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ABSTRACT

Since the introduction of augmented reality (AR) technology, in-situ
instructions for manual tasks have been a central use case for a large
body of previous work. However, most implementations provide
identical sets of instructions to each user disregarding the user’s
current mental load. This is a major issue since previous work has
shown the importance and potential of an adapted instruction fidelity
for manual tasks such as playing an instrument. To implement a
low-cost mental load adaptation for AR instructions, we evaluated a
mobile off-the-shelf electroencephalographic (EEG) device for its
suitability and feasibility to measure mental load while wearing a
video see-through AR head-mounted display (HMD). In a first user
experiment (n=12), data of EEG power band values and proprietary
performance metrics of the manufacturer were collected and anal-
ysed regarding their validity to estimate the user’s mental load. Our
results indicate that our setup successfully induced different levels of
mental effort. The proprietary performance metrics, however, only
partially reflected the participants’ current mental effort and require
further analysis.

Index Terms: Human-centered computing—Human computer in-
teraction (HCI)—Interaction paradigms—Mixed / augmented reality
Human-centered computing—Human computer interaction (HCI)—
HCI design and evaluation methods—Usability testing

1 INTRODUCTION

Dynamic difficulty adjustment systems can be found in many game
environments where they are supposed to keep players in a state
of flow and, thus, increase player enjoyment. Since it has been
shown that the emotional and cognitive state of a user can impact
performance in human-computer interaction in general [5, 8], this
motivated us to explore the potential of adaptation for a non-gaming
context such as in-situ instructions in AR.

While there has been research on input techniques and modalities
for AR where users can switch between techniques or use them
complementary depending on the context [10], research on context-
sensitive output adaptation in real-time is sparse and mostly focuses
on desktop applications rather then HMDs [11]. Previous research
on assessing a user’s cognitive or mental load relied mostly on
expensive medical-grade sensors such as EEGs [2] and functional
near-infrared spectroscopy (fNIRS) [1, 11], limiting not only the
accessibility to the community and but also the potential application
areas such as mobile scenarios. Furthermore, most approaches are
limited to a post-hoc analysis of mental load [7].

To evaluate the feasibility of a low-cost framework that could
measure the users’ mental load in real-time and cover a wide range
of scenarios, we performed a preliminary study with a low-cost EEG
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device and a video see-through AR HMD. Our aim was to evaluate
the validity of our low-cost setup to measure mental load and to
explore the potential of the manufacturer’s performance metrics [4,9]
to estimate the user’s current mental state.
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Figure 1: A ZED Mini stereo camera is mounted in front of the Vive
HMD to provide high resolution video see-through AR. A custom head
mount was 3D printed to accommodate the EEG beneath the HMD
and reduce pressure on the electrodes.

2 PRELIMINARY STUDY

To collect EEG data on different levels of mental effort, n-back tasks
were applied to stimulate the working memory of the participants [3].
The independent variable Task was defined with three levels of dif-
ficulty: 0-back, 2-back, and 3-back. The measured variables were
the self-reported mental effort on the Rating Scale Mental Effort
(RSME) instrument that has a scale from 0 (‘absolutely no effort’)
to 150 (‘extreme effort’) [12] and the performance metrics (Perfor-
mance) that consist of the 7 categories Interest, Stress, Relaxation,
Excitement, Engagement, LongTermExcitement, and Focus [4].

To our best knowledge, the combination of a low-cost EEG
device and a video see-trough HMD has not been evaluated for
measuring mental load in previous work before. The delay of video
see-through AR in combination with the physical pressure exerted
by the EEG might impact the mental effort created by n-back tasks.
Hence, the first hypothesis to evaluate was:

H1: There is a significant increase in mental effort (RSME)
for increasing Task difficulty presented in our setup.

The calculations behind the proprietary performance metrics
of the manufacturer are not known and therefore require a validation
of their feasibility to reliably measure mental load in real-time.
Thus, the following hypothesis was tested in this experiment:



Metric

Part. Interest Stress Relaxation Excitement Engagement LT Excitement Focus
1 χ2(2) = 14.0** χ2(2) = 14.0** χ2(2) = 10.17* χ2(2) = 2.67 χ2(2) = 3.17 χ2(2) = 13.17* χ2(2) = 8.17*
2 χ2(2) = 1.5 χ2(2) = 6.5* χ2(2) = 3.07 χ2(2) = 2.17 χ2(2) = 8.0* χ2(2) = 6.5* χ2(2) = 7.17*
3 χ2(2) = 1.5 χ2(2) = 13.17* χ2(2) = 0.5 χ2(2) = 20.67** χ2(2) = 0 χ2(2) = 24.0** χ2(2) = 10.67*
4 χ2(2) = 12.17* χ2(2) = 8.67* χ2(2) = 6.5* χ2(2) = 6.5* χ2(2) = 16.17** χ2(2) = 13.5* χ2(2) = 4.5
5 χ2(2) = 8.17* χ2(2) = 1.17 χ2(2) = 3.17 χ2(2) = 6.0* χ2(2) = 11.17* χ2(2) = 15.5** χ2(2) = 10.5*
6 χ2(2) = 1.5 χ2(2) = 15.17* χ2(2) = 6.5* χ2(2) = 6.7 χ2(2) = 9.5* χ2(2) = 8.17* χ2(2) = 3.17
7 χ2(2) = 8.67* χ2(2) = 6.17** χ2(2) = 5.17 χ2(2) = 10.17* χ2(2) = 4.67 χ2(2) = 8.17** χ2(2) = 16.17**
8 χ2(2) = 22.17** χ2(2) = 24.0** χ2(2) = 4.41 χ2(2) = 14.0* χ2(2) = 22.55** χ2(2) = 15.5** χ2(2) = 11.17*
9 χ2(2) = 12.17* χ2(2) = 13.17* χ2(2) = 15.5** χ2(2) = 6.5* χ2(2) = 10.17* χ2(2) = 22.17** χ2(2) = 7.17*
10 χ2(2) = 2.17 χ2(2) = .17 χ2(2) = 4.17 χ2(2) = 8.17* χ2(2) = .5 χ2(2) = 9.5* χ2(2) = 10.67*
11 χ2(2) = 14.0* χ2(2) = 15.5** χ2(2) = 18.77** χ2(2) = 12.67* χ2(2) = 1.17 χ2(2) = 18.0** χ2(2) = 4.5
12 χ2(2) = 10.67* χ2(2) = 14.0* χ2(2) = 5.17 χ2(2) = 7.17* χ2(2) = 11.72* χ2(2) = 8.17* χ2(2) = 9.5*

Table 1: Results of the Friedman ANOVA for each participant. Significant differences (*p < .05, **p < .001) in the Perfomance metric values for the
three Task conditions are highlighted.

H2: There is a significant difference between values of Per-
formance for different levels of Task.

2.1 Apparatus
An Emotiv Epoc+ 14-channel EEG was used to measure real-time
EEG data with a rate of 8 Hz for band power and 0.1 Hz for per-
formance metrics. The data was steamed via Bluetooth and the
manufacturer’s Cortex SDK to a VR Notebook running a custom
Unity 3D application. A Vive HMD was connected to the Notebook
and attached on top of the EEG with a custom 3D-printed strap that
leaves sufficient space around the ears to fit the EEG electrodes (see
Fig. 1). Since the default camera of the Vive HMD (480p, 200ms de-
lay) is not fit for low-latency and high-resolution video see-through
AR, a ZED Mini stereo camera (720p, 60ms delay) was mounted on
the HMD. The trigger of one Vive controller was used for selections
during the n-back tasks and the touch pad of the second Vive con-
troller to select values on the RSME scale that was presented as an
interface attached to the controller. A marker was positioned at 50
cm distance in front of the participant and was used to position the
virtual interface for the n-back task.

2.2 Participants and Procedure
12 participants (7 male, 5 female) with an average age of 23.17
(SD=1.46) were recruited from our institution. 58.33% reported
to have already experienced AR at some point in their life. All
participants had normal or corrected-to-normal vision.

After an introduction to the procedure and privacy policy, partici-
pants filled out a demographic questionnaire and had the opportunity
to practise all three n-back task levels on a computer screen. Each
n-back task consisted of 40 characters of which 12 were targets.
Characters were displayed for 500 ms with a 2500 ms inter-stimulus
interval. Only consonants were chosen to prevent chunking which
might reduce mental effort [6]. After the training, the EEG and the
Vive HMD were mounted on the participants’ head and controllers
were placed in their hands. Participants were seeing their environ-
ment via video see-through AR and a virtual interface displaying
the n-back task in-front of them. In a comfortable sitting position
participants went through two sessions with a break of 5 minutes.
Each session started with a rest task by focusing on a centred cross
for 2 minutes. A label above the interface indicated the level of
difficulty of the next trial. Each level was presented twice per ses-
sion and lasted for 2 minutes. Trials were counter-balanced with
a Latin square. Afterwards, participants rated their mental effort
on the RSME scale that was displayed as an interface attached to
the second controller. A trigger press confirmed the selection and
started the next trial.

2.3 Results
2.3.1 RSME
A Friedman ANOVA revealed significant differences in the RSME
scores for the three Task conditions, χ2(2) = 24.0, p < .001. Post
hoc analysis with Wilcoxon signed-rank tests was conducted with
a Bonferroni correction applied, resulting in a significance level
set at p < .0167. Median (IQR) RSME levels for the Task levels
0-back, 2-back, and 3-back were 19.125 (9.63 to 23.69), 55.25
(42.25 to 62.56) and 85.0 (71.88 to 91.81), respectively (see Fig. 2).
There was a significant difference between the 0-back and the 2-
back trials (Z =−3.509, p = .002), the 0-back and the 3-back trials
(Z = −3.509, p = .002) and the 2-back and the 3-back trials (Z =
−3.061, p = .002).
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Figure 2: A box plot of subjective mental effort for each Task level
measured with the RSME instrument on a scale from 0 to 150.

2.3.2 Performance
All values of the seven Performance metrics that were recorded
during the second session were explored for each participant indi-
vidually. Differences in the three Task conditions were analysed
with a Friedman ANOVA. The results can be found in Table 1. Of
seven Performance metrics LongTermExcitement showed significant
differences for each participant.
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Figure 3: LongTermExcitement values of two exemplary participants
during two minute trials (samples at 0.1 Hz) at each level of Task.
Please note the different scaling of the y-axes.

3 DISCUSSION

Our results indicate that mental effort was significantly higher for
increasing levels of Task. We therefore accept H1 and assume that
our setup is valid to induce different levels of mental effort. As can
be seen in Table 1, only LongTermExcitement expressed significant
differences for all participants while Relaxation yielded the lowest
number of significant results. We can therefore only partially accept
H2. Although the results in Table 1 suggest that LongTermExcite-
ment could be a reliable predictor of mental effort for all participants,
the definition of a meaningful threshold for real-time adaptation is
not trivial. First, the manufacturer defines LongTermExcitement as
a metric that measures the overall mood rather than acute changes.
Second, as can be see in Table 1, participants 3 and 5 displayed a
highly significant difference in LongTermExcitement (p < .001). A
close inspection of the metric values for both participants, however,
reveals unique trends for each Task level giving tribute to the hetero-
geneity of EEG data (see Fig. 3). The results should therefore be
interpreted with caution and require more research to define unique
thresholds for each participant in the next user experiment. It should
further be noted that the group differences were calculated for the
complete duration of a trial which lasted two minutes whilst real-
time adaptation should be able to react within a significantly smaller
time window to fit the user’s current mental effort.

4 CONCLUSION

In this work, we presented a preliminary study that aimed to evaluate
the feasibility of a low-cost EEG device to measure a user’s mental
effort while wearing a video see-through AR HMD. We successfully
induced three significantly different levels of mental effort via n-back
tasks and found significant differences in some of the performance
metric values provided by the manufacturer. Further research is
necessary to interpret the results into meaningful thresholds that

could distinguish between a low and a high mental effort and be
applied to create a real-time adaptation system for AR. Furthermore,
an analysis of the recorded power bands could yield additional
features to derive a threshold.
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