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Abstract

We propose a new approach to capture the volumetric density of dynamic scattering media instantaneously with a single image.
The volume is probed with a set of laser lines and the scattered intensity is recorded by a conventional camera. We then determine
the density along the laser lines taking the scattering properties of the media into account. A specialized approximation technique
reconstructs the full density field in the volume. We apply the technique to capture the volumetric density of participating media

such as smoke.
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1. Introduction and Previous Work

The acquisition of time-varying volumetric density
fields has recently attracted the attention of computer
graphics researchers. Hasinoff and Kutulakos [1] pre-
sented a multi-view method to volumetrically recon-
struct flames using a photo-consistency approach. Thrke
and Magnor [2,3] used sparse view tomography to re-
construct flames and optically thin smoke from a small
set of camera views. Hawkins et al. [4] captured time-
varying smoke density by rapidly scanning a laser plane
through a volume and imaging the light scattered by
individual smoke particles from a lateral view with a
high-speed camera (see Figure 1, left). This allows them
to sample locations in the moving light plane with high
spatial resolution yielding high quality renderings of the
captured model. Physical measurement systems such as
Yip et al. [5] or laser induced fluorescence (LIF) [6] fol-
low a similar approach and capture the whole volume
sequentially from a single view.

Our method is inspired by single view techniques but
takes a fundamentally different sampling approach: The
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volume is illuminated with a grid of laser lines in or-
der to sample the whole volume simultaneously. Essen-
tially, the 2D laser plane is discretized and spread out
to discrete locations in space. The volume is captured
with a standard camera. As illustrated in Figure 1, this
trades (potentially) continuous sampling in one spatial
domain (Ay) against continuous sampling in the time
domain (Ar). Careful placement of camera and light
sources avoids occlusions when the laser lines are pro-
jected onto the image plane and the full but sparser sam-
pled 3D information is captured with a single image.
The sampling density can be increased by projecting
multiple grids of differently colored illumination into
the volume.

This new sampling paradigm has several conse-
quences:
Decoupling of spatial and temporal sampling: The
system captures the volume with a single camera im-
age. It therefore enables continuous sampling in the
time domain allowing both integration over long time
intervals for weak signals and extremely short acquisi-
tion times for fast-changing datasets.
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laser plane

Fig. 1. Different acquisition approaches. Left: Sequential scanning
of the volume with a plane of light as implemented by Hawkins et
al. [4] with discrete sampling in time (Af) and one spatial dimension
(Ax). Right: New approach with simultaneous capture of volume
density using line grids as illumination and discrete sampling in two
spatial dimensions (Ax,Ay).

Increased time resolution: Using the same camera
hardware, frame rates can be increased by 1-2 orders
of magnitude. Furthermore, the system contains no
mechanically moving parts, i.e., the achievable time
resolution is only limited by the imaging hardware and
the illumination intensity.

Limited spatial resolution: Spatial resolution is fun-
damentally limited by the number of laser lines that can
be resolved by the imaging system. Sampling is denser
along the direction of the laser lines but spatial detail
between sampling lines is lost, resulting in potential
aliasing.

Density instead of photo-consistency: The actual
density of scatterers is reconstructed (up to a scale fac-
tor) instead of a photo-consistent representation of the
volume as in Hasinoff and Kutulakos [1].

In the remainder of the paper we first describe the
basic concepts underlying our capture approach (Sec-
tion 2). We then analyze its properties and study the
resulting errors using a synthetic smoke dataset (Sec-
tion 3). We describe our prototypical acquisition system
and show results for real captured datasets (Section 4).
The paper concludes with a discussion (Section 5) and
future work (Section 6).

2. System Description

Figure 1, right, gives an overview over the measure-
ment setup. We assume that the measurement volume
contains a spatially varying density of scattering parti-
cles that we would like to measure. Apart from their
density, the scattering properties of the individual par-
ticles should be constant (or be well approximated by a
constant). Depending on the size of the particles, scat-
tering will either be dominated by Mie scattering (for
larger particles such as typically found in smoke) or

laser lines /,

pixel p |

Fig. 2. Left: Situation for an individual ray c. Right: Image of the
actual acquisition setup with camera on the left and two laser sources
(left near camera and blue box on the right). When active, smoke
is generated between the two tables.

by Raleigh scattering [7]. In the remainder of this sec-
tion, we first describe the principles of radiative transfer
(Section 2.1) and develop our image formation model
(Section 2.2). Section 2.3 shows how we can recover the
density of scatterers along the laser lines illuminating
the volume. We finally describe in Section 2.4 how we
can recover the full density field from this information.

2.1. Radiative Transfer

We start our analysis with the equation of radiative
transfer [8] which describes the change in specific in-
tensity I(r,8) ! for a small volume element ds at a po-
sition r in space and in a direction §:

dl(r,8) A, PO: ool &\ g
5 = —po,I(r,s) + e /p(s,s )M (r,8")do
4m
+¢(r,8). (1)

The first term models a decrease in specific intensity
due to absorption and outscattering which is propor-
tional to the number of particles per unit volume p and
the extinction cross section ;. The second term de-
scribes the increase in specific intensity due to inscat-
tering which depends additionally on the phase function
p(8,8'). €(r,8) is the emission from within ds.

In our measurement system (see Figure 1, right, and
Figure 2 for the principle of the approach and the no-
tation) we assume that light is scattered from homoge-
neous particles inside the volume. The extinction cross
section o, and the phase function p(8,8’) are constant
throughout the volume but the number of particles per
unit volume p = p(r) varies. We furthermore assume
that the laser lines /; are generated outside the obser-
vation volume so that there is no emission inside, i.e.,

I Note that specific intensity can be converted into radiance by
integrating over the spectrum of the radiation.



€(r,8) = 0. The goal of the measurements is to recover
p(r) up to a scale factor, i.e., it is sufficient to recover
D(r) = o,p(r). Equation 1 simplifies then to the first
order differential equation

dl(r,8) R
5 = D(r)I(r,8)

b / p(8,8)1(r,8)dw. @)

4n

which we would like to solve under the boundary con-
ditions given by our setup and assumptions.

2.2. Image Formation Model

We now take the specific situation of our measure-
ment setup into account: The incident intensity /; at a
position ro where the backprojected ray ¢ of a pixel p
with direction —S§ intersects with a laser line /; with di-
rection §;, can be computed as

D(ry
4n

1,'(1‘07§) = )11 (l‘o,Sl )p(§ §]I.). 3)

This is, however, only valid if p covers the full width
of the laser line /;. We will show in Section 4.1 how we
lift this restriction in practice.

We assume in the following that I;(ro,8;,) = 1, is
constant along each laser line /; and can be calibrated
in a separate step. Following Ishimaru [8] we can now
split the intensity along the ray c into two terms:

I(I’7 §) = Iri(r7§) +Id (I‘, §) “4)

The reduced intensity /;(r,5) models the decay of /;
due to absorption and outscattering along ¢ according
to the first term in Equation 2:

Iri(s) = Ii(l'(), §)e

= Ii(ro,8)e” 10” &)
s measures the distance from ry along the ray c to the
pixel p. Note that unlike [8], we treat [;(ro,8) as a radi-
ation source inside the volume. The remaining contri-
butions caused by inscattering from the volume are ac-
cumulated in the diffuse intensity /4(r,8). The specific
intensity that reaches pixel p can therefore be described
as:

Iy = Lj(s) +1g(s)- (6)

2.3. Recovering D(r) along Laser Lines ;

The goal of this section is to recover the scaled den-
sity values D(r) along the laser lines /;. We rewrite
Equation 6 using Equations 3 and 5:

D(ro)
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This can be rewritten as

— ( ) fé D(r)ds

D(rg) 4 11 p(§ 3, ) . ®)
The phase function p(8,8’) can either be assumed to
be isotropic, theoretically derived from the properties
of the scattering media [7], or be measured experimen-
tally [4]. Note, however, that our acquisition setup eval-
uates p(8,8’) only over a small range of angles (all pos-
sible intersection angles of a laser line /; and a ray ¢
in Figure 2). Locally approximating p(8,§’) with a con-
stant yields therefore only a small error. The error can
be minimized by placing the camera far away from the
scene in order to approximate an orthographic projec-
tion. /;, can be determined in a calibration step for each
laser line ;.

The diffuse intensity /4(s) can be estimated from the
set of camera pixels N(p) in the spatial neighborhood
of p whose backprojected ray does not intersect with
any laser line /;:

Iy(s) ~1T Ly 9
d(s) ~Ig(s) = ||N ; ©)

This assumes that /4(s) varies smoothly over the image
plane and corresponds to the removal of multiple scat-
tering in the calibration part of Hawkins et al. [4]. We
furthermore need to set I(s) = Ip if I(s) > I, to avoid
physically implausible results, e.g., due to noise in the
acquisition. Under the assumption of optically thin scat-
tering material, we can furthermore set [y D(r)ds =0
without introducing a too large error. Equation § then
becomes

Diry) ~ 4r® : a(s) (10)

I,p(8,8;,)

which allows us to recover the scaled density values
along all laser lines.



2.4. Reconstruction of the Entire Density Field D(r)

The previous section introduced an approach to cap-
ture D along the laser lines. We will now discuss both
interpolation and approximation approaches to recover
D(r) from this information.

2.4.1. Interpolation

Given the density values D along the laser lines, we
can employ an interpolation technique to interpolate
D(r). The push-pull algorithm [9,10], for example, fills
in missing parts in an image by iterative downsampling
and upsampling of the image using a filter kernel at
multiple resolutions. It can be easily generalized from
2D image data to 3D volume data.

The push-pull algorithm is able to fill in large missing
parts at coarse resolution levels while it approximates
the high-frequency detail at the finer levels. Before each
iteration, the known values are reintroduced into the
image resp. volume thus making the push-pull algo-
rithm an interpolation method that preserves the origi-
nal, measured values. Any such interpolation technique
will however also preserve the non-uniform sampling
inherent in our data structure. High frequency details
will only be available along the laser lines and yield
noticeable artifacts. Figure 4 (b) shows a reconstruction
result of the push-pull algorithm. The lines on which the
original densities have been sampled can still be seen
going from left to right.

2.4.2. Approximation

We therefore opted for a more general reconstruc-
tion approach that approximates the sample values and
yields a smoother reconstruction. We formulate our ap-
proximation problem as follows: Given are n discrete
samples of measured density values D(p;) at locations

pi i=0,...,n—1) on the laser lines. We then approx-
imate the field at a position r as
n—1
~ D .
(r) T DB (e i) o
7o willr —pil)
The weighting function w is defined as
0.5- cos( )+05forx<R
w(x) = R (12)
0 else

The parameter R which determines the width of the re-
construction kernel needs to be manually selected for

a given sampling configuration. Note that R has to be
chosen such that in the R-neighborhood of every point r
of the domain there is at least one sample point p;. Fig-
ure 4 (c) shows a result of this reconstruction approach.
It looks much more smooth and lacks the artifacts due
to the irregular sampling of the original volume.

3. Simulation

To perform an analysis of a dataset with ground truth
we used a 100 frame simulation of smoke emitted from
the border of a volume using the technique of Treuille et
al. [11]. The data was stored as a 64> voxel density field.
Assuming that each dataset is defined over the domain
[0,1]° and assuming a trilinear interpolation between
the grid points, we have continuous scalar fields f, for
each time frame which act as ground truth.

In order to reconstruct one scalar field, we consider a
bundle of 100 rays starting from (%, %7 —3) and passing
through (9, §,1)fori, j=0,...,9. Then we sampledf,
in its domain along the rays and apply our approxima-
tion technique With parameter R = 8 to get a recon-
structed field f2=8. In a second test, we add a sec-
ond bundle of lOO rays starting at (—5, ;, 2) and pass-
ing through (1, ¢ 55 9) fori,j=0,...,9. The field recon-
structed from these 200 rays with R = 8 is ffzg. Fig-
ure 3 shows fog, fleg, and ffzg for Frame 60 of the
dataset. While both reconstructions faithfully represent
the overall structure of the field, it is clear that many
high-frequency details are lost. We therefore computed
a smoothed version of the ground truth field by con-
volving it with a normalized version of the reconstruc-
tion kernel w (Equation 12). Figure 3(d) depicts the
smoothed ground truth field ff=* for a kernel radius

R = 8 which is well approximated by both, f]R:8
A

For comparison, we also used the push-pull algorithm
described in Section 2.4.1 on the same dataset. For the
reconstruction, we sampled each volume with 2 bun-
dles of 100 rays as before so that both reconstruction
algorithms work on the same input data. We show the
interpolation result using the push-pull algorithm for
Frame 60 of the dataset (fFF) in Figure 4(b). The result
is not so smooth as 2 =8 for the same frame shown in
Figure 4(c). The lines on which the volume has been
sampled can be still be seen as horizontal artifacts.
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Fig. 3. Result for the simulated smoke dataset. (a): Rendering of Frame 60 of the synthetic smoke dataset. (b) and (c): Reconstruction using
one bundle and two bundles of 10x 10 rays, respectively, and R = 8. (d): Rendering of the smoothed original volume with R = 8.

(a) ground truth f

(b) interpolation f} using the push-pull
algorithm with 2 bundles of 10x 10 rays

(c) approximation fZR:8 using 2 bundles
of 10x 10 rays

Fig. 4. Frame 60 of the synthetic smoke dataset, rotated by 75 degrees. (a): Ground truth. (b) and (c): Reconstruction using the push-pull
algorithm and our approximation technique. Note the line artifacts in the interpolated result fzpp .

3.1. Error Analysis

We define the RMS error between two scalar fields
f and f’ stored as a voxel densities sampled at a set of
identical locations V as

Vi) — 4 Vi 2
RMS(/. ') — \/zv,.evu(” V)| [ .

In practice, V corresponds to the set of 643 voxels defin-
ing our field. Figure 5 depicts the RMS error between
various versions of the field for all 100 frames in the
dataset. The density values in the original dataset vary
between 0 and 1.6.

The RMS errors between the ground truth f, and
the reconstructions from one and two ray bundles
( 1R=8 and ffzg) are almost identical. The RMS error
decreases drastically when it is computed against the
smoothed version of the ground truth ngzg. Further-
more, the reconstruction from two ray bundles fX=%

compares now much better than the reconstruction
from a single ray bundle {ng' This suggests that most
of the error in the reconstructions is due to the sparse
sampling and smooth approximation that suppresses
high frequency detail. To verify this, we computed the
RMS error RMS(f;, fR=%) between the ground truth
field and the smoothed version of the ground truth field.
Figure 5 shows that this error is only slightly lower than
RMS(f,, fZRZS), i.e., most of the reconstruction error
seems to be due to the loss of high frequency detail.

Figure 6 shows the RMS error for the approximation
technique and the interpolation using the push-pull al-
gorithm. The error produced by the push-pull interpola-
tion is lower than that of the reconstruction throughout
the whole dataset. This might be an indication that the
push-pull algorithm does a better job reconstructing the
high-frequency detail.
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Fig. 5. Various RMS errors for the 100 frames contained in the
simulated dataset. Horizontal axis: frame number. Vertical axis: RMS
error. The density values in the original dataset vary between O
and 1.6. The first two lines show the RMS error between ground
truth f; and the reconstruction using 1 and 2 bundles of laser
rays, RMS(f, f=%) and RMS(fy, fX=%), respectively. The third line
represents the RMS error between ground truth and a version of the
ground truth which has been smoothed using the same kernel that is
used in the reconstruction (RMS(fy, ffzg), Equation 12). The two
lines on the bottom of the graph show the RMS error between the
smoothed ground truth and the reconstruction using 1 and 2 bundles
of laser rays RMS(f§:87flR:8) and RMS(fo:S,ffzg), respectively.
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Fig. 6. Comparison of the RMS errors from different reconstruction
techniques for the 100 frames contained in the simulated dataset.
The approximation was computed using 2 bundles of laser rays
(RMS( ffzg)). The error for the push-pull algorithm is shown by
RMS(f}F). Horizontal axis: frame number. Vertical axis: RMS error.

4. Acquisition System

We built a prototype of an acquisition system to test
our ideas in practice. The setup contains two collimated
laser sources — a 130 mW red laser and a 30 mW blue
laser. Each collimated laser beam is transformed into
a bundle of perspective rays using a burst grating. A

Fig. 7. Acquired image of smoke and reconstructed density field.
Left: Input image with two independent grids of laser lines (red,
blue) sampling the volume and diffuse green illumination (image
intensity rescaled for display). Right: Density field reconstructed
from this single image.

black mask limits the number of rays in each bundle to
5x5 rays for each laser. The generated ray bundles are
roughly perpendicular to each other; their intersection
defines a measurement volume of about 50x 24 x50 cm?
(see Figure 2, right, for an image of the measurement
setup). We use a smoke machine to create a spatially
varying density of scattering media.

A high quality color CCD camera is used to capture
images of the measurement volume. Its placement en-
sures that no two rays of the same color project to the
same location on the image plane. We are thus able to
capture the two bundles independently using the cam-
era’s red and blue channel. In addition, we illuminate
the measurement volume diffusely with green LEDs and
use the green channel of the camera to capture simul-
taneously a ground truth image of the acquired dataset.
Figure 7, left, shows an example input image of the
system. Although all three light sources have a narrow
spectral response, we observe crosstalk between the two
lasers which we remove using standard image process-
ing techniques.

4.1. Calibration and Capture

For geometric calibration of the camera and the lasers
we capture several high-dynamic range images [12] of
each bundle of laser rays illuminating a yellow and
white checkerboard pattern. This allows us to reliably
detect the corners of the calibration pattern as well as
the centers of the laser spots. After computing the 3D
location of these spots using a calibration toolbox [13]
we can estimate the position of the laser lines in space
relative to the camera. Figure 8 (left) shows a visualiza-
tion of the spatial sampling in which the two bundles
of laser rays are clearly visible. Using the calibration
data, we can now extract samples /I, from the camera
images by marching densely along the projections of



Fig. 8. Geometric and photometric calibration of the setup. Left: Vi-
sualization of the spatial sampling. The two bundles of laser rays are
clearly visible. Right: Calibration image for the blue laser to recover
the relative intensities /;; for the individual rays (tone-mapped).

the rays and taking a sample at each step. As noted in
Section 2.2, we need to ensure that the full width of
the projected laser line is captured. We therefore inte-
grate the contributions to I, along a small line segment
perpendicular to the projected ray direction. We then
low-pass filter and downsample the obtained intensity
samples along each ray in order to reduce noise and fa-
cilitate further processing, yielding about 150 samples
per ray.

The burst gratings create bundles of rays where each
laser line can have a different intensity. We therefore
need to recover the relative intensity /;; of all laser lines
in each bundle in the calibration phase. To this end,
we capture a high-dynamic range image per laser of
a sheet of subsurface scattering plastics > illuminated
by the corresponding ray bundle (see Figure 8 right).
We integrate the laser intensity over a constant area
around each laser spot to get I;,. The two lasers might
still behave differently, e.g., due to different scattering
properties for different wavelengths. In a subsequent
calibration step, we therefore capture images of smoke
and recover separate density fields D4 and Dy, for
the red resp. the blue laser bundle. We then determine
a scale factor k that minimizes the RMS error between
Dyeq and k- Dy, and scale the input data for the blue
channel accordingly before reconstructing the density
field.

4.2. Acquisition Results

We captured several datasets with the acquisition sys-
tem described in Section 4 and depicted in Figure 2
(right). All images were taken with 0.25 s exposure time.
Captured results are shown in Figures 7 and 9. The re-

2 The subsurface scattering material spreads out the laser intensity
over a greater area. Thereby the dynamic range of intensity that has
to be measured is reduced.

Fig. 9. Results for smoke from a smoke machine. The three images
were taken in sequence from top to bottom. The images on the
left show ground truth photographs of the scene extracted from the
green channel. The images on the right show renderings of our
reconstruction.

sults are rendered using a raytracing-based direct vol-
ume rendering approach.

Figure 7 shows an input image capturing smoke from
a smoke machine. The intensity variations along the
laser lines are clearly visible. In addition, the blue laser
lines are brighter and tighter focused than the red lines.
This is corrected by integrating over the width of the
laser line (Section 4.1 and by the intensity scaling de-
scribed in Section 4). In the result image on the right,
note, how much detail could be reconstructed from this
single input view.

Figure 9 shows comparisons between ground truth
photographs and renderings for three images of dataset
consisting of 50 images captured at approximately 3 fps.
Note that the speed is mainly constrained by the frame
rate of the camera and not by the measurement principle.
The ground truth photographs were extracted from the
camera’s green channel as described in Section 4. The
reconstructed dataset captured the overall shape of the
smoke as well as prominent features. Its resolution is,
however, limited due to the sparse sampling using only
5x5 grids of laser lines.

5. Discussion

We presented a new approach to sample dynamic
volumetric density fields using grids of laser lines as
illumination. This allows us to continuously sample in



the time domain at the cost of sparser sampling on the
spatial domain.

Like other measurement systems such as Hawkins et
al. [4] or Narasimhan et al. [14], we are assuming that
the scattering behavior inside the measurement volume
is dominated by single scattering. This limits both, the
size of the measurement volume and the density of the
scatterer inside the volume, due to two effects: First,
the intensity of the laser rays /;, and the scattered inten-
sity I, decrease inside the measurement volume due to
outscattering and absorption yielding a systematic bias
in the reconstructed field D(r). Modeling and inverting
this effect for spatially varying densities is difficult even
if all scattering parameters are known.

Second, as the diffuse intensity I4 increases, the
signal-to-noise ratio for the measurement of the di-
rectly scattered intensity decreases significantly. This
is a fundamental problem to all approaches of this kind
which can be only partially compensated for, e.g., by
subtracting the diffuse illumination [4]. Narasimhan et
al. [15] recognized this problem and solve it by avoid-
ing multiple scattering in the first place. They dilute
their working medium until single scattering clearly
dominates its scattering behavior.

6. Future Work

There are several directions for further research im-
proving both the acquisition setup and the reconstruc-
tion of the complete density field.

A different camera system would allow us to operate
the whole setup at a higher frame rate removing motion
blur from captured images.

The properties of the gratings that are used to generate
the ray bundles have a great impact on the size of the
volume that can be effectively measured and on the
number of lines that can be used. The rapid decrease in
intensity for the outer lines of the grid imposes a strong
limit on the number of useful rays. The angle between
individual lines of the grid limits the size of the volume
which can be sampled at a certain spatial sampling rate.
All these properties do not only depend on the grating
itself, but also on the wavelength of the laser source.
Thus, the gratings have to be carefully chosen to match
an existing laser.

Due to all these problems it might be preferable to use
individual laser sources (e.g., a set of laser pointers) to
generate the lines independently instead of a single laser
and a grating. This would allow a much denser sampling
grid. The number of laser lines is then only limited by

their projected width in the captured image. It could also
greatly facilitate the setup of the whole system, since
an occluded line could be moved independently until it
is visible. Furthermore it would minimize the need for
a calibration of the intensities.

The current data processing approach makes no as-
sumption about the structure of the density field D(r)
and yields therefore a smooth reconstruction of the
smoke volume (especially in sparsely sampled dimen-
sions). Reconstruction algorithms that make use of prior
knowledge of the structure of the data (e.g., [16]) can
improve the visual quality of the reconstructed density
field. Alternatively, the structure could be inferred by
analyzing the frequency content in denser sampled di-
mensions in the spirit of Dischler et al. [17].
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