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Abstract

We present an approach for recovering the reflectance
of a static scene with known geometry from a collection of
images taken under distant, unknown illumination. In con-
trast to previous work, we allow the illumination to vary be-
tween the images, which greatly increases the applicability
of the approach. Using an all-frequency relighting frame-
work based on wavelets, we are able to simultaneously
estimate the per-image incident illumination and the per-
surface point reflectance. The wavelet framework allows for
incorporating various reflection models. We demonstrate
the quality of our results for synthetic test cases as well
as for several datasets captured under laboratory condi-
tions. Combined with multi-view stereo reconstruction, we
are even able to recover the geometry and reflectance of a
scene solely using images collected from the Internet.

1. Introduction

Estimating scene reflectance using image-based tech-
niques is a well-studied topic in the graphics and vision
literature. Common approaches are based on controlled, ac-
tive illumination [7] or special setups to record the illumina-
tion during scene capture [31, 15]. In specific cases it is also
possible to estimate illumination from shadows [26] or from
other properties of the scene. An alternative line of work
assumes that multiple images of the scene are captured un-
der identical illumination, which is then estimated together
with the surface reflectance [21, 30]. In contrast, our goal is
to estimate the reflectance of each scene point from a set of
photographs captured under unknown, constant or varying
distant illumination.

This has two striking implications: First, we do not re-
quire special lighting or capture equipment to shoot our
images. Instead, we can just casually acquire a set of pho-
tographs with distant lighting. Second, it is not even neces-
sary to capture the images ourselves. Instead, we are able to
make use of existing photographs, even images taken from

Figure 1. Overview of our reconstruction pipeline. From left to
right: an example image taken from Flickr [9], estimated geome-
try, recovered environment map for this particular input view, and
rendered result using the geometry, environment and estimated re-
flectance properties.

online community photo collections (CPC). Combined with
a robust multi-view stereo approach for CPCs [12], we can
estimate the scene geometry from these images as well. To
our knowledge, this is the first system that recovers such
a complete scene model from images acquired under such
general conditions.

Our system consists of two main components: First,
we use anall frequency relighting frameworkbased on a
wavelet representation of the local visibility and the cur-
rent estimate of illumination and scene reflectance to render
the scene efficiently using the triple-wavelet product inte-
gral [18]. Factoring illumination and scene reflectance re-
quiressolving a bilinear system of equations. We therefore
secondly employ an iterative optimization to estimate illu-
mination given scene reflectance and vice versa. To summa-
rize, our contributions are as follows:

• We simultanously estimate the reflectance and illumina-
tion of a scene captured under varying distant illumina-
tion. This simplifies the capture process and makes our
system applicable to a larger range of scenes and existing
datasets.

• We demonstrate first reconstructions solely based on im-
ages captured from an Internet photo sharing site. Scene
geometry, reflectance, and distant illumination are all es-
timated from these images.

1



The achievable quality of our system is bound by fundamen-
tal limitations such as the bandwidth of the reflectance and
the frequency content of the illumination [24, 25]. We nev-
ertheless achieve good quality results for the datasets pre-
sented in this paper.

2. Related Work

2.1. Reflectance from Known Illumination

A common strategy for relighting is to sample the in-
cident illumination densely using a controlled acquisition
setup [7]. Other reconstruction approaches use a sparse set
of images captured under known, point light illumination
and combine them with additional assumptions. Assuming
spatial coherence, Marschner et al. [17] estimate a single
BRDF from a set of images of an object while Zickler et
al. [32] reconstruct a relightable model from a single im-
age. Lensch et al. [15] capture multiple images of a hetero-
geneous object. They cluster the surface into regions with
similar appearance and determine a BRDF for each cluster
which serve asbasis BRDFs. The BRDF of each surface
point is then determined as linear combination of these ba-
sis BRDFs. Weistroffer et al. [29] extend this approach and
determine the reflectance of a surface point as a weighted
sum of materials, each consisting of several basis BRDFs.

Due to the lack of control, reflectance recovery for out-
door scenes generally operates under complex illumination.
Yu and Malik [31] recovered the photometric properties of
architectural scenes from photographs using an explicit out-
door illumination model. Debevec et al. [8] first captured
the scene geometry and reflectance samples. They then used
an inverse rendering approach to create a relightable model
of the Pantheon from images with known, distant illumina-
tion. Most recently, Romeiro et al. [25] introduced a passive
reflectometry approach that estimates a bi-variate represen-
tation of an isotropic BRDF from a single image of a curved
surface captured under known distant illumination. All of
these systems require either known or controlled incident
illumination and often also a detailed, captured or manually
created scene model and are thus unable to reconstruct a
scene’s reflectance from existing imagery.

2.2. Illumination Estimation

Distant illumination in a scene can be directly measured
using a light probe [6] or estimated from the scene. Sato
et al. [26] estimate the illumination distribution of a scene
with known geometry from shadows cast by an occluder.
They define an adaptive refinement criterion based on the
intensity distribution of direct light sources. Later, Okabe
et al. [22] also investigated illumination estimation from
cast shadows. For the case of lighting expressed in a Haar
wavelet basis, they start with a coarse representation and
iteratively add basis functions with increasing resolution.

Input images
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stereo Environment per image BRDF per surface point
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per vertex occlusion maps
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Figure 2. System overview.

2.3. Estimating Reflectance and Illumination

Ramamoorthi and Hanrahan [24] give an algorithm to
factor the reflected light field of a scene captured under
unknown illumination into the reflectance and illumination
components. They also provide a theoretical framework that
predicts under which conditions this can be achieved and
how the recoverable detail of the reflectance functions is de-
termined by the frequency content of the incident illumina-
tion. Their analysis applies directly to our system. Based on
a sparse set of images, Nishino et al. [21, 20] first separate
the diffuse texture from the specular reflectance of an object
captured under fixed, unknown lighting. Given the object’s
geometry, they then compute an initial estimate for the il-
lumination and determine both the illumination and the pa-
rameters of a simplified Torrance-Sparrow model. Both of
these methods assume known scene geometry and constant
specular reflectance over the surface. Georghiades [10] uses
generalized photometric stereo to estimate geometry, posi-
tions of a single point light source, and the parameters of
a single reflectance model for a sparse set of images with
fixed viewpoint.

Yu et al. [30] recover both lighting and surface re-
flectance from a small set of images captured under con-
stant distant illumination. Given the scene geometry, they
compute the diffuse albedo and determine the parameters
of a Gaussian filtered mirror BRDF model for each sur-
face point. Illumination is modelled in a spherical harmon-
ics framework. Our system is closely related to this work
but has two important advantages. First, we allow varying
illumination between the input views. This simplifies acqui-
sition and makes our method applicable to existing datasets
captured under arbitrary distant lighting conditions. Second,
we operate in an all-frequency framework which simplifies
modelling of complex illumination and allows the use of
arbitrary BRDFs.

3. Overview and Assumptions

Our system takes as input a set of photographs of an ob-
ject or a scene captured under unknown and possibly vary-
ing distant illumination (see Figure2). We assume that these
images are already in a photometrically linear space. Over-
exposed pixels cannot be trusted and receive a weight of
zero in the reconstruction process.



A triangle mesh representing the scene geometry is ei-
ther given (e.g. manually modeled or captured in a separate
acquisition process), or reconstructed using a multi-view
stereo approach [12]. The mesh is manually cleaned and
cropped from spurious or inaccurate geometry. We assume
that the mesh models the complete relevant scene geometry
including blockers that cast shadows on the object.

The system operates within an all-frequency relighting
framework [18, 30] based on Haar wavelets. In a prepro-
cessing step, we compute an occlusion map per mesh ver-
tex, i.e. determine which part of the hemisphere of illumi-
nation directions is occluded, and transform the occlusion
map into the wavelet basis. We then set up an efficient ren-
dering pipeline based on triple-wavelet products, which al-
lows us to easily update the current reflectance and illumi-
nation estimates. Local surface reflectance is expressed as
a weighted sum of basis materials. We assume that inter-
reflections in the scene can be neglected. The relighting task
leads to a set of bilinear equations, which is solved itera-
tively yielding a reflectance estimate per surface point and
an illumination estimate per input image. Provided that the
illumination used for image capture and the BRDF contains
sufficient high frequencies [24, 25], we are able to recon-
struct a detailed model of the scene, reflection properties,
and of the illumination.

4. Rendering Pipeline

A central part in our estimation process is the simulation
of light propagation in the scene based on the reflectance
equation, which is evaluated for every rendered pixel:

L(~x, ωo) =

∫

Ω

ρ(~x, ωo, ωi)V (~x, ωi)L̃(~x, ωi)dωi, (1)

whereρ is the BRDF including the cosine term for the in-
cident illumination from directionωi at position~x and the
outgoing directionωo. L̃ is the incident illumination andV
represents the occlusion at~x. Since we iteratively optimize
for ρ andL̃, we need an efficient evaluation scheme.

4.1. All Frequency Relighting

Efficient techniques for solving this rendering problem
under the distant illumination assumption have been inves-
tigated in the field of precomputed radiance transfer [27],
where the incident illumination and the reflectance func-
tions are represented using spherical basis functions suchas
spherical harmonics (SH) or wavelet bases. In these bases,
the otherwise costly integral reduces to a dot product. In or-
der to not limit the resolution capabilities , we follow the
all-frequency relighting approach by Ng et al. [18].

The local visibility, the local environment map, and the
slice of the BRDF that corresponds to the viewing direc-
tion ωo are expressed in the Haar wavelet basisΨ defined
over the hemisphere using the hemi-octrahedral parameter-

ization introduced by Praun and Hoppe [23]:

V (ω) =
∑

l
VlΨl(ω) (2)

L̃(ω) =
∑

m
L̃mΨm(ω) (3)

ρ(~x, ω) =
∑

k
ρk(~x)Ψk(ω) (4)

In practice, we compute local visibility only per mesh ver-
tex and interpolate it for any point in a triangle. Note that
representing the BRDF in the wavelet basis (Equation2)
allows us to use arbitrary BRDFs (including isotropic and
anisotropic, measured and analytical BRDFs) in the render-
ing pipeline.

Once all three components are represented in the same
Haar wavelet basis the integral over the hemisphere is eval-
uated as a triple-wavelet product integral [18]

L(~x, ωo) =
∑

k

∑

l

∑

m
CklmρkVlL̃m (5)

with tripling coefficientsCklm =
∫

Ω
ΨkΨlΨmdω. Exploit-

ing the hierarchical nature and sparseness of the wavelet
representation drastically reduces the computation effort.

4.2. Lighting Rotation

One problem of this approach is that for every pixel each
slice of the BRDF needs to be represented in the wavelet
basisΨ. While Ng et al. [18] used precomputed 6D BRDF
data sets, parameterized byωi, ωo, and the surface normal
~n, we employ the Efficient Wavelet Rotation algorithm [28]
to transform the environment map̃L in the octahedral pa-
rameterization into the local coordinate frame of each pixel
and the corresponding hemi-octahedral representation. This
step reduces the dimensionality of the BRDF per pixel to
4D resulting in reduced memory overhead at the cost of ad-
ditional computation. In a preprocessing step, we discretize
the sphere into322 normal directions{~ν} and compute a
rotation matrixR~ν for each of them.R~ν encodes the influ-
ence of every wavelet basis coefficient in the global coordi-
nate frame onto the wavelet coefficients in the rotated space.
A rotated environment map̃L(~n) for an in-between nor-
mal is constructed by interpolation from the rotated maps of
the four nearest normals with bilinear interpolation weights
φ~ν(~n):

L̃(~n) =
∑

~ν∈Neighborhood(~n)
φ~ν(~n) · R~νL̃. (6)

4.3. Bilinear Model

Given the object geometry and a set of images{Ii} cap-
tured under distant illumination, we can extract the set of
measurements{yp} that show the response of the scene to
an environment map̃LI(yp) recorded in imageI(yp) ∈ {Ii}
measured at surface point~x(yp) on the object’s surfaceS.

The visibility term Vl in Equation5 is constant for a
given surface point~x as it encodes the portion of the hemi-
sphere that is blocked by the object geometry. It can there-



fore conceptually be combined with the tripling coefficients
to a new set of coefficients

T~x,km =
∑

l
CklmVl. (7)

Using matrix notation, Equation5 simplifies then for a par-
ticularyp to a bilinear system inL andρ

Lp = ρT
~x(yp)T~x(yp)L̃I(yp). (8)

5. Optimization

We can now define our inverse rendering task. From a set
of images{Ii} we seek to determine the reflectance func-
tionsρ(~x) and the incident illuminatioñLI for eachIi. This
is equivalent to minimizing the following objective function
in a least squares sense with respect toL̃ andρ:

O =
∑N

p=1
αp(yp − ρT

~x(yp)T~x(yp)L̃I(yp))
2 (9)

with L̃ = {L̃0, . . . , L̃Q−1} andρ = {ρ~x|~x ∈ S}. yp is a
measurement of surface point~xp seen in an input image. We
additionally introduce confidence valuesαp per observation
to reduce the effect of less reliable data, such as measure-
ments at grazing angles and overexposed pixels.

Since our system depends linearly on bothρ and L̃ we
have to solve a bilinear system of equations. This can be
performed iteratively by solving linear problems once forL̃

and once forρ [5, 1]. Note that solving for both simulta-
neously would yield clear advantages [3] but is impractical
due to the size of our problem. The solution can only be
unique up to a global scale factor. In addition, we constrain
bothL̃ andρ to be strictly positive in order to ensure phys-
ically plausible results. Each subproblem can now be effi-
ciently solved with arbitrary linear equality and inequality
constraints by posing it as a convex Quadratic Programming
problem. We apply an implementation of the primal-dual
interior point algorithm [11] for this task.

5.1. Optimization of Environment Maps

Given an initial guess of the reflectanceρ we first solve
for the environment̃L minimizing the linear system

YI = ML̃I (10)

where we combined the constant terms into a single matrix
Mp = ρT

~x(yp)T~x(yp). This inverse lighting problem is in

general ill-posed [16, 24]. The recoverable information of̃L
depends on the bandwidth of the reflectance functionρ and
on the geometry of the object, as shadows carry additional
information about the illumination [26]. In general, it will
not be possible to recover all details of the illumination.

To obtain a sensible solution despite the ill-posedness of
the problem, we apply a small amount (e.g.0.1% of the
maximum value in the system) of regularization by impos-
ing smoothness on the environment maps. This improves
the stability by constraining the otherwise underconstrained

high-frequency parameters. Currently, we enforce smooth-
ness by minimizing the laplacian of the environment map.

We improve robustness to measurement noise, inaccu-
rate geometry, interreflection and other unmodeled effects
by applying an iteratively reweighted least squares approach
[2] which effectively reduces the contribution of pixels
with high reconstruction error. Reweighting is started from
scratch in each iteration of estimating the lighting, guaran-
teeing that no data point is lost due to aggressive pruning.

5.2. BRDF Optimization within a Linear Basis

In order to obtain a linear system for the reflectanceρ(~x),
we follow the approach of Weistroffer et al. [29] and repre-
sent the reflectance at each surface point as a linear combi-
nation of materials. Each material in turn consists of a linear
combination of basis BRDFs

ρ(~x) =
∑

k
(wk(~x)

∑

b
λkbρb). (11)

The optimization for eachλkb uses all available samples
that are part of materialk (i.e. wk > 0). This two-level ap-
proach improves the stability for sparse and noisy data by
restricting the estimated reflectances to a physically plausi-
ble subspace [29, 15] The recoverable BRDF information is
limited by the bandwidth of the illumination and the geome-
try of the object, similar to the environments. However each
independent lighting condition adds additional constraints
to the reconstruction and leads to a more precise estimate
of the BRDFs. Furthermore, the more lighting conditions
are available, the more stable the estimation will be against
errors in the recovered illumination.

We again solve this bilinear problem by alternating be-
tween the estimation of material weightsλkb and blending
weightswk(~x) per surface point

O =
∑

{p|~x(yp)=~x}

αp

(

yp − ρ(~x)T
T~x(yp)L̃I(yp)

)2

(12)

for each surface point~x. We again reduce the effect of less
reliable data using the confidence valueαp. All coefficients
wk(~x) andλkb are constrained to be strictly positive. To im-
prove numerical stability while minimizing the number of
used basis BRDFs, we modify this system by additionally
minimizing β

∑

k λ2
kb, whereβ is a small number control-

ling this constraint.
To decrease computation times, we define this system on

mesh vertices and then later bilinearly interpolate the blend-
ing weights for every surface point. Using a sufficiently
dense mesh, the additional smoothing introduced is barely
noticable.

One of the advantages of our framework is that we
can use arbitrary BRDFs (including measured or analyti-
cal BRDFs) as basis provided they can be expressed in the
wavelet basis. For the examples shown in this paper, we per-
formed k-means clustering on the fitted Cook-Torrance pa-



diffuse glossy specular

(a) synthetic input images

(b) estimated environment maps

(c) object rendered under estimated illumination
Figure 3. Estimated environment maps for synthetic diffuse,
glossy, and specular test cases with a fixed BRDF. The amount
of detail recoverable in the environment maps depends on both the
bandwidth of the BRDF as well as the scene’s geometry.

rameters for the MERL BRDF database [19] and selected
the specular lobes from representatives of the ten largest
clusters. The actual basis{ρb} for a reconstructed scene
then consists of a subset of these lobes plus a Lambertian
BRDF to model the diffuse reflectance.

To compute an initial estimate of the material and blend-
ing weights, we transform the averaged per-vertex sam-
ples into HSV colorspace and cluster the vertices using the
parametrization(cos(2π · H), sin(2π · H), S). This trans-
formation reduces the influence of shadows and specular
highlights. We use k-means clustering to get the separation
into regions. For each region, a different material is con-
structed by computing a diffuse color based on the median
of the per-vertex averages, the other BRDF weights are set
to zero. The material blending weights are obtained from
the distance to the centroids.

6. Results

We present results for three different types of input data:
synthetic datasets, datasets captured under controlled condi-
tions, and a dataset solely based on image collections from
Internet photo sharing sites (see also Table1).

6.1. Synthetic Data

We render two objects (a sphere and an elk, see Fig-
ure3a) with varying surface properties (diffuse, glossy with
Lafortune exponentN = 50, and specular withN = 500
[14]) using theUffizi environment map (Figure4a). We
then discard the lighting information and reconstruct it from
the rendered image, known object geometry, and BRDF
(Section5.1). The resulting environment maps (Figure3b)
clearly show that the lighting is recovered faithfully. Note
how remarkably close the sky region reconstructed from the

(a) (b) (c)
Figure 4. a) TheUffizi environment map [6] in the octahedral rep-
resentation as used in our experiments. b) The acquisition setup to
capture theMinerva dataset. The two main light sources are fac-
ing towards the head. c) The ground truth environment map for the
Minervadataset.

(a) input images for theMinervadataset

(b) rotated ground truth environment map

(c) estimated environment maps

(d) object rendered under estimated illumination
Figure 5. Overview of theMinerva dataset showing four of the
eight input images used in the estimation.

diffuse sphere is to the original. As predicted by Ramamoor-
thi and Hanrahan [24], the amount of detail in the light-
ing increases with the specularity and thus with the band-
width of the BRDF. In all cases, illuminating the model with
the recovered lighting yields results hardly distinguishable
from the input (Figure3c).

6.2. Captured Data

Figure 5 gives an overview over theMinerva dataset.
The dataset consists of a detailed geometry model cap-
tured with a 3D scanning system and a set of high-dynamic
range (HDR) images captured under distant illumination in
a church-like environment. Lighting and camera were fixed
while the object was rotated in front of the camera (see Fig-
ure4 b) and c)). This dataset is therefore an ideal test case
to compare the environment maps reconstructed for differ-



ent input images.
We used a collection of 13 images captured under gen-

eral lighting (Figure5a) shows 4 of these images) and
reconstructed the per-view illumination and the per-pixel
BRDF using 6 basis materials each composed of 7 BRDFs.
Figure5d clearly demonstrates that the resulting model ren-
dered with the estimated illumination matches the input im-
ages very well. Even small highlights on the temple and
chin are faithfully recovered. The estimated environment
maps Figure5c locate the main light sources correctly and
otherwise approximate roughly the ground truth illumina-
tion since the head features limited specularity. Neverthe-
less, the materials are well estimated which is also shown
in the albedo map (Figure9) which reveals hardly any geo-
metric feature or shadow, as expected but show some color
artifacts which cause a color shift when the model is relit.

As second example, we selected 30 images from thevan
Goghdataset [4] (see Figure6a). This dataset was captured
under static illumination using a moving camera. Although
we reconstruct an individual environment map per view,
Figure6b and the relighting of a novel view with the av-
erage of all environment maps (Figure7) clearly show how
consistent our reconstructions are even without assuming a
constant environment as in Yu et al. [30]. Note that the esti-
mated environment maps are not identical but consistent for
the different views. Missing geometric detail in the input
mesh prevents us from reconstructing a high resolution en-
vironment map and also reduces the quality of the material
estimation especially in the hair region. As we reconstruct
materials per vertex, the signature on the bust is highly un-
dersampled. Yu et al. [30] additionally refine the normals to
clear up some of these geometric issues.

The relit models shown illuminated by theUffizi envi-
ronment and under point light illumination (Figure6d) are
of high quality. They show clearly that we were able to re-
construct more high frequency details than Yu et al. [30].
However, our color estimates are slightly desaturated. Here
we observe the fact that the inverse rendering problem can
only be solved up to scale. The red channel is slightly un-
derestimated in the BRDF while it is slightly overestimated
in the environment.

6.3. Internet Data

We downloaded image datasets of the Statue of Liberty
and Venus de Milo from the Internet photo sharing site
Flickr [9] and reconstructed the scene geometry using a
multi-view stereo approach [12]. The resulting meshes were
manually cleaned and simplified to reduce its complexity.
Images found on the Internet are generally neither HDR nor
photometrically calibrated. We therefore assume that they
are encoded according to the sRGB standard and convert
them into photometrically linear space by inverse gamma
mapping, but one can alternatively use a technique such as

(a) input images for thevan Goghdataset

(b) estimated environment maps

(c) object rendered under estimated illumination

(d) object rendered under theUffizi environment map and under
point light illumination.

Figure 6. Overview of thevan Goghdataset showing 4 out of the
30 input images.

Figure 7. An image(left) from thevan Goghdataset that was not
used in the reconstruction process is regenerated using the aver-
age environment map(right). The difference image shows that the
largest error occurs in the specular highlights and in places where
geometric detail is missing.

Kuthirummal et al. [13] to perform the photometric calibra-



model #vertices #mat #brdfs #imgs time RMSE
Minerva 100K 6 7 13 7h .18
Liberty 100K 2 4 6 3h .20

van Gogh 32K 3 4 30 14h .11
Venus 40K 2 4 13 14h .22

Table 1. Overview of the different models. “#mat”, “#brdfs”,
“#imgs” and “RMSE” refer to the number of materials used, num-
ber of basis brdfs incorporated, number of input images and aver-
age RMS error, respectively.

tion.
For the Statue of Liberty, only six images were used in

the lighting and reflectance estimation, they are shown in
Figures8 and1. The estimated environment maps clearly
locate the sun direction correctly. Note that the light source
might wrap around borders due to the parametrization of the
environment maps. Its narrow size can only be achieved by
including the visibility information and the use of an all fre-
quency framework. Other regions in the environment map
are however recontructed with low frequency due to their
smaller intensity. Again, the color separation between ma-
terials and environment is not perfect. This could also be
due to the different white balancing of images found on the
Internet. Nevertheless, the estimated materials are consis-
tent and of high quality as evident in Figures8 c) and d).

Figure 10 shows our reconstructions of the Venus de
Milo, on a set of 13 images. The environment maps shows
the presence of two main lightsources: daylight coming in
through the window and a tungsten interiour light.

7. Discussion and Conclusion

In the presented inverse rendering framework we esti-
mate both the reflection properties of an object and the inci-
dent illumination for each individual input view. While this
problem is ill-posed in nature, we have demonstrated that
it is in principle possible to obtain a meaningful separation.
The reconstructed environment maps are the best estimates
given the input data and the bandwidth of the BRDFs. By
restricting the space of BRDFs to linear combinations of
basis BRDFs and by slightly enforcing smoothness in the
environment we constrain the space to plausible solutions
even in cases where the BRDF limits the reconstruction.
The quality of the estimated reflection properties typically
increases with the number of images as each image adds
novel constraints on the BRDF. The quality of the environ-
ment maps will only benefit from more images indirecty
through the more precise BRDFs. Furthermore, the quality
of the results is to some extent influenced by the precision
of the input geometry. Another strength of our approach is
that no assumptions are placed on the image set. We flexi-
bly can incorporate image collections gathered from various
sources.

A problem that remains is the ambiguity between illu-

(a) input images for theLibertydataset

(b) estimated environment maps

(c) object rendered under estimated illumination

(d) object rendered under point light illumination and under the
Uffizi environment map.

Figure 8. Overview over theLibertydataset.

(a) (b) (c) (d)
Figure 9. (a) shows the recovered albedo map for theMinerva,
while (b)-(d) show the relit model using theUffizi environment.

Figure 10. Results for theVenusdataset. The images(left) are input
images while the images in themiddleshow our rendering using
the recovered lighting(right) and BRDFs.

mination and surface color. Currently, this can only be re-
solved by having sufficiently different input environments.
A couple of extensions of the current framework would be
interesting. So far, our system does not take interreflec-
tions into account. An additional geometry optimization



step could help with the reconstruction, since more precise
geometry and normals will improve the estimation. This is
supported by the synthetic test cases where we see a close
to perfect reconstruction. Furthermore, it would be interest-
ing to incorporate other ways to stabilize the estimation. For
this, techniques such as reflectance sharing [32] could be in-
corporated.
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