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Abstract

Most digital cameras capture color pictures in the form
of an image mosaic, recording only one color channel at
each pixel position. Therefore an interpolation algorithm
needs to be applied to reconstruct the missing color infor-
mation. In this paper we present a novel Bayer pattern de-
mosaicing approach, employing stochastic global optimiza-
tion performed on a pixel neighborhood. We are minimiz-
ing a newly developed cost function that increases smooth-
ness along one-dimensional image features. While previous
algorithms have been developed focusing on LDR images
only, our optimization scheme and the underlying cost func-
tion are designed to handle both LDR and HDR images,
creating less demosaicing artifacts, compared to previous
approaches.

1. Introduction

Most digital cameras use a single-chip CCD or CMOS
photo-sensitive sensor array to capture images. At each
sensor position the intensity of light is measured by accu-
mulating photoelectrons. In order to capture a color image,
a color filter array (CFA) is placed in front of the sensor,
permitting only light of a certain wavelength range (usually
red, green or blue) to pass through. Hence, compared to the
full RGB color image, two thirds of the color data is miss-
ing. The most frequently used CFA pattern in today’s color
cameras is the Bayer pattern [2]. The Bayer mosaic consists
of red, green and blue pixels arranged in a regular grid, with
twice the number of green pixels compared to the red and
blue ones, as depicted in Figure1(a).

Given a color mosaic recorded in this fashion, the miss-
ing data needs to be determined in order to obtain a full-
color full-resolution image. This is done by a process called
demosaicing, for which a number of algorithms exist. Most
of them try to reconstruct the missing colors by interpo-
lating within a small pixel neighborhood. Many of them,
however, introduce artifacts into the image that are very
unpleasant for human eyes, namely false colors and “zip-
pering” (alternating patterns) along edges in the image, as

(a) (b) (c)
Figure 1. Artifacts arising from improper demosaicing of input
images with a Bayer pattern CFA (a): false colors (b) and zipper-
ing (c).

shown in Figure1. Other methods introduce blurring of the
image which avoids creating these artifacts but nevertheless
reduces the overall quality of the resulting image.

Another restriction of most digital cameras is their lim-
ited capability of capturing the full dynamic range of natu-
ral scenes. The scene dynamic range is defined as the ratio
of the largest and smallest luminance value present in the
scene. This value often exceeds the dynamic range of the
camera sensor. By taking multiple shots of the same scene
with different exposure settings and combining them into
one high dynamic range (HDR) image, we can compensate
for the low dynamic range (LDR) of the camera sensor.

In this paper we will present a novel demosaicing algo-
rithm which iteratively improves the image quality. Our
main observation, concerning the problem of demosaicing,
is that the search for a plausible reconstruction must not be
performed considering just the pixel’s local neighborhood
in the CFA image. Instead, the reconstructed colors have to
be consistent with the neighboring pixels colors in the final
full-color image.

We have therefore developed a global optimization
scheme which operates simultaneously on all pixels in a
neighborhood, searching for the optimal pixel configuration
in that neighborhood. In this manner we are able to produce
images with drastically reduced artifacts, outperformingex-
isting demosaicing algorithms for LDR images. The opti-
mization is performed by minimizing our newly developed
cost-function, which exploits the local pixel coherence in
natural-looking images. Furthermore, the design of the al-
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gorithm is independent of the dynamic range of the image,
making it usable for HDR images as well. We will also
show that it is advised, for multiple exposure HDR imag-
ing, to perform HDR reconstruction of multiple exposure
images prior to demosaicing, since it results in superior im-
age quality and reduced computational costs.

2. Related Work

2.1. Demosaicing

Since the introduction of the Bayer CFA pattern in 1976,
the most popular CFA arrangement, there have been many
proposed solutions for the demosaicing problem. For a de-
tailed survey on existing demosaicing methods we refer the
readers to [10, 24].

Basic demosaicing methods rely on bilinear or bicubic
filtering to estimate the two missing color values per pixel.
They are computationally undemanding and perform well in
smooth regions, but fail to produce good results near object
or texture edges. In such regions simple interpolation of
each color channel separately leads to the “zipper” effect,
often in conjunction with false colors, as shown in Figure1.
Therefore it seems reasonable to perform any interpolation
along edges in the image and not across them, since the
pixel values along the edges remain roughly constant.

The most common edge detection approach is to com-
pute gradients in the image, which is a basis of many demo-
saicing methods [12, 18, 28]. Kakarala and Baharov [14]
use Jacobians of red, green and blue directions to detect
edges. Weighted average interpolation [16] is an extension
of the edge-detection methods that computes the likelihood
of an edge in a certain direction, after which the pixel is
computed as the weighted average of its neighbors. Hamil-
ton and Adams [11] use discrete Laplacians in the blue and
red channels as correction terms for green channel interpo-
lation, thus reducing aliasing created by simple averaging.
Chang et al. [4] use multiple gradients and then interpolate
orthogonal to the estimated gradient direction of the im-
age, as implemented in thedcraw package [5]. Takahashi et
al. [27] use combined green and red/blue gradients to deter-
mine the interpolation direction of the missing green pixels,
while the red and blue color channels are interpolated using
the already interpolated green channel. The main problem
of gradient-based algorithms is that the interpolation direc-
tion is estimated directly from the CFA image, and might
deviate from the direction in the correct full RGB image. In
our algorithm we use Takahashi’s AAI algorithm, exploit-
ing its properties for reconstructing red and blue channel,
given the reconstructed green channel. We, however, esti-
mate both the interpolation direction and the intensity in the
green channel by performing a global neighborhood opti-
mization, as explained in Section3.1.

A second commonly used observation is that the color

channels in naturally occurring images tend to be strongly
correlated. Cok [6] first exploited this fact by separating
the color space into luminance and hue (color), with the as-
sumption that the latter is roughly constant within each ob-
ject in the image. In order to prevent abrupt color changes,
Cok first interpolated the green channel (representative for
luminance), and then red/blue channels by using the con-
stant hue principle. The constant hue assumption is used by
various algorithms [11, 16, 18, 27]. Bennett et al. [3] pro-
pose a probabilistic model stating that at most two represen-
tative colors exist within each pixel neighborhood. Our al-
gorithm performs minimization over an objective function
which favors color smoothness, but does not enforce the
constant hue assumption explicitly, since it actually may fail
at boundaries between patches of different hue.

In recent years, there have been many new approaches
for solving the demanding problem of demosaicing. Al-
leysson et al. [1] managed to remove some image artifacts
by preprocessing the image in Fourier space, reducing alias-
ing in luminance and chrominance channels. Narasimhan
and Nayar [22] apply a learning approach for demosaicing,
deriving a set of polynomial demosaicing filter kernels from
a set of high-quality three-channel images. Adaptive demo-
saicing [23] uses bilateral filtering together with an analysis
of the local properties of the image to increase color similar-
ity in pixel neighborhoods. The algorithm is able to smooth
out pixel noise and to sharpen object edges.

A group of demosaicing algorithms is based on the idea
that iterative minimization of some function expression may
lead to better final results. These functions implicitly con-
tain some color smoothness and color correlation terms, as
illustrated in Keren and Osadchy [15]. Gunturk et al. [9] use
an iterative scheme that enforces similarity between high
frequencies in color channels, keeping the measured data.
We also perform function minimization, using a cost func-
tion which enforces smoothness only along 1D features,
without directly enforcing color constraints that might not
be applicable in some image regions.

Farsiu et al. [8] formulate the demosaicing problem in a
different manner. A general framework for combined treat-
ment of demosaicing and super-resolution problems is pre-
sented. Instead of using a single image captured by the im-
age sensor, the authors make use of multiple frames, which
are slightly offset, noisy, blurred and sampled using the
CFA. By optimizing over various regularization terms the
images are combined together into one demosaiced high
resolution image. Nevertheless, since the majority of imag-
ing systems consist of only one imaging sensor, the pro-
posed framework cannot be used for most practical applica-
tions.

The adaptive homogeneity-directed demosaicing (AHD)
algorithm [13] uses a local measure of homogeneity to im-
pose similarity in luminance and chrominance within the



image. The image is interpolated in both horizontal and
vertical directions, after which every resulting pixel is trans-
ferred from RGB to CIELab color space. One of the two
possible directions is chosen based on the local homogene-
ity measure, and the resulting image is further processed us-
ing iterative gradient-aware median filtering. Homogeneity-
directed demosaicing is recognized as one of the best per-
forming demosaicing algorithms [10]. However, a certain
number of artifacts, mainly false colors, still remain in the
resulting images.

2.2. HDR

Another aspect we are investigating in this paper is de-
mosaicing of high dynamic range images, which might ei-
ther be captured using a high dynamic range CFA cam-
era or by combining a series of CFA images captured with
different exposure times. After calibrating the camera re-
sponse curve from known [7, 25] or unknown exposure set-
tings [21] the input images are linearized and then combined
using a weighted sum which accounts for the reliability of
the reported digital values [25].

Most of the previous demosaicing approaches implicitly
assume a limited dynamic range in the CFA image. Our
objective function for explicitly expressing smoothness is
designed to accommodate arbitrary ranges.

A technique for tone mapping and demosaicing HDR
images inspired by the human visual system has been pre-
sented by Alleysson et al. [20]. The HDR reconstruction
is based on psycho-physical evidence, and linear interpola-
tion is used for demosaicing. Based on the HVS model the
authors argue that demosaicing should follow HDR recon-
struction. We support this statement by another argument
based on the non-linearities in LDR images (Section4).

3. Demosaicing Algorithm

Before describing our demosaicing algorithm we will
present some insights that guided its development.

3.1. Demosaicing properties

Our demosaicing approach is, to a small part, based on
the asymmetric average interpolation (AAI) algorithm by
Takahashi et al. [27]. The AAI algorithm first interpolates
the green channel only, after which red and blue channels
are interpolated using the full green channel image. To de-
termine the interpolation direction the algorithm uses com-
bined pixel gradients, and the interpolation alone is per-
formed with the assumption of slowly varying red-green
and blue-green color differences.

Although the interpolation method itself does not per-
form well in many cases, we found that interpolating red
and blue from the CFA image, given the correct green chan-
nel, does create almost perfect results as demonstrated in

(a) (b)
Figure 2. a) Applying the AAI algorithm to Bayer CFA data vs.
b) applying the AAI algorithm for red/blue color channels to the
image with perfect green channel. Notice how the AAI red/blue
channel interpolation creates an almost perfect image.

Figure 2. We take advantage of this property in our al-
gorithm by optimizing over the green channel only, using
the AAI to fill in red and blue color channels, reducing the
number of free variables drastically. We will refer to the
AAI algorithm, performing on the image with the full green
channel information, as AAIG.

Figure 3. Failure cases of local gradient estimation. From left to
right: CFA image, AAI interpolated, ground truth.

Another important demosaicing property is that per-pixel
gradient-based methods cannot make proper decisions in all
situations. To illustrate this we have zoomed in on a single
pixel frequency stripe pattern, where the gradient estimated
locally from the CFA image indicates an edge in the wrong
direction (Figure3). Occasionally, determining the right
direction for pixel interpolation locally is impossible — the
pixel in question is actually isolated and no edge is apparent.
In such cases, any local interpolation scheme is destined
to fail. Therefore, we have developed an algorithm which
globally optimizes over all pixels in a pixel neighborhood
simultaneously, avoiding wrong local gradients.

3.2. Overview of the Algorithm

We formulate demosaicing as a global optimization
problem over the entire image. From the previous subsec-
tion we know that it is sufficient to optimize over the miss-
ing green pixels only. The objective function we minimize
is defined over the resulting full color RGB image,after red



(a) (b)
Figure 4. (a) The 4 discrete directions along which the 1D fea-
tures are traced, for which our smoothness term is evaluated. (b)
distance to the line in RGB space (δ = Sp)

and blue have been reconstructed using AAI. It is defined as
a sum of local smoothness terms evaluated for every pixel.
The per-pixel smoothness is defined using our projection
metric, evaluated along four different directions throughthe
pixel (Figure4 (a)), as the best of the four values.

The resulting objective function contains a large number
of local minima, requiring an appropriate optimization al-
gorithm for which we chose the simultaneous perturbation
stochastic approximation (SPSA) algorithm [19, 26]. In-
stead of optimizing over all green pixels at the same time,
we optimize over a small pixel neighborhood, since the di-
rectional ambiguity is rather localized.

Before we start describing our demosaicing method we
will briefly introduce the notation that will be followed
throughout this paper. Pixels within the image are indexed
with small latin letters (x, y,. . . ora, b. . . ). Distance in Eu-
clidean space is given withδ. Letterd is a directional indi-
cator, and formulasx + d andx − d indicate pixels that are
offset by one pixel in directiond, but on opposite sides.

3.3. Projected smoothness measure

The core of our optimization is a simple, yet surprisingly
general objective function, designed to increase smoothness
along 1D features at every pixelx. We assume that no
pixel is completely uncorrelated to its neighboring pixels,
in which case it would be impossible to reconstruct its cor-
rect color. Every pixel bears some correlation with at least
one of its neighbors (in natural images even more often with
two neighboring pixels, along one direction). Since there is
no robust way to determine the orientation of this 1D feature
from the CFA image directly, we try out all four possible di-
rections in the interpolated RGB image explicitly (Figure4
(a)). Let I(x) be the vector in RGB space, representing
the reconstructed color of pixelx. We define a projected
smoothness measure at pixelx along directiond as:

Sp(x, d) =
(I(b) − I(a))⊥ · (I(x) − I(a))

‖(I(b) − I(a))⊥‖
(1)

with a = x − d andb = x + d.

In the above Equation(I(b) − I(a))⊥ indicates a vector
in RGB space orthogonal to the vectorI(b) − I(a) in the
I(a), I(x), I(b) plane. This formula allows the color ofx

(a) (b)
Figure 5. Regularizing diagonals: (a) without, a checkerboard pat-
tern is created. (b) It is removed by∆(x, d).

to move closer toI(a) or I(b), as long as it stays close to the
line spanned byI(a) andI(b), as illustrated in Figure4 (b).
I(a) and I(b) define a color transition, and with the pro-
jection metric we try to obtain the smoothest transition that
interpolates the given CFA sample atx. For every pixel we
select the directiond that has the minimum color projection
smoothness.

When evaluating this projection metric along diagonals
we need adiagonal regularization term to prevent the al-
gorithm from optimizing two completely independent lay-
ers, since diagonals consist only of green or red/blue pixels.
Figure5 (a) demonstrates the case when every other pixel
chooses a different diagonal, resulting in clearly visiblear-
tifacts. In order to couple these two layers we add a small
fraction of the vertical and horizontal measure to the diago-
nal measure:

∆(x, d) =

{

0 , d ∈ {dh, dv}
β(Sp(x, dh) + Sp(x, dv)) , d = ddiag

(2)
We experimentally foundβ = 0.06 to work very well for all
images, without penalizing diagonals too much. Additional
regularization is required in order to prevent the objective
function from assigning less energy to directions with high
gradients. To accomplish this we include thecolor devia-
tion term. For each color channel, along directiond, we
compute the standard deviation and add the resulting val-
ues:

sd(x, d) =
∑

c∈{r,g,b}

sdc(I(x − d), I(x), I(x + d)), (3)

wheresdc is the standard deviation of color channelc for
the three given RGB pixel values.

With the projected distance measure for a single pixel,
and a single direction at hand, we now state the final energy
function of our optimization. Instead of optimizing the en-
tire image at once we iteratively optimize over every pixel
neighborhoodNbh(x) of 3 × 3 pixels, minimizing the fol-
lowing energy:

E(x) =
∑

y∈Nbh(x)

(

min
d

Sp(y, d) + ∆(y, d)

B(x)
+ λ sd(y, d)

)

(4)
with λ = 0.1. In order to be independent of the dynamic
range of the image, the error is scaled according to the pixel
brightness termB(x). We computeB(x) by applying a
Gaussian filter with a3x3 kernel on the RGB image.



3.4. Optimization Strategy

It is important to note that updating a single green pixel
influences the interpolated colors in a3 × 3 neighborhood
around the pixel. In order to obtain the optimal value for
a single green pixel, we therefore have to optimize over all
unknown green pixels in a3 × 3 neighborhood (5 in total).
Since we define the smoothness along one out of four direc-
tions per pixel, the objective function for this small neigh-
borhood typically contains a large number of local minima.
To find a global optimum we have employed the simulta-
neous perturbation stochastic approximation (SPSA) algo-
rithm. The SPSA algorithm samples the gradient around the
current estimate stochastically, using only two samples, and
is therefore able to occasionally jump out of local minima.
The cheap estimation procedure for the gradient allows for
efficient optimization of high dimensional problems. Since
the SPSA guarantees convergence to the global optimum
only stochastically, we run the SPSA five times with about
100 iterations for every3 × 3 neighborhood and iterate five
times over the entire image to propagate changes. The full
iteration pipeline is outlined in Figure6.

start with initial interpolated green
// image loop
for 5 iterations over the image
// interpolate missing green
for each red/blue CFA pixel

compute initial energy
// pixel loop
for 5 iterations over the pixel
select SPSA parameters
perform SPSA with 100 iterations
select best

end for;
if best>initial set pixel value

end for;
end for;

Figure 6. Global optimization procedure.

Further runtime optimizations include:Pixel selection.
Instead of updating every pixel in every iteration of the
outer (image) loop, it is easy to detect which pixels might
need further improvement. Smooth image regions, where
the correct signal is perfectly sampled, do not need any up-
date at all. We determine those regions by simply evaluat-
ing the energy function for each pixel and testing whether
the energy is lower than an adaptive threshold value. Also,
after every image loop we exclude those pixels that were
reconstructed properly by the SPSA algorithm. We set the
threshold at5% of the maximum pixel energy value in the
image.
Reducing iterations: The initially interpolated guess
(e.g. the AAI interpolated image) may produce many pix-
els which need optimizing, but are in the proximity of the

global minimum. It is therefore reasonable to perform the
very first image iteration with a rather narrow search radius
of the SPSA, i.e. using it as a stochastic steepest decent
rather than globally exploring the error landscape. Since
we are searching for the local minima, we perform only one
pixel iteration. For the next image iteration steps we grad-
ually adapt the SPSA parameters such that the algorithm
is able to leave local minima and search for the globally
optimal solution. This is achieved by increasing the pertur-
bation values of the SPSA, which allows the algorithm to
perform larger steps in its search. We stop the inner SPSA
loop if the induced pixel change is less then0.2% of the
pixel’s original value.

4. HDR Demosaicing Model

Reconstructing a high dynamic range image from multi-
ple exposure requires first linearizing the measured digital
counts and then blending between the different exposures.
In this work we assume the response curve of the camera
to be known (approaches for response curve reconstruction
are given in [7, 25]). We follow the approach by Robertson
et al. [25] to estimate the radianceL at a pixelx from the
measured linearized intensitiesIi of an exposure series with
N exposure timesti. A simple average could be computed
asLhdr(x) =

∑N

i=0
Ii

ti

. Robertson et al. proposed comput-
ing a weighted average using Gaussian weights, in order to
dampen the noise introduced by badly exposed pixels.

4.1. Order of Demosaicing and HDR

If a CFA camera is used, demosaicing needs to be com-
bined with HDR reconstruction to obtain a full-color HDR
image. The order of the operations is critical. LDR images
contain non-linear effects (response curve, over and under
exposure) which are correctly counteracted by the weight-
ing function if HDR reconstruction is performed prior to
demosaicing. On the other hand, demosaicing the LDR im-
ages first would spread the non-linearity of the LDR infor-
mation to neighboring pixels in a non-recoverable way. The
input to the HDR reconstruction is already corrupted and
can no longer be corrected through blending. In Table1 we
present the peak signal-to-noise ratio (PSNR) results of ap-
plying demosaicing first, followed by the HDR reconstruc-
tion, and compare them to the PSNR values if the order of
demosaicing and HDR is reversed. The results show that
the latter performs much better. Figure7 demonstrates our
demosaicing scheme applied to an HDR image.

5. Results

In this section we will present results obtained by our
method and compare them with the AAI algorithm [27], as
well as a state-of-the-art algorithm, the AHD interpolation
method [13].



Figure 7. Examples of HDR reconstruction followed by demo-
saicing.

HDR Pipeline PSNR - dataset 1

Dem. + HDR PSNR HDR + Dem. PSNR
Ours 32.2326 47.1861
AAIG 30.577 48.0565

HDR Pipeline PSNR - dataset 2

Dem. + HDR PSNR HDR + Dem. PSNR
Ours 23.4334 45.3813
AAIG 23.3481 47.1674

Table 1. PSNR values comparison for two presented datasets. The
reconstruction quality is much improved if the HDR reconstruc-
tion is performed before demosaicing.

5.1. Measuring demosaicing error

Measuring the quality of a demosaiced image is not a
simple task since it is not easy to obtain a full RGB image
for comparison. There exist several standard sets of LDR
RGB images which offer high-quality images at low reso-
lutions, e.g. the Kodak CD set [17]. The standard testing
method is to reduce these images to the Bayer CFA pat-
tern, demosaic them and then compare to the original ones.
However, even if both raw camera data and the full RGB
image are available, it is not at all clear how to compare two
images.

In this paper we will present several comparison tests,
mainly image PSNR and the mean squared error (MSE).
Note, however, that such comparisons might be mislead-
ing. There exist artifacts, such as false colors, that imme-
diately appear implausible to the observer, whereas uncor-
related noise, resulting in a comparably large “distance” to
the reference image, might be perceived as completely un-
suspicious and natural. Having in mind that the majority
of demosaiced images will be subjectively evaluated by hu-
man observers, the perceived quality of demosaiced images
should be evaluated with psycho-visual experiments. We
instead present some demosaicing examples where the im-
provements made by our approach are clearly visible.

5.2. Demosaicing results

Since most of the existing algorithms perform reason-
ably well on a large number of pictures, we put our focus
on such pictures that have shown to be particularly diffi-

PSNR values
lighthouse house window

Ours 39.7907 38.8117 39.7268
AHD 38.1076 35.0847 40.3453
AAI 36.7592 33.0647 40.6047
AAIG 46.3841 46.6925 46.8902

MSE values
lighthouse house window

Ours 0.02676 0.03353 0.02715
AHD 0.03943 0.07908 0.02355
AAI 0.05378 0.12591 0.02219
AAIG 0.00586 0.00546 0.00522

Table 2. PSNR and MSE value comparisons for three datasets. Our
algorithm manages to outperform both AHD and AAI algorithms.

cult to demosaic. Figure10 shows the lighthouse test scene
and some zoomed-in regions, where our algorithm outper-
forms previous approaches. The image is not perfectly re-
constructed though, since there is a slight presence of faint
false colors in the high-frequency fence structure. Figure11
shows the house scene, with the window region zoomed in.
Artifacts which are present in images reconstructed with
AAI and AHD are removed with our algorithm. In Fig-
ure12we show that our algorithm occasionally suffers from
slight zippering artifacts, which are rare and do not spread
across large image areas.
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Figure 8. Plot of PSNR values ratios for AHD and our method
(measured on the full Kodak set). Note that the corresponding
values tend to be above thef(x) = x line, ploted in green.

In Table2 we present the PSNR measurements and the
relative errors for three test scenes, which clearly confirm
the superiority of our algorithm compared to both AAI and
AHD interpolation methods. The PSNR value of the almost
perfect AAIG reconstruction serves as a reference for com-
parison. Furthermore, we have tested both AHD and our
method on noisy synthetic data (see Figure9), where both
methods perform roughly the same (note that both AHD and
our method perform demosaicing without denoising).

In Figure 8 we have plotted the PSNR values of our
method against the PSNR values of the AHD method. The
plot clearly shows an improvement of the PSNR in most of
the tested images. In cases where AHD demosaicing out-



(a) (b) (c)
Figure 9. Noise images: a) Ground Truth, b) AHD (PSNR=
20.4852), c) Ours (PSNR= 20.4983).

performs our method, the difference is not decisive.

(a) (b)

(c) (d)
Figure 10. Lighthouse: a) RGB, b) AAI, c) AHD, d) Ours).

We have also compared execution times of our demo-
saicing algorithm with those of the AHD algorithm. For
the “House” image in Figure11, AHD computation time
is 63 seconds, while our optimization scheme needs 101
seconds. The reason for slower computation time lies in
our global optimization, which cannot be performed with a
small number of iterations.

6. Conclusion and Future Work

In this paper we have presented a novel demosaicing al-
gorithm that globally minimizes a simple, yet effective ob-

(a) (b)

(c) (d)
Figure 11. House: a) RGB, b) AAI, c) AHD, d) Ours.

(a) (b)

(c) (d)
Figure 12. Window: a) RGB, b) AAI, c) AHD, d) Ours.

jective function, producing significantly less artifacts in dif-
ficult image regions compared to state-of-the art demosaic-
ing techniques. Our objective function tries to increase the
smoothness along one out of the four directions in every
pixel of the image.

It is interesting to note that, while the objective function
does not explicitly assume any coupling between the color
channels, our approach rarely produces false colors. This
indicates that our objective function corresponds to a prop-
erty found in most natural images. In the future one might
exploit the power of this function as a regularization term
in other image reconstruction tasks, e.g. super resolutionor
deconvolution. Furthermore, we would like to concentrate
on further improving our demosaicing approach by address-
ing explicitly the problem of noise in the CFA data, as well
as increasing the efficiency of the algorithm.

Besides the novel demosaicing algorithm, we have con-
firmed that in the context of HDR imaging, the order of
demosaicing and HDR reconstruction should be inverted.
First the HDR reconstruction on the CFA images should be
performed, followed by demosaicing the HDR CFA image



for superior image quality, as well as decreased computa-
tional costs.
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