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Abstract—The emerging vehicle-to-vehicle/vehicle-to-
infrastructure (V2X) communication systems enable a new
way of collaboration among the vehicles, the operators of
transportation systems, and the service providers. However,
many functionalities of V2X systems rely on detailed location
information. This raises concerns on location privacy of the
users of such systems. Although privacy protection mechanisms
have been developed, existing privacy metrics are inappropriate
or insufficient to reflect the true underlying privacy values in
such systems. Without a proper metric, preserving location
privacy in V2X communication systems becomes difficult due
to the lack of a benchmark to evaluate any given protection
mechanisms. In this paper, we develop a quantitative metric to
measure and quantify location privacy in V2X systems. To do
so, we introduce the concept of snapshots, which capture the
information related to a user in a given space and time. Then
the level of location privacy is quantified as the uncertainty of
the information related to that user. Our analyses show that
the metric provides the users, the system designers, and other
stakeholders a valuable tool to evaluate the risk and measure
the level of location privacy in V2X communication systems.

I. INTRODUCTION

The emerging vehicle-to-vehicle/vehicle-to-infrastructure
(V2X) communications creates enormous interests and efforts
in research and prototype development, due to the prospect
of a safer, more convenient and efficient transportation system
in the near future. If deployed, the Dedicated Short Range
Communication (DSRC) based V2X systems will become the
biggest realization of mobile ad hoc networks (MANET).
Example applications of V2X systems include intersection
collision warning, traffic monitoring through probe vehicle
data, and location based services etc.

However, many envisioned V2X applications rely on de-
tailed and continuous vehicle location information. Vehicles
are highly personal devices, the sending and dissemination of
personal location information has the potentials to infringe a
user’s privacy, especially its location privacy. The privacy issue
in V2X systems has been identified and mechanisms have been
proposed to preserve user privacy, e.g., in [1], [2].

To evaluate the performance of any proposed privacy en-
hancing technologies (PET) in V2X communications, we need
a privacy metric which can measure and reflect the achieved
privacy protection. A privacy metric might also be wanted
by privacy advocacy groups, legislators, and consumers to
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evaluate whether the V2X communication systems comply
with the current social and legal mandates on personal privacy.

However, existing privacy metrics are inappropriate and
insufficient to reflect the underlying value. More specifically,
they are either only applicable for systems with very different
characteristics, or unable to capture information on the whole.
For example, metrics on user identity do not take consider-
ations of user movements, and metrics on user movements
leave out the information on user identity. Moreover, most of
the existing metrics stay at the theoretic level, which provides
only small practical values.

In this paper, we develop a location privacy metric for V2X
communication systems. The metric measures and quantifies
the level of location privacy of each user in the system.
The key idea is to measure the level of location privacy as
the linkability of location information to the individuals who
generate it. Doing so is partially inspired by the Directive
95/46/EC on the protection of individuals with regard to the
processing of personal data and on the free movement of such
data [3], which states that personal data is any information
relating to an identified or identifiable natural person. As an
interpretation, we regard an individual’s location information
as ’personal information’, thus it cannot be used to identify or
link to the individual without his or her consent.

Our main contribution is the development of a location pri-
vacy metric and the methodology to enable the measurement.
We introduce the concept of snapshots, which capture the
information related to user location privacy and encapsulate
it into a measurement model. Taking an information theoretic
approach, the privacy level is quantified as the uncertainty of
relating location information to a particular individual. Our
analyses show that the metric provides a valuable tool to
evaluate the location privacy risk and measure the level of
location privacy in V2X communication systems.

In the following, Sec. II discusses the existing privacy
metrics and their limitations. Sec. III analyzes the concept
and related issues of location privacy. Sec. IV introduces the
metric. Sec. V applies and evaluates the metric by means of
case studies. Sec. VI concludes the paper and points out the
direction of our future work.

II. EXISTING PRIVACY METRICS

The level of privacy can be expressed in terms of anonymity.
Anonymity describes a user’s anonymous state regarding a



specific action. Anonymity can also be expressed as unlink-
ability between a user and a specific action (e.g., sending a
message). The definitions of anonymity and unlinkability are
given in [4] and further refined in [5]. In this paper, we also
use ’linkability’ to refer to the opposite of unlinkability, and
’linking’ or ’linkage’ for the action or the status of linkability.

User anonymity is often measured by the size of anonymity
set in anonymous communication systems. The authors of
[6], [7] find out that the size of the anonymity set does
not reflect different probabilities of the members in the set,
and propose to use entropy as the metric for anonymity. In
wireless communications, a user usually does not have a fixed
anonymity set due to its dynamic changes of the neighboring
status with other nodes. Beresford et. al [8] use mix zones to
model user movements and quantify the user anonymity as the
entropy of an adversary’s probability assignments on the user
movements through the mix zones. Authors in [9] and [10]
also use the entropy of the mix zones to evaluate location
privacy achieved by the vehicles in vehicular ad hoc networks
(VANET). Mix zones cover only parts of the whole geographic
area where V2X systems will be deployed. Therefore, location
privacy measurements based on the entropy of mix zones
cannot capture all information of V2X systems.

Tracking is another common approach to measure the
level of privacy. Gruteser et al. [11] propose to use track-
ing algorithms to characterize the level of location privacy.
Sampigethaya et. al [12] use maximum tracking time to
evaluate the location privacy of vehicles in VANET. Hoh et.
al [13] use the mean time to confusion to measure the privacy
level of vehicles sending GPS traces in a traffic monitoring
system. Their metric is based on an entropy measure of
the adversary’s tracking uncertainty. We argue that without
linking the location traces to an individual, tracking alone only
partially achieves the goal of any attacks on location privacy.
Thus it is insufficient as a metric for location privacy.

Fischer et. al [14] find out that entropy measures are insuf-
ficient for measuring unlinkability when the sender-message
relations are modeled by set partitions of observed messages.
They propose to use a measure taking considerations of both
the outer and inner structures of the set partitions. Although
the approach is very promising, it would be interesting to see
how it can be scaled to apply to real systems.

III. LOCATION PRIVACY IN V2X COMMUNICATIONS

Personal information can be modeled as a person’s context
information. Context is any information that can be used to
characterize the situation of a person, and the primary contexts
are identity, location, activity and time [15]. Obviously, context
on location, activity and time only becomes personal and
privacy relevant when identity information is associated. Given
the fact that a person’s activity can often be derived from
location and time, if an unauthorized party can link location
and time information to a person’s identity, the context is
complete and the individual’s privacy is at stake.

In V2X communications, location information is either
explicitly or implicitly given in the outgoing messages. We

can generalize them as location samples, which contain infor-
mation on identifier, location and time. The information on
identifier, although not necessarily to be a person’s identity,
can help to identify an individual or the message relations.
Location and time are either explicitly given in a message
or implicitly derived from the place and time of the messages
recorded. Each time a user sends a message, it leaves a ’digital
footprint’ in the system. An adversary on location privacy tries
to follow the vehicle movements based on location samples.
The adversary can exploit such information to identify and
profile a user, or even to infer the activities or any sensitive
information about the user. Depending on whether the adver-
sary is outside or inside the system, the methods of obtaining
location samples range from eavesdropping communications
to directly accessing the data stored in the system. Since
adversaries vary in capacities, the obtained location infor-
mation vary in qualities. Despite the variations, the location
information can be categorized into three types: 1) a single
location; 2) a track, a sequence of locations from the same
vehicle, which reveals a vehicle’s movements in space and
time; and 3) a trip, a complete journey of a vehicle from the
origin to the destination. A trip is an ensemble of tracks.

Given a single location, it is very difficult to link it to
a specific user unless the identity information is included
in the message. An adversary can obtain tracks by linking
a sequence of messages with same identifiers, or by one
of the target tracking methods [16]. A track only provides
partial information on a vehicle’s movements. However, if the
adversary is able to connect all tracks of the same vehicle, it
turns the tracks into a trip. A trip contains information on the
time, the origin (O) and the destination (D) of a journey. Often
it can be used to infer an individual’s identity and activities.
The empirical study [17] shows that given the trip information,
it is possible to heuristically infer the home address and the
identity of the driver of a vehicle.

For privacy concerns, V2X communication systems are very
likely to employ some pseudonym systems like [1], [18] to
protect a user’s identity. Consequently, an adversary has to
rely on the trip information to learn the identity and activities
of the driver. Since trips contain information on locations and
tracks, as well as information to infer further information, they
are our main focus in the metric.

IV. LOCATION PRIVACY METRIC

A metric is a system or standard of measurement. We
are interested in a quantitative measure reflecting location
privacy of the users involved in V2X communications. Our
analysis shows that in the context of V2X communications,
the properties of location privacy consist of individuals and
their trip information. Therefore, we can use an adversary’s
ability to link vehicle trips to specific individuals to reflect the
level of location privacy of the individuals.

A. Methodology

A V2X communication system is a dynamic system and
continuous in space and time. To allow us to take a sensible



measurement of the system, we need to take a discrete sample
from the system and base our measurement on a relatively
static and confined version. Thus we make three assumptions:

1) The location information considered in the metric is
assumed to be within an arbitrarily defined area.

2) The location information considered in the metric is
assumed to be within an arbitrarily defined time period.

3) We further assume that the adversary is able to identify
a location as the origin or destination of a trip.

Combining these three assumptions, we derive that there
will be only complete trips and the number of origins and
destinations are equal. The first two assumptions enable us to
virtually take a snapshot of the system. The snapshot captures
the vehicle movements and their relations to the drivers in a
given area and time period. As a first step, we only consider
a single snapshot in this paper. In our future work, we plan
to include consecutive snapshots in the metric. So the above
assumptions will be relaxed to allow multiple snapshots.

To quantitively measure user location privacy, we take the
following steps. In the first step, we model the information
contained in the snapshot in a measurement model. The mea-
surement model abstracts the location information into three
basic components: the linkage of an individual to an origin of
a trip, the linkage of an origin to a destination, and the linkage
of a destination to an individual. The adversary’s knowledge
of the system is expressed as probability assignments on each
of the linkages. In the second step, the probability distributions
in the measurement model are extracted to yield quantitative
measurements.

B. The measurement model

Modeling the information contained in the snapshot is to
represent the information in an abstract and mathematical
form to facilitate calculation in the next step. We observe
that the information in the snapshot contains the information
on individuals, O/D pairs, and their interrelations. We also
observe that for an individual to ’make a trip’, he or she must
start a trip at an origin and ends the trip at a destination. This
also implies that the individual at the origin and the destination
should be the same person.

Based on the observations, we model the information as
a weighted directed graph G = (V,E, p). There are three
disjoint sets of vertices in the digraph, i.e., I ⊆ V , O ⊆ V , and
D ⊆ V with I ∪ O ∪D = V . I is the set of all individuals,
|I| = n. O is the set of all origins and D is the set of all
destinations of the trips, |O| = |D| = m. The edge set E is
defined as E := E1∪E2∪E3 with E1 := {eio|i ∈ I, o ∈ O},
E2 := {eod|o ∈ O, d ∈ D} and E3 := {edi|d ∈ D, i ∈ I}.
As E1, E2, E3 are disjoint, G is a tripartite graph. Each edge
ejk ∈ E is weighted by a probability function p : E 7→ [0, 1].
G has several notable properties. First, G contains all

aforementioned information in the snapshot. Since tracking
is not the focus of the paper, we assume that there is a
publicly known tracking algorithm and treat vehicle tracking
as a black box, i.e. we assume that p(oj , dk) is known. Second,
vertices in G are connected with directed edges. If we follow

the directed edges from a vertex is, the path will pass the
vertices {is, oj , dk, is}. The semantics of the cycle is is’s
possibility having made a trip from oj to dk. Third, the
probability distributions on the edges model an adversary’s
knowledge of the users and their movements in the system1.
In addition, we define that the sum of the probabilities on
outgoing edges from a vertex o ∈ O or d ∈ D to be 1,∑m

k=1 p(oj , dk) = 1,
∑n

k=1 p(dj , ik) = 1, while letting the
sum of probabilities from the vertex i ∈ I to be equal of
smaller than 1,

∑m
k=1 p(ij , ok) 6 1. By the latter definition,

we model an individual not making any trips. For example,∑m
k=1 p(i1, ok) = 0.9 means that i1 has 0.9 probability to

make trips and 0.1 probability to ’stay at home’.
For the ease of calculations, we also represent G by three

adjacency matrices, IO, OD, and DI. Each entry ajk in the
matrices indicates that there is an edge from vertex vj to vertex
vk. The value of the entry is the weight on the edge, ajk =
p(vj , vk). Furthermore, each row in the matrices is a vector
of the probability distribution on all outgoing edges from the
same vertex. The sum of each row in IO is equal or smaller
than 1, and the sum or each row in OD and DI equals 1.

C. Calculation

To extract the probability distributions and quantify the
information in the measurement model, we use information
entropy developed by Shannon [19]. Entropy is a quantitative
measure of information content and uncertainty over a prob-
ability distribution. Entropy has been widely accepted as an
appropriate measure in the privacy research community [6]–
[8]. However, the main challenge here is to apply entropy to
the measurement model.

By definition, for a probability distribution with values
p1, · · · , pn, the entropy is

H = −
∑

pilogpi (1)

where pi is the ith element of the probability distribution.
H is then a measure of information content and uncertainty
associated with the probability distribution. The logarithm in
the formula is usually taken to base 2 to have a unit of bit,
indicating how many bits are needed to represent a piece of
information. A higher entropy means more uncertainty and
hence a higher level of privacy. Entropy reaches its maximum
value if all the probabilities in the distribution are equal.

Shannon uses entropy as a quantitative measure of the
information produced by a discrete information source. When
applying entropy to our calculation, the source is the infor-
mation captured in the measurement model accessible to the
adversary. We are interested in the information on the relations
between the individuals and the trips, i.e., the information on
who moves from where to where. The information is expressed
as the probabilities of a particular individual within the system
to make one of the trips, as well as to not make any trips.

We are interested in the entropy (the uncertainty) related to
an individual and the m O/D pairs (which leads to m2 possible

1How the adversary obtains the probabilities will be discussed in Sec. V.



trips) in the system. If we ’unfold’ all the cycles related to a
particular individual in G (cf. Sec. IV-B), we obtain a flower-
like structure shown in Fig. 1(a). The stigma, or the center of
the flower is the individual, e.g., i1. The petals run clock-wise
around the stigma, denoting i1 making one of the m2 possible
trips, with the last petal representing i1 does not make a trip.
We denote this complementary probability pc. If we assume
that the measurements reflect separate observations, i.e., the
probabilities describe independent events, the probability of
an individual making a specific trip is the product of the
probabilities on all edges of the petal representing that trip.
We can further simplify the flower structure to the wheel-
like structure in Fig. 1(b). The hub in the center represents
an individual, e.g., i1. Each radiating spoke from the hub
represents the probability of i1 making a specific trip.

i1 

o1  d1 
o1 

d2 

om 

dm 

p(o1,d1) 

i1 

p11 

p1m 

p21 

p2m 

pmm 

pc 

(a)  (b) 

Fig. 1. Examples of visualizing the probability distribution related to an
individual as (a) a flower, and (b) a ’hub and spokes’

We take the non-zero probabilities and normalize them to
calculate the entropy, because pi = 0 means there is no
uncertainty and the sum of the probability distribution should
equal 1. Based on Formula (1) and using the notation specified
in the measurement model, we calculate the entropy for a
specific individual as

H(is) = −(
m∑

j=1

m∑
k=1

p̂jklog(p̂jk) + p̂clog(p̂c)) (2)

where + p̂jk is the normalized probability of is making a trip
from oj to dk and p̂c is the normalized probability of is not
making any trips. The values of p̂jk and p̂c are given as

p̂jk =
p(is, oj)p(oj , dk)p(dk, is)

m∑
j=1

m∑
k=1

p(is, oj)p(oj , dk)p(dk, is) + p̂c

(3)

p̂c = 1−
m∑

j=1

p(is, oj) (4)

To evaluate the location privacy of an individual, it is also
useful to find the maximum entropy possible for an individual
in the system, i.e., the upper bound. The maximum entropy
for an individual is reached if all of the participants in the
system are equiprobable to make any trips and all trips are
also equiprobable. In a system with measurements of m O/D

pairs, the maximum entropy of an individual is is

MaxH(is) = −log
( 1
m2 + 1

)
(5)

where 1 in the denominator accounts for the individual not
making any trips. Interestingly, the maximum entropy for an
individual depends only on the number of possible trips, not
the number of participants in the system.

Given the entropy upper bound, the level of location privacy
of an individual can also be expressed as the ratio of the
current entropy to the maximum. Therefore, we have

H% =
H(is)

MaxH(is)
100% (6)

which uses % as the unit. We use H% to express the ratio of
an individual’s privacy level to the maximum possible level. In
other words, it gives a hint as how far an individual is from the
theoretical privacy upper bound. Notice that H% is different
from a similar formula d = H(X)/HM used in [7], which
measures the degree of anonymity given an anonymity set.

V. ANALYSIS

A. Case study I

First, we use a simple example to illustrate how the metric
works. Consider the scenario in Fig. 2. Three individuals i1,
i2, and i3 live on the same street, their homes are close to the
locations h1, h2, and h3, from where three trips originating at
almost the same time. The adversary’s tracking result shows
that the destinations of the trips are the university U , the
hospital H , and the cafe C.

h1 

h2 

h3 

U 

H 

C 

0.1 

0.5 

1 

i1  i2  i3 

Fig. 2. A simple example

The probability assignments reflect the information the
adversary obtained from observing the system. The adversary
is sure that i1 starts from h1, but thinks i2 and i3 are both
probable to start from either h2 or h3. The adversary also
knows that both i1 and i2 work at the university, and i1
has visited the hospital quite often in the past. The adversary
knows that i2 and i3 often go to the cafe. Since i2 is supposed
to work at that time, the adversary assigns a higher probability
to i3. Besides, the adversary makes the probability assignments
independently. For example, in the case of considering i2
making a trip from h2 to H , although the probability of i2
starting from h2 to H is 0.5 ∗ 0.5 = 0.25, it has no influence
when the adversary assigning 0.05 as the probability of linking



H back to i2. By such assignments, we can model the situation
in which later information influences the certainty of the whole
trip. Another noteworthy assignment is the 1 on h3 to C. This
happens when the adversary can track a complete trip, but
cannot link the trip to a particular individual with certainty.

Using (2) – (6), we calculate the entropies and list the result
in Tab. I. The result shows that i1 has the lowest entropy,
hence the lowest privacy level. A close look at the example
reveals that among all the possible trips, i1 can be linked to
the trip from h1 to H with high certainty. As the uncertainty
is low, i1’s entropy becomes low. On the other hand, i2 has
the highest entropy because the uncertainty is high to link i2
to the trips from h2 and h3, as well as the destinations H and
C. Although very simple, the example demonstrates that the
metric is an effective tool to process various information and
reflect the underlying privacy value.

TABLE I
RESULT OF CASE STUDY I

is H(is) H%

i1 0.32 9.6%
i2 1.38 42%
i3 1.03 31%

B. Case study II

In the second case study, we analyze the role of tracking on
location privacy. In this scenario, the adversary can track vehi-
cles with high certainty, but has difficulties to link the vehicle
movements to the individuals. It assigns higher probabilities
to the individuals in the vicinity of the origins or destinations,
and gradually decreases the probabilities as the individual’s
distances to the origins or destinations increase.

To simulate this scenario, we generate probabilities from a
normal distribution for each row in matrices IO and DI, and
probabilities from an exponential distribution for each row in
matrix OD. We simulate the scenario in MATLAB with 50
individuals and 20 O/D pairs. The probabilities are randomly
generated from the probability distributions. Fig. 3 shows three
example probability distributions from the three matrices. The
first distribution is the probability of i1 starting at one of the
20 origins. Since the probabilities are taken from a normal
distribution, they are quite evenly distributed around 0.05. The
second distribution shows the probabilities of a vehicle from
o1 ending at one of the 20 destinations. The probabilities are
exponentially distributed, so several destinations have much
higher values than the rest. The third distribution is also
taken from a normal distribution. It shows the relations of
the destination d1 to the 50 individuals.

Arbitrarily, we define an exponential distribution with µ =
1, and a normal distribution with µ = 0.5 and σ = 0.1.
The probabilities in each row of the matrices are randomly
generated according to their distributions and normalized to
1. Then the three matrices are fed to the metric calculation.
We repeat this process for 100 times, each time with three
new randomly generated probability matrices. In the end, we
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Fig. 3. Example of probability distributions in the three matrices.

obtain an average entropy over the 50 individuals over 100
simulations of 8.02 bits. As the maximum entropy for a system
with 20 O/D pairs is 8.65 bits, we have a ratio H% = 92.7%.
When comparing to the values in case study I, the individuals
in this scenario enjoy a very high level of location privacy. We
will also interpret the result in the next section by comparing
it to the result from case study III.

C. Case study III

In the third case study, we try the opposite: high certainty
on the linking of individuals to the origins and destinations,
low certainty on tracking. To be able to compare with the
results from case study II, we use the same setting of 50
individuals and 20 O/D pairs. We exchange the probability
distributions. Specifically, we let matrices IO and DI have
the probabilities from an exponential distribution, and OD
have the probabilities from a normal distribution. IO and DI
simulate the situation that the adversary has more information
on the individuals, such as where they live and what their
daily schedules are, resulting in high probabilities on linking
an individual to a few origins and linking a destination to a few
individual. Due to poor tracking performance, the adversary
has problems to link origins and destinations. This is simulated
by probabilities from a normal distribution in OD.

Using the same parameters for the exponential and normal
distributions and the same process in case study II, we
obtain an average entropy over the 50 individuals over 100
simulations of 7.48 bits, and H% = 86.5%.

Fig. 4 compares the average entropy of the 50 individuals
after each simulation run from both case studies. For all the
simulation runs, entropies from case study II are higher than
the ones from case study III, meaning that users in case study
II have more location privacy that those in case study III.
The entropy values fluctuate slightly, because the probabilities
are re-generated at each simulation run. However, on the long
run, they are quite stable around certain values. The result
shows that the linkability of location information to particular
individuals has more influences on the overall location pri-
vacy level than vehicle tracking. This means interestingly it
will be more efficient to devise mechanisms to increase the
unlinkability between location information and individuals.
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D. Discussion

One might ask how to assign probabilities so they reflect the
true amount of information an adversary has on the system?
In general, we can employ two approaches. Although having
a list of all possible attacks on location privacy in V2X
systems will be a NP-hard problem, in the first approach,
we can derive the probabilities based on a) a set of already
identified attacks, e.g., home identification and target tracking
[20]; b) the information to be included in the communications
of potential V2X applications; and c) publicly available data
like land-use data and telephone directory. This can be a useful
way to evaluate the conformance of a given V2X application
to the privacy requirements. In the second approach, we can
use probability mass functions to approximate the statistical
data on population distributions and traffic statistics to have a
large-scale analysis of V2X systems. In the above case studies,
case study I employs the first approach and case study II &
III employ the second approach.

The metric in this paper considers only complete trips.
As a part of the location information, locations and tracks
also influence the level of location privacy. They are not
included in the metric, because the current version is based
on a single snapshot, which is limited in space and time. As
a consequence, a track in a snapshot might turn out to be a
segment of a trip which ends in a future time, meaning that
the complete trip can only be captured with other snapshots.

VI. CONCLUSION

In this paper, we have introduced a first approach for
quantitatively measuring location privacy of individual users
of emerging V2X communication systems. The basic consid-
eration behind is that location privacy of users is not only
determined by vehicle tracking, but also by linking vehicle
trips to the individuals generated them. Based on snapshots
of the V2X system, we capture the information on location
privacy in terms of individuals in the system and their trips,
which are defined by the origins and destinations of the trips.
Assuming that an adversary has information on the linking
between vehicles and trips expressed in probabilities, the loca-
tion privacy of an individual is measured by the uncertainty of
such information and quantified as entropy. Then the location
privacy of a specific user can be determined by the ratio of

its current entropy and the maximum possible entropy within
the given system. The feasibility of the approach is supported
by means of different case studies.

In future work we will extend our approach into different
directions. First, we plan to incorporate time into our metric
by observing and analyzing timely ordered snapshots. Second,
we are going to further evaluate our metric on more scenarios
and realistic V2X applications. Finally, we will investigate the
interrelations between the individual vehicles within a system
in order to determine the location privacy of the whole system.
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