaces were available, they were either
used to place the device on, or to lean on the forearms and hands (Figure 2). None of the participants used their
phone with only one hand, all used both hands. Either one hand was holding the device while the other was
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Fig. 2. Typical device holding strategies.

used for touch interaction, or the device was held in both hands and thumbs were used for interaction. Figure 2
illustrates typical device holding positions. The additional need for stabilisation further complicates interaction
while walking, leading to either stopping or avoiding using smartphones while walking.

3.3.2 Customisations to account for tremor. Participants made very little to no customizations to their devices;
two of them were aware of how to change settings. One participant increased the font size. Except P3, all par-
ticipants used a QWERTY keyboard (P3’s phone had a 12-key physical keyboard). One person used Swipe for
text input, as leaving the finger on the screen gives them more stability and control. One participant mentioned

* Tremor Severity is given based on spiral drawings according to the following scale: slight (< 0.5 cm), moderate (0.5–1 cm), marked (1–2 cm), and severe (> 2 cm)
** Used Applications are categories given ordered accordung how frequent participants used them, with the first named category being the most often used one.

P1 P2 P3 P4

Sex

Age

Ocupation

Tremor Severity *

Years w/ Tremor

Smartphne Use per Day

Used Applications **

F

25

Intern

10

10 h

Communication
Social Media
Games

M

29

Student

15

6h

Communication
Tools
Social Media
Games
Entertainment
Other

M

63

Retiree

60

0.1h

-

M

30

Unemployed

30

2h

Communication
Social Media
Games

Slight Moderate MarkedSlight

Table 2. Background data of interview participants.
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an add-on hardware keyboard being desirable. Not adapting the settings to one’s needs goes in accordance with
findings from Zhong et al. [43], where participants were not aware of available accessibility features.

3.3.3 Device acquisitions. Participants tended to avoid changing devices. Once they got accustomed with a
certain device type and found how to best use it, they did not want to invest in learning how to use other device
types. So one strategy was to always buy phones of a certain product line from a certain vendor. This is similar
to users with motor impairments avoiding steep learning curves as Zhong et al. showed [43]. There is also a
trade off between device price, functionality, and robustness. Since devices are more likely to fall down and
break, they should not be too expensive and rather robust (see Figure 2 for an example of a broken touchscreen),
but still provide a certain level of functionality. For this reason two participants used smartphones instead of
mobile or feature phones, although phones with physical keyboards would be easier to interact with. Regarding
the screen size, prior research as well as our participants pointed out that larger displays allowed for larger
interaction elements and were thus easier to use. However, larger devices tend to be harder to hold; in particular
two-handed strategies (Figure 2) are not as comfortable on large devices as they are on smaller devices.

3.3.4 Interacting with mobile user interfaces. All participants always found ways to interact with their devices
as they needed, yet not without facing certain obstacles. As already mentioned, larger interaction elements are
preferred, but also the distance between elements should be as large as possible to avoid ambiguous input. The
mental effort for hitting small targets is very high, tasks like correcting text or selecting checkboxes involve
much concentration. Since correcting text involves hitting a very small target in close proximity to other possible
targets, this task is very cumbersome. One participant mentioned that sometimes “... correcting a message takes
longer than to compose it.” Therefore, typos are only corrected when the text’s meaning is otherwise changed
or obscured. Using dictionaries and auto correction has both advantages and disadvantages: on the one hand,
typing accuracy and speed can be increased because typos are automatically corrected and words are not needed
to be spelled out, but if words are not included or included but falsely spelled, it is all the harder to correct them.
There is a tendency towards physical keys and haptic feedback, though one participant actively deactivated
vibrotactile feedback for their softkey keyboard.

Regarding the usability of applications, the general approach could be described as trial and error. Rather than
pondering its usability beforehand, participants tried applications and decided then if they could and would use
them again. Direct input was preferred over indirect input with e.g. a stylus. Speech input was not seen as
feasible, mostly due to its inherent characteristics and problems (e.g. usage of dialects, privacy concerns). One
participant, though, used audio recordings as a form of note taking during the day.

Another topic for all participants was the volatility of their tremor. The tremor intensity varied from day to
day. Things perfectly doable on one day were very hard to achieve on other days. Some of those variations could
be predicted (e.g., after drinking coffee or when being ill), yet sometimes there seems to be no reason for those
fluctuations, or even short bursts. The observations of Montague et al. [21] are quite similar. Tremor seems to
be not only different from person to person, but also differs for one person at different points of time.

3.4 Implications for Improving Input
Our findings indicate several implications for an assistive system improving input performance for persons with
tremor. First, compensation strategies include stabilisation of both hands. Second, the oscillations of the finger
interacting with the device can also impede interactions. Therefore, both hands have to be regarded. It seems
not sufficient to only compensate for movements of the hand holding the device. Additionally, the correction
approach should adapt to the current situation and changes in tremor intensity. That way, day to day variations
of the tremor can be accounted for. Additionally, the correction should not require users to switch to a new
interaction technique, since they avoid learning curves and stick with their familiar ways of interacting with
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(a) (b)

Fig. 3. The Meta Wear RPRO sensor alone (a) and in its 3D printed case with Velcro straps (b).

devices. Also, since users would rather not change settings or adapt their phone to their needs, no changes in
settings menus should be required. Hence, we implemented an input correction approach accounting for tremor
in both hands. Further, our approach can run in the background of any application, and does not require users
to change their way of interacting with their device.

4 IMPROVING INPUT WITH MOTION SENSORS
4.1 Approach
Our general approach in correcting input was to use the built-in motion sensors of modern smartphones as a
means of detecting the tremor related motions. With this knowledge, target misses caused by the unintended
tremor motions should be corrected. This way, people with tremor could use their phones and applications as
intended, and would neither have to learn a new interaction technique nor would such a new technique have
to be incorporated into existing applications. Yet, since both hands oscillate involuntarily, the motions of both
hands would have to be measured. Additionally to the built-in smartphone motion sensors, we therefore used
a small motion sensor to wear on ones finger. This sensor, a Meta Wear RPRO [18], can be seen in Figure 3. It
has a diameter of 2.4 cm and a weight of 2 g. Power is supplied by a coin cell. The sensor was placed in a 3D
printed case and fixed to one’s finger with a Velcro strap (Figure 3). The sensor was connected to the phone via
Bluetooth Low Energy. Using finger worn devices to increase the interaction space or improve input is a current
trend in HCI [31]. Yet, since our approach is modular, it can also be used only with the correction based on the
phone’s motion sensors.

Figure 4 shows the raw signals from both the finger’s motion sensor (Figure 4 a), the phone’s motion sensors
(Figure 4 b), and both sensors’ signals in the same chart (Figure 4 c) over the time period of one second. The
data was collected from a person with tremor in both hands. The person was sitting, holding a phone in one
hand while having the finger sensor attached to the other hand. This position was also used in our studies. As
can be seen, the intensities of the signals measured with the phone are lower than the intensities measured with
the finger sensor. One explanation is that the tremor intensity for both hands might vary. Yet furthermore, the
weight of the phone introduces additional mass to the shaking hand, thus causing a decrease in intensity while
the frequency stays the same (roughly 10 Hz for both hands). The graphs also show that while the frequency
is rather consistent, the intensity and shape of each signal changes over time, even in such a short timespan as
one second. This supports the findings of Montague et al. [21].

Since none of the authors have a tremor, and tremor as such is hard to simulate, we used gloves inducing
tremor with electrical muscle stimulation (EMS) [20] throughout the implementation for iterative testing. To
not interfere with the capacitive display of the used smartphone, we cut off the tip of the finger used for tapping
as depicted in Figure 5. The tremor could be induced with different frequencies and amplitudes, simulating
different conditions and severities [26]. The simulator consisted of a standard EMS device connected to two
gloves. Each glove was attached to one pin (positive charge on one side, negative on the other) via a conducting
button (Figure 5). The fabric of the gloves was interwoven with metallic threads, so that the impulse was lead
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Acceleration 
[m/s2]

0

-2

2

4

6

-4

Raw acceleration data finger sensor X direction Y direction Z direction

Time 
[ms] 400 1.000200 8000 600a)

Acceleration 
[m/s2]

0

-2

2

4

6

-4

Raw acceleration data smartphone sensor X direction Y direction Z direction

Time 
[ms] 400 1.000200 8000 600b)

Acceleration 
[m/s2]

0

-2

2

4

6

-4

Raw acceleration data both sensors X direction Y direction Z direction

Time 
[ms] 400 1.000200 8000 600c)

Fig. 4. The raw signals for from the finger sensor (a) and the phone sensor (b) as well as both sensors’ data in one graph
(c) over the time period of one second. The finger sensor data is depicted with dotted lines, while the phone sensor data
is shown as thick solid lines. Acceleration in x direction us coloured green, in y direction blue and red in z direction. Both
signals were derived from the same participant while holing the phone in one hand and having the finger sensor attached
to the other hand. Note that the accelerations measured with the phone’s sensor is remarkably smaller compared to the
accelerations measured with the finger’s sensor. This is due to the weight of the phone introducing additional mass and
thus decreasing the tremor intensity. This effect is accounted for by different parameter values in our correction.
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Parameter

Circular buffer

Shake window

Shake threshold

Spring damper k

Scale a

Smartphone Finger sensor

0.4s

0.3

10

0.1s

0.000,001

0.02s

0.1s

0.05

0.000,001

20
Table 3. The adjusted parameters of NoShake used for our tremor correction. The implementations running for the smart-
phone and the finger sensor have different parameters due to holding the phone affecting the tremor motions in ones hand.

to the hand muscles via the gloves. All hand muscles were actuated. Since positive charge was applied to one
hand and negative charge to the other, the current flew in one direction and no cross currents occurred. Only
healthy persons without contraindications towards EMS were allowed to use the tremor simulating gloves. Our
IRB approved simulating tremor as described.

4.2 Using NoShake as Basis
The basis for the output correction was the NoShake algorithm presented by Rahmati et al. [29]. NoShake em-
ploys a physics model where the screen content is seen as a mass, fastened with springs and dampers to the
screen’s edges. In the model, motions are absorbed by those springs and dampers, so that the screen content is
stabilized in a certain position. In the original implementation, the screen content moves in the opposite direc-
tion of the movement based on the phones’ accelerations. NoShake was originally not intended to compensate
for tremor, but for stabilizing content for improving reading in every day mobile scenarios like walking.

a

b

c d

Fig. 5. Gloves simulating tremor with electrical muscle stimulation (EMS). To not interfere with the smartphones’ display,
the tip of the tapping finger was cut off. The use of EMS was approved by our IRB. The two pins (negative charge coloured
red (marked b in the picture), positive charge coloured black (marked a in the picture)) are each connected to one glove with
metallic buttons (c and d in the picture). The fabric of the gloves is interwoven with metallic threads, which lead the current
to the hands. That way, all muscles in both hands were actuated. Since each one pin with a different charge was connected
to one glove, the current only flows in one direction and no cross currents across the chest occur. To further prevent any
complications, only healthy persons with no contraindications were allowed to use the tremor simulator. The use of tremor
simulating gloves as described was approved by our IRB.
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Yet, it accounts for oscillations, and furthermore adjusts to the current situation and tremor frequency, which
is what our interviews and previous work [21] has shown to be mandatory for tremor correction. However, the
motions involved in these scenarios have other characteristics than tremor related motions. For instance, tremor
has a higher frequency and is more rhythmical. Thus, we needed to adjust several parameters. All parameters are
listed in Table 3. Some parameters were set based on tremor characteristics, e.g. the shake window, others were
derived with iterative testing during the development. Therefore, authors as well as members of our research
group tested the tremor correction with target selection tasks with different parameter values. In the following,
we describe how each parameter was derived based on which assumptions. First, we set the initial shake window
to 0.1 seconds for both smartphone and finger sensor. This corresponds to a tremor frequency of 10Hz. Essential
tremor, the most common movement disorder, occurs with frequencies between 4 and 11Hz, while enhanced
physiological tremor (the tremor healthy persons might experience under stress) covers the frequencies between
7 and 12Hz [7, 39]. Thus, a value of 0.1 seconds seemed appropriate. As noted in the original NoShake paper [29],
the parameters k representing the spring damper, a representing the scale, and the shake threshold have to be
set depending on the application scenario. Therefore, we iteratively tested several values for those parameters
during the development of our tremor correction. The parameter k, representing the spring mass damper, was
finally set to 0.000, 001 both for smartphone and finger sensor implementation. Thus, the “springs” in our model
are rather flexible, accounting for the small rapid movements of tremor rather then the slow bumps accounted
for in the original implementation of NoShake. The parameter for scale, a, was set to 10 for the smartphone
and to 20 for the finger implementation. Thus, the finger’s positions were more strongly shifted than the phones.
This, as well as different values for the circular buffer and the shake threshold, are due to the smartphones weight
influencing the shaking of the holding hand. As illustrated in Figure 4, the weight of the phone decreases the
amplitude of the tremor. The shake threshold was set to 0.3 for the smartphone implementation and to 0.5 for the
finger sensor implementation. We found a circular buffer of 0.4 seconds for the smartphone implementation and
0.02 seconds for the finger sensor implementation feasible, since these values allowed a fast calculation (long
circular buffers increase the computation cost [29]) and still provide reasonable time to consider the tremor
related finger and hand movements.

In the following, we will explain the correction using the smartphones sensors (henceforth called output
correction), and the correction using the finger sensor (henceforth called input correction), as well as how they
were combined and how we distinguished between actual taps and tremor related motions [26].

4.3 Output Correction
For the output correction, that is the correction based on the acceleration data of the smartphone, we identified
two different possible forms. First, as described in the original publication of NoShake [29], the screen content
could be changed according to the results of the correction. We will call this visible output correction. However,
we found that the permanent readjustment of positions of user interface elements could also confuse users and
lead to searching for elements and the feeling of having to chase and catch a certain element. Prior research
also shows that changing the user interface can confuse users [43]. Thus, we implemented a version where the
visible representations of user interface elements do not change, however the interactive areas oscillate around
their visible representations according to the algorithm results. This concept is illustrated in Figure 6, where
the actual visual representation of a target is depicted as dark grey circle. Upon detecting an oscillation and
calculating the corrected position of said target, the area in which users have to tap to activate that target is
moved. The corrected target area is depicted as light grey circle. Taps in that light grey area a regarded as taps
falling within the dark grey area (the actual target). All the while, the user interface coordinates of the visual
representation of the target have not changed [26]. Following the approach of the original implementation [29],
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Smartphone oscillation

Original target

Corrected target

Fig. 6. The principle of the output correction, that is the correction based on the phone’s motion sensors. Based on the
oscillations of the smartphone, the coordinates of the target are recalculated into the corrected ones. This approach can be
used in two ways: first, the visual representation of the user interface elements can change according to the corrections, e.g.
the darker target appearing at the lighter coloured target’s position. Second, only the interactive area of a user interface
element could change. In that case, the darker coloured target would always keep its user interface coordinates, however
only touches in the area of its correction (e.g. the lighter coloured area) would be regarded as taps.

both the visually corrected and the not visually corrected targets are always completely present on the screen,
meaning that neither of them is cut off when reaching the screen’s edge.

4.4 Input Correction
The input correction uses the acceleration data of thefinger sensor as basis for its implementation of NoShake [29].
Figure 7 shows the basic principle: The original touchpoint is corrected according to current finger motions, and
if the corrected touchpoint falls in the corrected target area, the corresponding user interface element is selected.
To achieve this, the results of the NoShake algorithm are buffered in a queue for 0.2 seconds. The distance used to
correct the tap detected with the smartphone is calculated as the average over the entries in that queue. For the
direction of this distance, we referred from using the direction provided by the finger sensor. Using the direction
based on the finger sensor’s data would require transforming the sensor plane onto the smartphone plane using

Corrected target

Corrected touch position

Finger oscillation

Original touch position

Fig. 7. The input correction uses a combination of the motion data provided by the finger sensor and the movement of the
finger on the touchscreen. Based on that data, the original touchpoint is corrected and at best hits the corrected target,
either visible or not visible.
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Corrected target

Original touch position

Corrected touch position

Finger oscillation

Line intersecting the target

Fig. 8. In cases where the corrected touchpoint did not hit the corrected target, it proved feasible to draw a line between
the corrected and the original touchpoint. The target intersected by that line is then regarded as selected.

gyroscope data, which we found had insufficient accuracy. Instead, we used the direction the finger travelled
on the screen while touching it, e.g. between the finger down and the finger up event. For smartphones where
the touchscreen resolution does not provide sufficient accuracy for this approach, we implemented a fallback
solution. In such a case, we incorporate the motion sensors of the smartphone. The direction of the oscillation
of the smartphone during the touch event is measured and used. In cases where the calculated corrected touch-
point did not hit the corrected target area, we found that the correct target could still be selected by drawing a
line between the original and corrected touchpoint. The corrected target area intersected by that line was than
selected. This approach is depicted in Figure 8 [26].

4.5 Tap Detection
Tremor does not only lead to selecting not intended targets, but also to completely involuntary selections. In
some cases, through the tremor motions, the touchscreen is accidentally touched and elements might be se-
lected. Also, including accelerations resulting from tapping movements should not be included in the NoShake
algorithm, since they might distort the correction. Thus, we further implemented a tap detection based on the
finger’s accelerations using a dynamic threshold approach. We compared the current accelerations of the finger
in all three directions with the average accelerations over the last 0.4 seconds. If a current acceleration in at
least one direction was more than three times higher than said average, the motion was regarded as a tap. The
dynamic adjustment of this acceleration comparison guarantees that the detection works with different tremor
amplitudes [26].

5 USER STUDY WITH INDUCED TREMOR
To test the above described approach, we conducted two user studies employing a two dimensional tapping task
based on the ISO 9241-9 tapping test. Therefore, our correction method was incorporated into the FittsTouch mo-
bile application provided by MacKenzie [17]. In the first study, we induced tremor to healthy participants using
electrical muscle stimulation (EMS). According to Woods et al. [39], tremor is “... characterised by synchronous
bursts of antagonistic muscles”, and can thus be simulated with EMS. We simulated tremor with the frequency
of about 8 Hz. Essential tremor, the most common movement disorder, occurs with frequencies between 4 and
11 Hz, while enhanced physiological tremor (the tremor healthy persons might experience under stress) covers
the frequencies between 7 and 12 Hz [7, 39]. Thus 8 Hz covers both tremors.
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This approach was taken for two reasons. First, we expected that with this approach wewould achieve a larger
sample size in shorter time. Second, this allowed us to recruit participants who all had previous experience with
smartphones and touchscreens. The study received full approval by our institution’s IRB. In a follow up study
described later in this paper we conducted a similar user study with participants with tremor.

5.1 Participants
Participants were recruited at our institution via flyers and mailing lists. Potential participants were screened
regarding the use of EMS to induce tremor. At the beginning of that screening, potential participants had to
sign a form expressing they had no electrical or metallic implants, cardiovascular conditions, seizures, were not
pregnant, had no skin changes, neuritis, thrombosis, or wounds at the hands. After giving consent, potential
participants tried the tremor inducing gloves (Figure 5). They were told to immediately express any discomfort
they experienced. Participants were told to hold their arms outstretched in front of them. The frequency of the
tremor was set to 8Hz. The intensity was very slowly increased, until either participants felt uncomfortable or
until participants’ hands shook with an amplitude of between 0.5 and 1 cm, corresponding to a moderate tremor
on the Fahn-Tolosa-Marin Tremor Rating Scale [33]. If participants felt uncomfortable, they were not included
in the user study. The tremor amplitude was measured using motion capturing. Participants wore the finger
sensor later needed for the correction. Three markers were attached to its case, so that it could be tracked with
motion capturing. The screening procedure took about 10 minutes, participants were rewarded with a bar of
chocolate. After the screening, three participants decided to not participate in the actual study. The remaining
28 participants (10 women) were between 18 - 36 years old (mean: 25.39 (5.19 SD)). All were either students or
researchers at our institution. Three participants were left handed. All had previous experience with and owned
smartphones.

5.2 Study Design
The study used a within subject design, with every participant being exposed to all conditions. To compensate
for carry-over effects, conditions were counterbalanced. Independent variables were the size of the targets, the
distance between the targets, and the correction approach. Target sizes were 5mm, 7mm, and 9mm, based on
previous studies and recommendations of the Android styleguide. For the same reasons, the distances 30mm
and 40mm were chosen. We further employed six versions of our correction approach, plus no correction as a
baseline. The six versions of correction are explained in the following. First, we were interested which version of
our output correction (visible or non visible) works best. Thus, three correction versions were tested with visible
changes to the user interfaces, the remaining three versions without visible changes to the user interface. Of each
of those groups of three, one correction employed only the data measured with the smartphone, since we wanted
to know if a feasible input correction was possible without having to wear a device on ones finger. Additionally,
the full correction (data from smartphone and finger sensor used) was tested, as well as a version of the full
correction using motion capturing data as ground truth. We deliberately omitted from testing input correction
without output correction since in mobile usage scenarios, output correction would always be possible since
modern smartphones included the neededmotion sensors. Further, the hand holding the phone is always shaking
due to the tremor, needing to have some form of correction. The input correction, however, introduces the need
for a new piece of hardware, namely the motion sensor attached to ones finger. This could be problematic for
users, and thus it seemed feasible to test only output correction and output correction plus input correction.
Dependent measures were the movement time needed to successfully select a target and the number of misses
occurring while selecting a target. The movement times were calculated based only on successful attempts, e.g.
when a participant needed several attempts for selecting a target only the last (successful) attempt was regarded.
The movement time for one participant and one condition was calculated as the mean of all successfully selected
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(a) (b)

Fig. 9. The study situation. Participants held the phone with one hand while taping with the other (a), while being seated
at a table (b).

16 targets. The number of misses was calculated as number of misses occurring while trying to select a target.
This corresponds to the analysis approach suggested by Soukoreff and MacKenzie [32].

5.3 Apparatus
The study was performed in a room at our institution. For motion capturing, we used an OptiTrack system,
calibrated to submillimetre accuracy. Each three markers were attached to the smartphone (Nexus 5x) and the
finger sensor (MetaWear CPRO), as depicted in Figure 9.

Our aim was to provide a feasible tremor correction based on already built-in and commodity motion sensors.
However, to show how feasible our approach is, we also implemented a version of our correction using data
from a motion capturing system. Motion capturing systems provide far more accurate data, and can thus be
used to provide a ground truth for our system. We used an OptiTrack system to track both smartphone and
finger sensor. We calibrated the system so that it provided us with position data in submillimetre accuracy.
Three retroreflecting markers were attached to the finger sensor as well as to the smartphone (Figure 9). Since
the motion capturing system only provides us with position data (e.g., Euler Coordinates and Quaternions), and
not acceleration data, we had to calculate our corrections based on position data.

5.4 Procedure
After giving informed consent, participants were seated in front of a table. They put the tremor simulating
gloves and the finger sensor on and held their arms stretched out in front of them to set the tremor intensity. As
during the screening, the frequency was set to 8 Hz and the intensity was adjusted in such a way that the tremor
amplitude lay between 0.5 and 1 cm. Participants were instructed to hold the smartphone in their nondominant
hand and tap with the dominant one. Participants then completed each condition in counterbalanced order.
They were instructed to select the targets as fast as possible, to simulate quick mobile interactions. All targets
had to be selected eventually. Participants were omitted from propping their arms on the table or use other
means of stabilisation. Participants were unaware of the correction approaches and the current condition. They
always wore the finger sensor and could pause after each condition. After all conditions, participants filled in a
questionnaire regarding their demographic data. All participants were compensated with e 10.

5.5 Results
5.5.1 Movement time. The movement times are depicted in Figure 10 and shown in Table 5. As can be seen,

there are only small divergences in movement times between corrections. Only for the largest targets and
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Width
Distance 30 mm 40 mm

9 mm 9 mm7 mm 7 mm5 mm 5 mm

MT 
[ms]

400

200

600

800

1000

1200

MoCap
MoCap no UI Changes
Smartphone
Smartphone + Finger
Smartphone + Finger no UI Changes
Smartphone no UI Changes
No Correction

Fig. 10. The mean movement times for each correction. As can be seen, the movement times are all rather close, except for
themovement time for the largest targets with the longest distance: here, all corrections are visibly faster than no correction.

longest distance between targets does the movement time for no correction look longer. A 3x 2x 7 repeated
measures ANOVA on aligned rank transformed data with correction, target width and distance between tar-
get as independent and movement time as dependent factor revealed small significant main effects for target
width (F2,1107 = 10.7623, p < 0.001, η2p = 0.02) and distance between targets (F1,1107 = 54.9753, p < 0.001,
η2p = 0.05) as well as for correction (F6,1107 = 2.7608, p < 0.05, η2p = 0.01). As expected, large targets were
selected faster (540.75ms (113.67 SD)) than medium (558.74ms (113.27 SD)) and small ones (554.20ms (107.48
SD)). Also, targets with short distances were acquired faster than targets with long distances (538.37ms (109.88
SD) and 564.10ms (112.07 SD), respectively). All applied correction methods led to faster movement times than

Target Size

Target Distance
MoCap
MoCap no UI Changes
Smartphone
Smartphone + Finger
Smartphone + Finger no UI Changes
Smartphone no UI Changes
No Correction

C
or

re
ct

io
n

5 mm 7 mm

30 mm 40 mm

9 mm

30 mm 40 mm 30 mm 40 mm
566.7 (110.1)
549.8 (103.8)
549.6 (104.7)
548.5  (92.5)
542.9 (116.5)
529.2  (95.7)
540.0 (116.5)

561.0 (168.4)
533.1 (103.2)
568.7 (100.6)
520.8  (62.4)
549.4 (138.4)
555.2 (138.2)
547.8  (82.7)

535.4 (155.0)
510.4  (85.0)
531.2  (97.3)
539.0 (134.9)
511.0  (75.1)
510.4  (78.0)
505.6  (88.1)

565.4 (121.2)
571.9 (127.5)
566.6  (95.3)
568.0  (91.6)
562.7 (121.3)
553.0 (122.4)
544.4  (90.8)

566.6  (64.2)
562.8 (102.5)
578.5  (88.5)
566.4  (76.3)
560.9  (87.7)
585.9 (191.4)
565.3 (105.9)

557.5  (85.6)
517.9  (74.9)
536.7  (71.4)
528.4  (75.4)
543.0  (91.8)
589.4 (200.4)
654.8 (123.4)

Table 4. The resulting mean movement times per correction, target width and distance between targets (standard deviation
in brackets).
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Target Size

Target Distance
MoCap
MoCap no UI Changes
Smartphone
Smartphone + Finger
Smartphone + Finger no UI Changes
Smartphone no UI Changes
No Correction

C
or

re
ct

io
n

5 mm 7 mm

30 mm 40 mm

9 mm

0.77 (0.58)
0.78 (0.55)
1.26 (0.94)
0.78 (0.58)
0.80 (0.67)
1.09 (0.75)
1.32 (1.12)

0.36 (0.50)
0.42 (0.55)
0.37 (0.39)
0.30 (0.32)
0.35 (0.37)
0.45 (0.41)
0.30 (0.20)

0.19 (0.31)
0.17 (0.28)
0.23 (0.41)
0.15 (0.24)
0.19 (0.34)
0.24 (0.33)
0.24 (0.43)

0.84 (0.73)
1.14 (0.88)
1.24 (0.68)
0.85 (0.75)
0.71 (0.64)
1.42 (0.91)
1.27 (0.73)

30 mm 40 mm
0.33 (0.33)
0.32 (0.41)
0.53 (0.48)
0.38 (0.44)
0.27 (0.23)
0.53 (0.53)
0.52 (0.60)

30 mm 40 mm
0.12 (0.18)
0.15 (0.25)
0.22 (0.30)
0.20 (0.27)
0.16 (0.25)
0.26 (0.30)
0.27 (0.36)

Table 5. The resulting meanmisses per target (standard deviation in brackets) for each correction, target width and distance
between targets.

no correction (559.64ms (110.9 SD). The fastest correction method was using motion capturing data of both the
phone and the finger, and did not change the user interface (540.98ms (101.85 SD)). The second fastest correction
used the motion sensor data of both smartphone and finger sensor, and also did not change the user interface
(545.00ms (107.15 SD)), followed by the correction using the same motion sensor data but changed the user
interface (545.15ms (92.14 SD)), using only the smartphone’s motion sensors and not changing the user inter-
face (553.87ms (145.56 SD)), using the smartphone’s motion sensors and changing the user interface (555.23ms
(93.81 SD)), and the correction using motion capturing data and changing the user interface(558.75ms( 121.56
SD)). Pairwise comparisons with Tukey HSD could not show significant differences between corrections and
target widths.
Significant interactions were found for target width and distance between targets (F2,1107 = 5.5744, p <

0.01, η2p = 0.01), with the increase in movement time for medium and especially larger targets being more
pronounced for the long distance between targets. Further, the interactions between correction method and
target size (F12,1107 = 2.9789, p < 0.001, η2p = 0.03) as well as with distance between targets (F6,1107 = 3.0089,
p < 0.01, η2p = 0.02) were significant, showing that the effect of all correction methods in contrast to using no
correction was more pronounced for larger and more distant targets.

5.5.2 Misses. The mean misses per target are depicted in Figure 11. As can be seen, when used with both
sensors (smartphone and finger), our correction approach reduces misses. The numeric results are also shown in
Table 5. A 3x 2x 7 repeated measures ANOVA performed on aligned rank transformed data revealed significant
main effects for correction (F6,1107 = 35.1158, p < 0.001, η2p = 0.16), target width (F2,1107 = 801.0160, p < 0.001,
η2p = 0.59), and distance between targets (F1,1107 = 18.7396, p < 0.001, η2p = 0.02). Smaller targets were selected
withmoremisses thanmedium sized and large ones (1.20 (0.79 SD), 0.39 (0.43 SD), and 0.20 (0.3 SD), respectively).
Tukey HSD posthoc tests confirmed these differences being significant (p < 0.01). Regarding the correction
methods, the correction involving only smartphone sensors and not changing the user interface lead to more
misses than no correction (0.66 (0.73 SD) and 0.66 (0.79 SD)). The correction involving only smartphone sensors
and not changing the user interface only lead to slightly fewer misses (0.64 (0.72 SD)). The fewest misses were
possible with our correction approach including data from both smartphone and finger and not changing the
user interface (0.41 (0.51 SD)) followed by theMoCap version of said correction and changes to the user interface
(0.44 (0.54 SD)), which was only sightly better than the smartphone version using both smartphone and finger
sensors and changes to the user interface (0.44 (0.54 SD)). The Mocap version with no changes to the user
interface achieved 0.49 (0.63 SD) misses at average. The results of the posthoc Tukey HSD tests for correction
methods are shown in Table 6. As can be seen, all correction approaches including acceleration data from the
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Width
Distance 30 mm 40 mm

9 mm 9 mm7 mm 7 mm5 mm 5 mm

Misses

1

0

2

3

4

MoCap
MoCap no UI Changes
Smartphone
Smartphone + Finger
Smartphone + Finger no UI Changes
Smartphone no UI Changes
No Correction

Fig. 11. The mean misses per target for each correction, target width and distance between targets. As can be seen, all
correction methods involving both hand’s tremor lead to fewer misses than no correction. Additionally, the effect of our
correction is especially visible for small targets.

smartphone as well as from the finger sensor significantly outperformed using no correction, whereas the two
correction approaches only relying on smartphone acceleration data did not significantly outperform using no
correction. Also, all correction approaches including both smartphone and finger acceleration data significantly
outperformed the correction approaches using only the smartphone’s acceleration data. The only remaining
significant difference occurred between the correction using MoCap data and not changing the user interface
and the corresponding correction using smartphone and finger motion data and not changing the user interface.

Additionally, the interactions between correction and target width (F12,1107 = 10.7236, p < 0.001, η2p = 0.10)
as well as between correction and distance between targets (F6,1107 = 2.7236, p < 0.05, η2p = 0.01) were sig-
nificant. Using no correction for medium sized targets lead to fewer misses than the corrections relying only
on smartphone’s motion data. Targets with the longer distance between them were selected with fewer misses
using both correction approaches relying on motion data from finger and smartphone and not changing the
user interface. Additionally, the interaction between target width and distance between targets (F2,1107 = 3.4323,
p < 0.05, η2p = 0.01) was significant, with distance increasing misses more pronounced for small targets than for
medium and large ones. This means that our correction methods seem to work better on the more difficult, that
is smaller targets. When comparing the number of misses of our overall best correction approach, using smart-
phone and finger sensors without changing the user interface, we still achieved improvements for even large
targets. While for the small targets (5 mm), the improvements were 39.39% and 44.10% for 30 mm and 40 mm
distance respectively, we could achieve an improvement of 48.10 % for 7 mm sizes targets with a distance of
40 mm. For 9 mm sized targets, the improvement amounted to 20.83% for 30 mm distance and 40.74% for 40 mm
distance.
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Corrections
MoCap

MoCap no UI Changes

Smartphone

Smartphone + Finger

Smartphone + Finger no UI Changes

Smartphone no UI Changes

p - Value
MoCap no UI Changes
Smartphone
Smartphone + Finger
Smartphone + Finger no UI Changes
Smartphone no UI Changes
No Correction

0.3536
<.0001 ***
0.9998
0.9550
<.0001 ***
<.0001 ***
<.0001 ***
0.5960
0.0330 *
<.0001 ***
<.0001 ***
<.0001 ***
<.0001 ***
1.0000
0.9985
0.8202
<.0001 ***
<.0001 ***
<.0001 ***
<.0001 ***
0.9851

Smartphone
Smartphone + Finger
Smartphone + Finger no UI Changes
Smartphone no UI Changes
No Correction
Smartphone + Finger
Smartphone + Finger no UI Changes
Smartphone no UI Changes
No Correction
Smartphone + Finger no UI Changes
Smartphone no UI Changes
No Correction
Smartphone no UI Changes
No Correction
No Correction

Table 6. The resulting p-values for the pairwise comparisons between the corrections (Tukey HSD). As can be seen, the
correction approaches incorporating smartphone and finger motion data significantly outperformed no correction and the
correction approaches only relying on the smartphone’s motion data. Also, the correction using MoCap data and not chang-
ing the user interface significantly outperformed the corresponding correction using smartphone and finger motion data
and not changing the user interface.

5.6 Discussion
Our results show that correcting tremor related misses based on motion data has the potential to reduce move-
ment time and, more importantly, the number of misses for selecting a target. The differences between our
correction approach using motion sensors and our approach using motion capturing data are marginal, leading
us to the assumption that the accuracy of the used motion sensors is sufficient. As we suspected based on the
results of our interviews, we found that incorporating both motion sensors (phone and finger sensor) leads to a
stronger reduction of misses, while using only the phones motion sensors does not reduce misses. This indicates
that it could be more important to correct the input. However, since we did not test conditions where only the
input was corrected we cannot be fully certain and have to leave this to future evaluations. Also the corrections
had an increased effect for smaller and more distant targets. Since these targets are more difficult to select, an
increased effect of the correction is desirable.

6 USER STUDY WITH PERSONS WHO ARE AFFECTED BY TREMOR
To confirm the positive results from the previous study, and to test our correction approaches with the actual
target user group, we conducted a second user study with persons with tremor. The study was approved by our
institution’s Institutional Review Board. We referred from including corrections using motion capturing data as
ground truth, because the previous study showed that using motion sensors is sufficient. Yet more important,
this allowed us to include participants who could not come to our lab by visiting them.
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Target Size

Target Distance
Smartphone
Smartphone + Finger
Smartphone + Finger no UI Changes
Smartphone no UI Changes
No CorrectionC

or
re

ct
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n
5 mm 7 mm

30 mm 40 mm

9 mm

30 mm 40 mm 30 mm 40 mm
658.8 (101.2)
701.9 (207.6)
694.6 (142.1)
673.2 (123.7)
704.3 (208.9)

632.9 (154.4)
599.2 (145.3)
652.5 (179.4)
621.9 (161.3)
653.3 (138.3)

612.2 (171.2)
642.8 (183.7)
622.9 (169.5)
588.3 (182.3)
589.0 (187.1)

693.2  (94.4)
712.7 (148.7)
693.0 (136.6)
678.1 (119.7)
703.6 (144.3)

667.2 (129.0)
693.1 (219.3)
650.3 (152.1)
675.4 (158.7)
708.5 (177.1)

635.8 (157.0)
626.3 (200.0)
613.3 (169.4)
649.1 (187.5)
702.8 (299.7)

Table 7. The resulting mean movement times in milliseconds (standard deviation in brackets) for each correction, target
width and distance between targets.

6.1 Participants
Participants were recruited through newspaper adverts, Google ads, flyers in leisure facilities for senior citizens
and through support groups. Six persons (one female) participated in our study, one with juvenile and five with
essential tremor. The age ranged between 22 and 69 years (mean 33.17 (23.47 SD)). All participants were right
handed and had previous experience with smartphones. Tremor intensity was tested with the spiral test as was
done with the interview participants. Two participants had a slight, three a moderate, and one a severe tremor.

6.2 Study Design
The study design was basically the same as in the previous study. The only difference was that we did not include
correction methods based on motion capturing data as ground truth, reducing the number of corrections to five.

6.3 Apparatus
The apparatus was the same as in the previous study, without the motion capturing system.

6.4 Procedure
The procedure was the same as in the previous study, yet since the participants of this study had a tremor, no
tremor was induced. Every participant was exposed to 30 conditions (two distances between targets, two target
widths, five corrections). In each condition, participants eventually selected 15 targets, resulting in 450 successful
selections per participant and 2700 successful selections in total.

6.5 Results
6.5.1 Movement Time. The mean movement times for each correction approach are depicted in Figure 12.

The results are also displayed in Table 7. A 3x 2x 5 repeated measures ANOVA on aligned ranked transformed
data revealed significant main effects for target width (F2,145 = 7.69, p < 0.001, η2p = 0.10) and distance between
targets (F1,145 = 10.27, p < 0.01, η2p = 0.07). Close targets were faster selected than more distant ones (643.19ms
(157.22 SD) and 680.09ms (160.46 SD), respectively), and smaller targets were slower selected than medium and
large ones (691.33 (136.63 SD), 657.38 (152.13 SD), and 636.22 (183.80 SD), respectively). Tukey HSD posthoc
tests could not reveal further significant differences. The individual results for each participant are depicted
in Figure 13. Each graph resembles on participant, their tremor intensity is noted above the graph. Following
the results of the analysis of all data, the individual data show little effect of correction method on movement
time, while especially for participants 5 and 6 target size and distance between targets seem to have an effect
on movement time. Participants 4 and 5, both with slight tremor, as well as participant 6 with moderate tremor
seem to have faster movement times than the other three participants.
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Width
Distance 30 mm 40 mm

9 mm 9 mm7 mm 7 mm5 mm 5 mm
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Smartphone
Smartphone + Finger
Smartphone + Finger no UI Changes
Smartphone no UI Changes
No Correction

Fig. 12. The results for movement time for each correction, target width and distance between targets. As can be seen, the
differences are rather small.

6.5.2 Misses. Figure 14 depicts the mean misses for each selection task,the mean misses are shown in Table 8.
A 3x 2x 5 repeated measures ANOVA on aligned rank transformed data revealed significant main effects for cor-
rection type (F4,145 = 9.98, p < 0.001, η2p = 0.22), distance between targets (F1,145 = 23.62, p < 0.001, η2p = 0.14)
and target width (F2,145 = 87.71, p < 0.001, η2p = 0.55). Close targets were less often missed than distant ones
(0.42 (0.64 SD) and 0.61 (1.54 SD), respectively). Small targets were more often missed than medium and large
ones (1.17 (1.87 SD), 0.27 (0.24 SD), and 0.09 (0.10 SD), respectively). Tukey HSD posthoc tests revealed the
differences between small and medium as well as large targets both being significant (p < 0.001). Regarding cor-
rection approaches, using no correction (0.61 (1.20 SD)) lead to more misses than using the corrections involving
both smartphone and finger motion data (0.39 (0.66 SD)), relying only on the smartphone’s motion data and not
changing the user interface (0.39 (0.46 SD)), as well as smartphone and finger motion data without changing

Target Size

Target Distance
Smartphone
Smartphone + Finger
Smartphone + Finger no UI Changes
Smartphone no UI Changes
No CorrectionC

or
re

ct
io

n

5 mm 7 mm

30 mm 40 mm

9 mm

30 mm 40 mm 30 mm 40 mm
1.04 (1.12)
0.76 (1.00)
0.93 (0.87)
0.82 (0.49)
1.13 (1.09)

0.26 (0.23)
0.17 (0.20)
0.30 (0.28)
0.18 (0.14)
0.32 (0.30)

0.14 (0.13)
0.01 (0.03)
0.09 (0.10)
0.04 (0.05)
0.04 (0.07)

2.93 (4.89)
0.99 (1.01)
0.46 (0.55)
0.86 (0.64)
1.80 (2.42)

0.36 (0.32)
0.24 (0.24)
0.33 (0.40)
0.24 (0.08)
0.27 (0.18)

0.10 (0.12)
0.10 (0.11)
0.08 (0.07)
0.18 (0.16)
0.06 (0.10)

Table 8. The resulting meanmisses per target (standard deviation in brackets) for each correction, target width and distance
between targets.
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Fig. 13. The results for movement time for each participant, correction, target width and distance between targets.
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Width
Distance 30 mm 40 mm
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Smartphone + Finger no UI Changes
Smartphone no UI Changes
No Correction

Fig. 14. The mean misses per target for each correction, target width and distance between targets. As can be seen, the
correctionmethod involving both hand’s tremor motions allowsmore accurate selection, resulting in fewer misses especially
for small targets.

the user interface (0.36 (0.52 SD)), with the latter resulting in the fewest misses, that is 40% less than no correc-
tion. Only the correction relying on the smartphone’s motion data and changing the user interface lead to more
misses than no correction (0.81 (2.15 SD)). The results of posthoc pairwise comparisons with Tukey HSD for the
correction methods are shown in Table 9. As can be seen, the correction approaches incorporating smartphone

Corrections
Smartphone

Smartphone + Finger

Smartphone + Finger no UI Changes

Smartphone no UI Changes

p - Value
Smartphone + Finger
Smartphone + Finger no UI Changes
Smartphone no UI Changes
No Correction
Smartphone + Finger no UI Changes
Smartphone no UI Changes
No Correction
Smartphone no UI Changes
No Correction
No Correction

0.0003 ***
<.0001 ***
0.0004 ***
0.6742
0.8900
0.9999
0.0267 *
0.8366
0.0013 **
0.0376 *

Table 9. The resulting p-values for the pairwise comparisons between the corrections (Tukey HSD). As can be seen, the
correction approaches incorporating smartphone and finger motion data or only the smartphone’s motion data without
changing the user interface significantly outperformed no correction and the correction approaches only relying on the
smartphone’s motion data and changing the user interface.
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Participant 5, slight tremor

Width
Distance 30 mm 40 mm

9 mm 9 mm7 mm 7 mm5 mm 5 mm

Miss

1

0

2

3

Participant 4, slight tremor
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Participant 6, moderate tremor
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Fig. 15. The mean misses per target for each participant, correction, target width and distance between targets. Note the
different scaling of the y axis for participant 3.
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and finger motion data or only the smartphone’s motion data without changing the user interface significantly
outperformed no correction and the correction approaches only relying on the smartphone’s motion data and
changing the user interface.

Significant interactions were found for correctionmethod and target width (F8,145 = 3.73,p < 0.001,η2p = 0.17)
as well as target distance (F4,145 = 8.00, p < 0.001, η2p = 0.18). Using the correction involving both smartphone
and finger motion data and not changing the user interface decreased the misses more for more distant targets
than for closer targets, while this was inverted for all other correction approaches. The decrease in misses of
said correction was also more pronounced for small targets than for the other corrections. The interaction be-
tween target width and distance between targets was also significant (F2,145 = 4.72, p < 0.05, η2p = 0.06), with
long distances between targets more severely increasing selection difficulty especially for small targets. When
comparing the improvements achieved for each condition, we see that for 5 mm targets with 30 mm distance,
using both smartphone and finger sensors for correction achieved 17.70% fewer misses without UI changes and
32.74% fewer misses with changing UI. For 5 mm targets with a distance of 40 mm, the improvement achieved
by the correction involving both smartphone and finger sensors and not changing the UI amounted to 74.44%
fewer misses. For the 7 mm sizes targets, we could achieve 6.25% fewer misses when using both smartphone
and finger sensors and not changing the UI and 46.88% fewer misses with the same sensor configuration but
visibly changing the UI (both for 30 mm distances). For 7 mm targets with 40 mm distance, using either both
smartphone and finger sensor or only the smartphone sensor without changing the user interface lead to 11.11%
fewer misses. For 9 mm sized targets with a distance of 30 mm, the correction employing smartphone and finger
sensors and visibly changing the user’s interface even amounted to a reduction of misses of 75%.

The individual results for each participant are depicted in Figure 15. Each graph resembles one participant,
their tremor intensity is noted above the graph. The individual graphs show that the less difficult the study con-
dition was, the fewer was any correction needed. In such cases, corrections could even introduce more misses.
However, the more severe the tremor is, the more correction is needed for targets with moderate difficulty (see
the error rates for the targets with 7 mm width for participant 2, severe tremor). When looking at each partici-
pant, we find that for participant 4, who has a slight tremor, the correction approach employing both smartphone
and finger sensors and changing the user interface according to the correction result seems to lead to better re-
sults than the other correction approaches, even for easier selection tasks. For the two easiest targets, 9 mmwith
both distances, no correction was needed. Participant 5, also with a slight tremor, achieved relatively low error
rates without corrections. For 5 mm targets with 40 mm distances, corrections even introduced more errors. Yet,
for the other conditions, the corrections improved the low error rates even further, especially the correction ap-
proach involving both smartphone and finger sensors and not changing the user interface. Participant 6, having
a moderate tremor, also achieved rather few misses for large and moderate targets without any correction. As
with other participants, correcting when not needed might have introduced slightly more misses for one condi-
tion (target size 7 mm and target distance 30 mm). When target distance was increased to 40 mm for 7 mm sized
targets, both corrections employing smartphone and finger sensors reduced misses. In both conditions involv-
ing 5 mm sized targets, all corrections dramatically reduced misses, with the correction approaches using both
smartphone and finger sensors leading to the fewest misses. Participant 3, also having a moderate tremor, had
the most difficulties with selecting the 5 mm targets with 40 mm distance. Please note that therefore the scale
for this participant’s graph in Figure 15 differs from all other graphs. Yet in this extreme case, our correction
using both smartphone and finger sensors without changing the user interface as well as using only smartphone
sensors without changing the user interface drastically reduced misses, the first bringing the number of misses
close to zero. Remarkably, for targets with 5 mm width and 30 mm distance using both smartphone and finger
sensors without changing the user interface did not lead to a comparable result. For this condition, using only
the smartphone’s sensors without changing the user interface led to the best result. Considering the results for

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 156. Publication date:
December 2017.



156:26 • K. Plaumann et al.

the remaining (easier) conditions, where fewer corrections were necessary, it seems that for this participant the
correction approach involving only smartphone sensors and not changing the user interface overall led to better
results, although the same correction approach led to more misses in the small target conditions for participant 4
(slight tremor). Participant 1 was the third participant with a moderate tremor. As with participant 3, the correc-
tion approach involving only the smartphone’s motion sensors and changing the user interface increased misses
for targets with 5 mm width and 40 mm distance. Using only the phones motion sensors without changing the
user interface also led to an increase in misses for three conditions. As with the other participants, corrections
applied when not needed could increase misses. Yet when needed, both corrections involving smartphone and
finger sensors reduced misses, with visually correcting targets leading to higher reduction. Participant 2 was the
only participant with a severe tremor. The graph shows that for this participant, the correction success seems
to depend on the distance between targets. When the distance was 40 mm, the tested corrections (except using
only smartphone sensors and not changing the user interface for medium sized targets and using both sensors
and not changing the user interface for large targets) seemed to increase misses. For conditions with 30 mm
distance between targets, however, all correction approaches reduced misses or at least did not increase them.
The correction approach employing both smartphone and finger sensors without changing the user interface
more than halved the misses for small targets. Using only smartphone data without changing the user interface
reducing misses for medium sized targets even more dramatically.

6.6 Discussion
The results of this study, conducted with participants with tremor, confirmed the results of the previous study
that correcting input based on motion sensors strongly decreases error rate, with the best correction approach
(using both smartphone and finger motion data and not changing the user interface) overall leading to 40 %
fewer misses. Again, accounting for both hands leads to more successful selection than only using the phone
sensors data. Interestingly, the correction based solely on phone’s sensors and visually correcting the targets
leads to more misses even than using no correction. A closer look at the data and study sessions revealed, that
this effect can be attributed to one participant, who had considerable trouble with the moving targets. The
constant changing of the user interface seemed too confusing. Further, through the input being not corrected,
the participant more or less guessed where they should touch. Since in this study only six persons participated,
we can only speculate if this behaviour is an isolated case or occurs in larger parts of the population. However,
since the correction approaches with no visual changes to the user interface both with and without inclusion
of the input correction perform far better than when no correction is applied, we argue that our approach
does increase selection accuracy and should best be used without visual changes to the user interface. As in
the first study, the statistical analysis suggests that our correction approaches seem to have a larger effect on
smaller targets. Yet these are the targets which are more difficult to select, having a more than three times
higher error rate compared to medium sized targets and up to 30 times higher error rate than large targets. Thus
corrections for smaller targets are way more often needed, making the higher effect corrections have on these
targets desirable. Broken down to each condition, however, we could still observe that even for large targets
(see Table 9, 9 mm width and 30 mm distance, the easiest condition) high improvements are achievable. The
individual analysis of misses showed that we could dramatically reduce misses, especially for small targets. The
analysis also showed that especially in cases where no correction was needed, applying any correction could
lead to more misses. One reason for this could be the used shake window of 0.1 s. We think that by dynamically
adjusting this time window to the actual current tremor frequency, we could further improve the correction.
In this way, we would only regard data frames from the current shake, and thus reduce influences of previous
shakes or not having all data frames of the current shake. Since tremor frequencies differ from person to person,
are not steady within one person, and tremor related motions might change during controlled movements, this
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approach could lead to more robust corrections. Another possible solution is to use different values for the
parameters k and a for different target sizes, yet the feasibility of this approach is subject to future work. For
the only participant with severe tremor, targets with a distance of 40 mm between them were harder to select
with corrections. We contribute this to the large correction distances needed for this tremor causing targets
reaching the edge of the screen too soon causing misses. Yet, our correction achieved considerable less misses
for targets with only 30 mm distances for the same participant. The individual analysis also showed that there
are participants for whom changing the user interface according to the correction seems more appropriate than
not changing the user interface. Since the sample size is small, and HCI literature rather pointing in the direction
that changing user interfaces confuse users [9, 43], it stands to question whether this is a personal preference
or a characteristic of persons with tremor. Yet, the overall results and most of the individual ones show that it
is certainly feasible to use motion sensors to correct tremor related misses as we described in this paper. Even
with the configuration used in our study, misses could be drastically reduced.

On the implications of testing our corrections with users with induced and users with actual tremor. The main
reason we conducted the first user study with induced tremor was not to avoid testing our correction with users
with real tremor, but to initially test our correction with a large and easy to recruit sample to ensure a certain
level of functionality before inviting users with actual tremor. In case our correction approach would not have
worked out in the first study, we would have made alternations before conducting further studies with users
with real tremor, a target group considerably harder to recruit. Also, simulating tremor helped us a lot during
the development of our correction, since non of the authors nor anybody in the research group has a tremor.
Thus we find our approach feasible, and large parts of both studies are coherent. Yet there should be no doubt
that the first study was never indented to our could replace the second study, where the actual target users were
involved. The second study is the main study of our paper. Testing input techniques with users with induced
tremor can only give a hint of how those techniques work. Persons who actually have tremor cope with it every
day, for many years. Throughout their daily life they develop compensation strategies. Those strategies can
be developed consciously, and therefore communicated when asked in interviews, but also unconsciously, and
therefore hard to communicate but nevertheless leading to different behaviour from persons without tremor.
User who are induced with a tremor are highly unlikely to having developed such strategies, nor do they have
any experience with tremor. Having a tremor and interacting with anything is completely new to them, so they
behave differently.When using induced tremor during the development, one has to be cautious to not over-fit the
correction to one certain tremor frequency and intensity combination, but to many. Also, actual tremor might be
more volatile and vary more during one usage session than the induced one. Albeit initial tests are feasible with
induced tremor as stated above, this does not absolve one from understanding who persons with tremor interact
with devices (as we did in our interviews), nor from testing with persons who are affected by real tremor (as we
did in our second user study).

7 LIMITATIONS
One limitation of the interviews and the second study is the relatively small sample size. It stands to question
whether our results would be different if more persons would have participated. Yet, the results of our interviews
are coherent and understandable, and furthermore confirm results from previous work. Regarding the evaluation
of our correction approach, we deliberately conducted a user study with induced tremor. This way, we could
find results based on a larger sample size, and large portions of the results are coherent with the results from
the second user study.

One could question the applicability of our correction approach to real world applications, since the selec-
tion tasks were rather abstract. However, our study design is based on the ISO 9241-9 norm, which is widely
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used in human computer interaction to test input techniques. Furthermore, this paper only covers the initial
development of our correction approach, in future work we will focus on its applicability in real life scenarios.

Mounting an additional device on ones finger might not be preferable by some users. Yet, our results show
that detecting and accounting for the tremor in the input finger increases the accuracy even more (using both
smartphone and finger sensor data and not visually changing the user interface outdoes the corresponding
condition without considering the finger sensors data by 7.7 %), and might thus be necessary. In future work,
we will investigate how tremor can reliably be detected with only the smartphone’s means, and if a device more
worn like a ring at the base of ones finger is feasible.

The corrected targets being always completely present on the screen imposes certain limitations regarding
the interface design. E.g., there has to be a sensible area around the edges of the screen where no content is
displayed, so that this space can be used for corrected targets. In times of ever increasing screen sizes, this seems
bearable. Yet it seems also feasible that when using our correction approach without visually corrected targets
(which also seems to achieve the better results), to cut off corrected targets at the screen’s edge. The visual
integrity of the user interface would not be distorted, since the corrected target is not visible. This would allow
to use the full screen space. Whether the correction would achieve similar or even better results is subject of our
future research in this area.

8 CONCLUSION
Hand tremor complicates interactions with touchscreen based smartphones, leading to slow interactions and
more misses when selecting targets. Using interviews, we assessed difficulties persons with tremor face when
interacting with modern smartphones.

Further, we proposed a method to increase selection accuracy using off-the-shelf motion sensors. We showed
that using our method increases input accuracy in two consecutive user studies, both with induced tremor
and real tremor. Our results show that misses can be reduced up to 40 % when using both smartphone and
finger motion data and not changing the user interface. Our method is not only valuable in mobile touchscreen
scenarios, but since the input correction seems to be more important than the sole output correction, we argue
that our method could also be applied to stationary touchscreens used in kiosk systems, ticket machines and
wall sized displays and plan to investigate this further in future works.

Future plans regarding our method include increasing robustness for selection tasks in more cluttered user
interfaces (e.g., keyboards) as well as evaluating how the selecting fingers oscillation can be detected without
fixing motion sensors on it, e.g. by using changes in touchscreens’ capacity while hovering.
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