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Abstract

Considering uniform points for sampling, rank-1 lattices provide the simplest genera-
tion algorithm. Compared to classical tensor product lattices or random samples, their
geometry allows for a higher sampling efficiency. These considerations result in a proof
that for periodic Lipschitz continuous functions, rank-1 lattices with maximized minimum
distance perform best. This result is then investigated in the context of image synthesis,
where we study anti-aliasing by rank-1 lattices and using the geometry of rank-1 lattices
for sensor and display layouts.

1 Introduction

Image synthesis can be considered as an integro-approximation problem

I(k, l) :=
∫

Is

f(x, k, l)dx ≈ 1
n

n−1∑
i=0

f(xi, k, l), (1)

where the two-dimensional image function I(k, l) is given by a parametric integral. Since
usually analytic solutions are hardly accessible, we are interested in efficient numerical schemes
to approximate the image function. Thinking of (k, l) as pixel coordinates on the screen, the
above algorithm simultaneously computes a color for each pixel on the screen by averaging
samples of the integrand at positions xi. We consider two important aspects:

Sampling: In computer graphics the accumulation buffer [HA90] along with several exten-
sions and improvements [Kel97, KH01, SIP06] is the most efficient implementation of
integro-approximation as it can take advantage of the vast performance of rasteriza-
tion hardware. In the original article [HA90] sampling points xi generated by Lloyd
relaxation were found to perform best. This implies that sampling points should have
maximized minimum distance.

Display: Modern displays use either rectangular or hexagonal arrangements of pixels. Again,
due to a larger minimum distance hexagonal arrangements expose a much better visual
quality than rectangular arrangements, nevertheless, image synthesis is currently still
dominated by the first.

As we will show in the following, rank-1 lattices selected by maximized minimum distance
approximate hexagonal lattices. However, rank-1 lattices are simpler to generate and exist
for any number of points in any dimension. We investigate the application of such lattices in
two dimensions for anti-aliasing and display and sensor technology.
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Chapt er 2

Rank-1 Latt ices

The rank of a latt ice L in R s is de�n ed to be the minimum number of vectors which are necessary to
generate L [Kel02] . G iven only one s-dimensional generator vector g 2 Ns ,

x i =
i

n
� g =

i

n
(g1; : : : ; gs ) (2. 1)

describes an s-dimensional lattice . Th us such lattices are known as rank-1- lattices.
Kor obov lattices provide an example of s-dimensional rank -1-latti ces. Their generator vector has the

form g = (1; a; a2 ; : : : ; as 1). n being the number of points, it follows that a Kor obov lattice is uniquely
determined by the tuple (n; a):

L (n; a) =

�
i

n
(1; a; a2 ; : : : ; as 1) mod 1j0 � i < n

�

(2.2)

Thereb y the mod 1 operation restricts the latti ce to the unit square resultin g in a one-periodic pattern.
This means that rank-1 latt ices are point symmetric to the origin. One advantage of such latt ices is that
they can be tiled seamlessly in order to � ll the s-dimensional space and that they can be generated very
fast.

The Fi bonacci lattices, which represent in fact a two-dimensional Korob ov latti ce, are another example
of rank-1-lattice s. Bas ed on the Fib onacci sequence F k : = F k 1 + F k 2 with F 2 : = F 1 : = 1, the number
of points is set to n = F k ; k � 2 and the generator vector is de� ned as

g = (1; F k 1)

Figu re 2.1 shows a F ibonacci lat tice on the unit square with n = F 9 = 34 points and generator vector
g = (1; F 8).
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Fi gure 2.1: Fib onacci lattice for (34, 21).

The qualit y of rank-1 latt ices is signi� cantly inu enced by the integer generator vector (g1; : : : ; gs ) 2
Ns . Lattice s in Kor obov form, which do not di�e r very much from other latt ices in two dimensions, reduce

13

Figure 1: The n = 34 points of the Fibonacci lattice L34,21 with generator vector g = (1, 21).

2 Geometry of Rank-1 Lattices

A lattice L is a discrete subset of Rs which is closed under addition and subtraction. Given
an s-dimensional lattice basis {b1, . . . ,bs}, the lattice can be generated by all integer linear
combinations

L(b1, . . . ,bs) :=


s∑

j=1

λjbj : λ1, . . . , λs ∈ Z

 . (2)

Of all possible bases the Minkowski-reduced bases, which contain the s shortest linearly
independent vectors of L [AEVZ02], are the most useful for our purpose.

Instead of using s basis vectors the points xi of a rank-1 lattice [Nie92b, SJ94]

Ln,g :=
{
xi :=

i

n
g mod 1 : i = 0, . . . , n− 1

}
in the unit cube are easily generated by using only one suitable generator vector g ∈ Ns for a
fixed number n ∈ N of points. Korobov lattices Ln,a are a special class of rank-1 lattices. Their
generator vector has the form g = (1, a, a2, . . . , as−1). The Fibonacci lattices are an instance
of a two-dimensional Korobov lattice. Based on the Fibonacci sequence Fk := Fk−1 + Fk−2

with F2 := F1 := 1, the number of points is set to n = Fk, k ≥ 2 and the generator vector
is defined as g = (1, Fk−1). Figure 1 shows a Fibonacci lattice in the unit square with
n = F9 = 34 points and the generator vector g = (1, F8) = (1, 21).

The generator vector g of a rank-1 lattice can be chosen such that the resulting point
set is of low discrepancy [SJ94]. Then the elements of this point set are called good lattice
points. But only very few explicit constructions for good lattice points exist. Similar to the
Fibonacci lattices Niederreiter and Borosh [BN83, Nie86] showed that good two-dimensional
lattice points can be explicitly constructed for n being a power of two.

Obviously the quality of rank-1 lattices is significantly influenced by their integer generator
vector g. For lattices in Korobov form the search is reduced to only one parameter a.
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2.1 Shifted Rank-1 Lattices

Considering shifted rank-1 lattices

L∆
n,g :=

{
xi :=

i

n
g + ∆ mod 1 : ∆ ∈ Rs; i = 0, . . . , n− 1

}
there exists a trivial, but nevertheless interesting connection to (t, m, s)−nets in basis b
[Nie92b].

(0, 2, 2)-nets in base b only exhibit three kinds of elementary intervals[ i

b
,
i + 1

b

)
×

[j

b
,
j + 1

b

)
for 0 ≤ i, j < b,[ i

b2
,
i + 1
b2

)
×

[
0, 1

)
for 0 ≤ i < b, and[

0, 1
)
×

[ i

b2
,
i + 1
b2

)
for 0 ≤ i < b,

whereof each must contain exactly one of the n = b2 points of the shifted rank-1 lattice
due to t = 0. The latter two kinds of intervals guarantee perfect one-dimensional projections.
Independent of the shift ∆, this is obtained by requiring gcd(n, gi) = 1, i ∈ {1, . . . , s}. Possible
shift coordinates are given by the one-dimensional projections of the lattice points. It is
sufficient to search shifts in only one of the elementary intervals, such that the t = 0 condition
is fulfilled. An illustration for L∆

25,7 with ∆ = ( 2
25 , 2

25) is found in Figure 2 and further
parameters are listed in Table 1.

Like (0, 2, 2)−nets the resulting lattices share both the properties of jittered grid and Latin
hypercube samples but can be computed faster due to a simpler algorithm.

32 CHAPTER 2. RANK-1 LATTICES

5

5b1

b2

Figure 2.9: Lattice L(25, 7) with its Minkowsky reduced basis b1 = (3,−4) and b2 = (4, 3).

2.3 (0, m, 2)-Nets

We have already discussed one motivation for shifted lattices with regard to sampling the whole screen
in section 2.1.3. A closer look at the lattice in figure ?? reveals another one. Figure 2.10 refines the
grid structure of figure ?? and shows the lattice L(25, 7) ⊂ [0, 1)2 shifted by ( 10

25 , 10
25 ). The lattice points

perfectly fill the fine grid structure in a low dimensional projection. This is indicated by the hollow lattice
point which is projected onto the x- and y-axis along the blue and red line with no other lattice point
lying on these lines. Furthermore each interval [ i

5 , i+1
5 )× [ j

5 , j+1
5 ), 0 ≤ i, j < 5 being highlighted in dark

gray also contains exactly one lattice point. Hence the lattice has the characteristics of both stratified
and Latin hypercube sampling points.

1

1

Figure 2.10: (0, 2, 2)-net in basis 5.

This can be formalized by (0,m, 2)- or more generally (t, m, s)-nets [Nie92]. An elementary interval
is defined by

E :=
s∏

j=1

[ aj

bnj
,
aj + 1
bnj

)
,

Figure 2: Example of a shifted rank-1 lat-
tice L∆

25,7 with ∆ = ( 2
25 , 2

25) that is a
(0, 2, 2)-net in basis b = 5.

b n = b2 a n ·∆ ∈ [0, b)2]
2 4 1 (1, 0)
3 9 2 (1, 1)
5 25 7 (2, 2)
7 49 6 (5, 1)
11 121 36 (5, 5)
13 169 70 (6, 6)
17 289 80 (2, 4)
19 361 100 (14, 15)
23 529 120 (0, 2)
29 841 150 (7, 8)
31 961 210 (7, 9)

Table 1: Parameters for shifted rank-1 lat-
tices in Korobov form that are (0, 2, 2)-
nets in base b. The rational shift ∆ is
scaled by n for integer precision.

2.2 Maximized Minimum Distance Rank-1 Lattices

In computer graphics sampling patterns with blue noise spectral properties are used in analogy
to the principle of maximized minimum distance apparent in nature. For example the photo
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receptors in the retina are distributed according to this scheme [Yel83] in order to reduce
aliasing.

Similarly we can select rank-1 lattice generator vectors that maximize the minimum dis-
tance, which leads to the notion of maximized minimum distance lattices. The task of calcu-
lating the minimum distance in a lattice is a well known problem in lattice theory, namely the
shortest vector problem [AEVZ02]. Since a lattice is closed under addition and subtraction
the difference between two lattice points yields another point in the lattice. Therefore the
minimum distance corresponds to the length of the shortest vector in the lattice. This quan-
tity can be computed by searching the closest point to the origin, which means to consider
all lattice points except x0 = 0.

For s = 2 the sequence of rank-1 lattices with increasing minimum distance approximates
the hexagonal lattice in the limit, which is illustrated in Figure 3 for n = 144 points.

1

1

rect. lattice

1

1

L144,42

1

1

L144,19

1

1

L144,89

1

1

L144,33

1

1

hex. lattice

Figure 3: In the sequence of Korobov lattices L144,a the minimum distance increases from left
to right. For comparison the rectangular lattice is added to the left, whereas the hexagonal
lattice is the rightmost of the image sequence.

In [CR97] Cools and Reztsov define a family

Ln,g =
{

i

2FmMm
(Mm, Fm) mod 1 : 0 ≤ i < 2FmMm

}
(3)

of rank-1 lattices by using the sequence of convergents{
Fm

Mm

}∞

m=1

=
2
1
,
5
3
,
7
4
,
19
11

, . . .

of the continued fraction equal to
√

3. Since these lattices are constructed to exactly inte-
grate trigonometric polynomials of a hexagonal spectrum, they actually represent maximized
minimum distance lattices. As the construction only covers lattices for n = 2FmMm points,
for other n the generator vector was determined by computer search.

2.2.1 Computer Search

Searching for maximized minimum distance rank-1 lattices represents a computationally ex-
pensive problem, since there are (n−1)s possibilities for the generator vector g = (g1, . . . , gs),
where gi ∈ {1, . . . , n − 1}. However, for s = 2 an exhaustive search is feasible. In order to
avoid rounding errors due to floating point imprecision all computations are done in integer
arithmetic allowing for exact results.
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One possibility to reduce the search space is to consider only rank-1 lattices in Korobov
form, which are uniquely determined by the tuple (n, a) (see Section 2). A very efficient way
to search for maximized minimum distance lattices in Korobov form for s = 2 is given by
the spectral test [Knu81], which measures the quality of linear congruential random number
generators by determining the t-dimensional accuracy νt. It can be shown that this quantity
corresponds to the length of the shortest vector in the dual lattice

L⊥n,g := {h ∈ Zs : h · g ≡ 0 (mod n)}.

Since the length of the shortest vector in L⊥ equals the length of the shortest vector in L
multiplied by n, the spectral test delivers the minimum mutual distance between two lattice
points for one a ∈ {1, . . . , n−1} on [0, n)2. As the searching algorithm is performed on [0, n)2,
the two-dimensional accuracy ν2 delivers the sought quantity, i.e. the length of the shortest
vector in the lattice Ln,a.

Additionally, the search space can be restricted by demanding that n and gi are relatively
prime, i.e. gcd(n, gi) = 1. This means that the resulting lattice points will be stratified
equidistantly on each coordinate axis. So the resulting rank-1 lattice is an instance of a Latin
hypercube sample and the minimum distance can be bounded to mindist ≥ 1

n .
However, the condition gcd(n, gi) = 1 prevents to find the best lattice with regard to

maximized minimum distance in some cases. This also applies to searching maximized min-
imum distance lattices in Korobov form. For example the maximized minimum distance of
the lattices of equation 3 cannot be achieved in Korobov form.

Figure 4 compares the maximized minimum distance lattices for n = 56 selected in Ko-
robov form (a), for gcd(n, a) = 1 in Korobov form (b) and by using the lattice family of
[CR97] (c).

1

1

b1
b2

(a) L56,9

mindist =
√

40
56

1

1

b1

b2

(b) L56,21

mindist =
√

58
56

1

1

b1

b2

(c) L56,(4,7)

mindist =
√

64
56

Figure 4: Maximized minimum distance lattices for n = 56: (a) Rank-1 lattice searched under
the restriction of gcd(n, a) = 1 in Korobov form. (b) Rank-1 lattice in Korobov form. (c)
Rank-1 lattice selected without restrictions.

3 Quasi-Monte Carlo Error Bounds

The functions in computer graphics are square integrable due to finite energy and bounded.
However, they are only piecewise continuous, where the discontinuities are difficult to identify.
Often the structure of the high-dimensional integrals in image synthesis comprises several
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2 − 3 dimensional integral operators, as it is the case for sampling the pixel area, the lens
area, motion blur, depth of field, scattering events, etc. Consequently the sampling points
can be padded using low-dimensional stratified patterns in a very efficient way, as Kollig and
Keller have shown in [KK02].

The classical quasi-Monte Carlo error bound is given by the Koksma-Hlawka inequality
[Nie92b], which bounds the integration error by the product of the discrepancy of the sampling
points and the variation of the integrand in the sense of Hardy and Krause. However, the
variation in the sense of Hardy and Krause already becomes infinite in the case of non-axis
aligned discontinuities, thus being inapplicable to functions in computer graphics.

The error of a lattice rule [SJ94] can be formulated in terms of the Fourier coefficients of
the integrand f requiring f to be periodic and to belong to the function class whose Fourier
coefficients decay sufficiently fast with increasing frequency. Since these conditions usually
do not hold for the setting of computer graphics, we cannot use this error bound either.

The notion of (M, µ)-uniformity introduced by Niederreiter [Nie03] supports partitions
which are not axis aligned and relies on the stratification properties of the sampling points.
The deterministic error bound based on this concept can easily be generalized to integro-
approximation [Kel06]. Using the probability space ([0, 1)s,B, λs), where B corresponds to
the Borel-sets and λs to the s-dimensional Lebesgue-measure, this bound also applies in the
context of computer graphics. However, the error cannot be separated into a property of the
integrand and the sampling pattern any longer.

3.1 Error Bound for Lipschitz Functions

Although the classical error bounds do not fit in the setting of computer graphics (as seen
above), quasi-Monte Carlo methods achieve good results in a vast number of numerical ex-
periments. The main reason is that the integrands are often piecewise continuous, while the
discontinuities cannot be captured by the classical error bounds. Thus they cannot explain
the observed convergence. We now examine an error bound for Lipschitz continuous, peri-
odic functions with respect to parametric integration thereby completing Niederreiter’s work
[Nie03] for the special case of rank-1 lattices.

Given a Minkowski-reduced basis of a rank-1 lattice Ln,g the basis vectors induce the
Delaunay tessellation of the lattice and its dual, the Voronoi diagram. In order to derive the
error bound we need the following

Definition 1 The radius r(n,g) of a rank-1 lattice is the smallest circumcircle of the funda-
mental Voronoi cell with respect to some suitable norm.

This quantity corresponds to the dispersion [Nie92b]

dn(Ln,g; Is) = sup
x∈Is

min
1≤i≤n

d(x,xi)

of a rank-1 lattice as well as the notion of the covering radius in coding theory. Figure 5
shows the Voronoi diagram along with the circumcircle of radius r(32, (1, 7)) of the Korobov
lattice L32,7.

Based on the results of [DFG99] and by taking advantage of the geometrical properties of
rank-1 lattices the proof is very simple and resembles the proofs of the paper [Nie03].

Theorem 1 Let f be a Lipschitz function periodic on [0, 1]s+s′, with

‖f(x1,y)− f(x2,y)‖ ≤ L‖x1 − x2‖,
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b1

b2

Figure 5: Voronoi diagram of the lattice L32,7 including the basis vectors in the sense of a
Minkowski-reduced basis. The circumcircle of radius r(n,g) encloses the fundamental Voronoi
cell.

and Lipschitz constant L independent of x1,x2 and y, where dimx1 = dimx2 = s and
dimy = s′. Further let Pn = {x0, . . . ,xn−1} be a rank-1 lattice. Then∥∥∥∥∥

∫
[0,1]s

f(x,y)dx− 1
n

n−1∑
i=0

f(xi,y)

∥∥∥∥∥ ≤ L · r(n,g)

for some suitable norm, where r(n,g) is the radius of Pn.

Proof 1 Let M = {M0, · · · ,Mn−1} be the partition of Is by the Voronoi dia-gram of a rank-1
lattice. Then in a first step the quadrature error can be estimated similar to [DFG99]:

∥∥∥∥∥
∫

[0,1]s
f(x,y)dx− 1

n

n−1∑
i=0

f(xi,y)

∥∥∥∥∥ =

∥∥∥∥∥
n−1∑
i=0

∫
Mi

(f(x,y)− f(xi,y))dx

∥∥∥∥∥
≤

n−1∑
i=0

∫
Mi

||f(x,y)− f(xi,y)||dx

≤ L

n−1∑
i=0

∫
Mi

||x− xi||dx (4)

= L · n
∫

M0

||x||dx (5)

≤ L · n · λs(M0) sup
‖x‖≤r(n,g)

||x||

= L · n · 1
n
· r(n,g) = L · r(n,g). (6)

Since the Mi are of identical shape and volume and due to the point symmetry of the lattice,
we can choose xi as x0 = 0 in equation (4) which then can further be simplified resulting in
equation (6). �
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Obviously the error bound results as a product of a property of the integrand and a
property of the sampling pattern again. Omitting the parameter y in Theorem 1 yields the
integration error bound.

Let Ω ⊂ Rs, M = {M0, · · · ,Mn−1} an arbitrary tessellation of Ω, and {Ai}n−1
i=0 the

volumes of {Mi}n−1
i=0 . Then equation (4) represents the special case of the error estimation of

[DFG99] ∣∣∣∣∣
∫

Ω
f(x)dx−Ai

n−1∑
i=0

f(xi)

∣∣∣∣∣ ≤ L

n−1∑
i=0

∫
Mi

||x− xi||dx (7)

for rank-1 lattices, where Ai = 1
n . It can be proved that this error bound is minimized by

choosing {xi}n−1
i=0 and {Mi}n−1

i=0 such that the {Mi}n−1
i=0 are the Voronoi sets for the xi and the

xi are the mass centroids of the Voronoi sets at the same time [DFG99]. This means that
rank-1 lattices are a suitable choice to minimize the integration error for Lipschitz continuous
functions, since these conditions apply to these point sets due to their geometrical properties.

The theoretical rate of the new bound O(n−1/s) is already known from the field of infor-
mation based complexity and approximation theory. It obviously is cursed by the dimension,
which is hidden in the radius r(n,g). However, the important issue about this theorem is not
the rate as we consider s = 2, but that it yields a criterion for lattice search using the primal
instead of the dual lattice by means of the following corollary:

Corollary 1 Maximizing the minimum distance

dmin(Pn) := min
0≤i<n

‖xi‖

in a rank-1 lattice decreases the radius r(n,g) and thus the integration error.

This corollary can be derived by the following observation. The minimum distance
dmin(Pn) in a rank-1 lattice corresponds to two times the radius of the in-circle of the fun-
damental Voronoi cell. Maximizing the minimum distance in a rank-1 lattice thus increases
this radius. The Voronoi cells, being of equal size and constant volume, approximate a sphere
the more, the bigger the minimum distance becomes. Consequently the gap between the
radius of the circumcircle and the in-circle of the Voronoi cells decreases. This means that
r(n,g) decreases as dmin(Pn) increases, which is stated in the corollary. Although there are
similarities to sphere packings, it is important to note that this argument is not built upon
them.

4 Applications

Based on the theoretical considerations of the previous sections we now investigate the effect
of maximized minimum distance rank-1 lattices for integro-approximation for image synthesis
and explore their geometrical properties in the context of display technology.

4.1 Anti-Aliasing by Rank-1 Lattices

A disadvantage of all current display technology that relies on regular structures to present
images is that correlations between the function to be displayed and the pixel structure can
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(a) Jittered grid (b) LP points (c) L1048576,195638

Figure 6: Rendering the test function by integro-approximation with 512× 512× 4 samples,
which means that there are about 4 samples per pixel. This figure should be viewed on screen,
since otherwise the differences between the images can hardly be observed due to resampling
and printing.

be perceived as distorting artifacts. In order to avoid these so-called aliases, various sampling
patterns have been investigated. It is common belief that at moderate sampling rates n
random sampling points xi with maximized minimum distance perform best, since aliases are
mapped to noise, but low frequency details are reproduced clearly. Nevertheless, increasing
the number of sample points can cause aliases to reappear as the noise vanishes. In fact these
artifacts cannot be completely avoided because of the correlation of a deterministic display
and a deterministic function, but they can be ameliorated by filtering parts of the image.
However, using only a box filter, i.e. integrating over the pixel area by averaging samples,
always causes aliasing to appear in an even converged image. This is illustrated in Figure
8 for the simple example of rendering an infinite checker board. As we are looking for the
most efficient sampling patterns and as random sampling cannot always prevent aliasing, we
investigate rank-1 lattices for image synthesis.

4.1.1 What Maximized Minimum Distance Lattices Can Do

A typical test function for anti-aliasing is given by

Z2 : [0, 1)2 → [0, 1]

(x, y) 7→ 1
2

(
1 + sin

(
1600 ·

(
x2 + y2

)))
.

Figure 6 shows the results of rendering this function by stratified sampling, the Larcher-
Pillichshammer points (LP) [LP01, KK02], and the maximized minimum distance lattice
L1048576,195638 in combination with a b-spline filter of degree 3. Whereas in Figure 6 (a) the
aliasing is covered by noise, Moiré patterns become clearly visible in 6 (b). The best result
is achieved by the maximized minimum distance lattice, which acts as a filter due to its
nice Fourier properties [SJ94]. So aliasing artifacts are attenuated considerably. In fact the
maximized minimum distance lattice L1048576,195638 with approximately 4 samples per pixel
achieves a similar quality to [SSA05], where 900 samples per pixel with a density proportional
to a cubic b-spline filter we used to render almost the same test function.
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60 C HA P T E R 4. A NT I -A L I A SI NG B Y R A NK -1 L AT T I C E S

whole unit cube. A lgorithm 4.2.2 delivers the source code to generate a pattern with n � m samples
within the unit cube.

F igure 4.10: Uniform 4 � 4 pattern (on the left) and jittered grid with one random sample in each of the
4 � 4 strata (on the right) .

Sampl ePat t er n* cr eat eJ i t t er ( ui nt n, ui nt m)
{

Sampl ePat t er n* r et = new Sampl ePat t er n( ) ;

doubl e dx = 1. 0 / ( doubl e) n;
doubl e dy = 1. 0 / ( doubl e) m;

f or ( doubl e x = 0; x < 1; x += dx)
f or ( doubl e y = 0; y < 1; y += dy)

{
r et - >addPoi nt ( x + dx * r and( ) , y + dy * r and( ) ) ;

}
r et ur n r et ;

}

C ode 4. 2. 2 J ittered gr id samling

M oreover jittering trades aliasing artifacts for noise, which can easily be seen in the one-dimensional
case [K el03a]. L et J ( ! ) be the Fourier transform of the one dimensional jittered grid pattern in � gure
4.11. F igure 4.12 (a) represents the Fourier transform of a cosine-function with period p. T hen � gure

F igure 4.11: J ittered sampling in one dimension.

F igure 4.12: (a) Fourier transform of f (x ) = cos(x ) with period p. (b) Spectrum of f (x ) � j (x ) .

4.12 (b) is the spectrum F ( ! ) F ( ! ) of f (x ) � j (x ) . R econstructing by means of the sinc-function for

(a) Regular grid

60 C HA P T E R 4. A NT I -A L I A SI NG B Y R A NK -1 L AT T I C E S

whole unit cube. A lgorithm 4.2.2 delivers the source code to generate a pattern with n � m samples
within the unit cube.

F igure 4.10: Uniform 4 � 4 pattern (on the left) and jittered grid with one random sample in each of the
4 � 4 strata (on the right) .

Sampl ePat t er n* cr eat eJ i t t er ( ui nt n, ui nt m)
{

Sampl ePat t er n* r et = new Sampl ePat t er n( ) ;

doubl e dx = 1. 0 / ( doubl e) n;
doubl e dy = 1. 0 / ( doubl e) m;

f or ( doubl e x = 0; x < 1; x += dx)
f or ( doubl e y = 0; y < 1; y += dy)

{
r et - >addPoi nt ( x + dx * r and( ) , y + dy * r and( ) ) ;

}
r et ur n r et ;

}

C ode 4. 2. 2 J ittered gr id samling

M oreover jittering trades aliasing artifacts for noise, which can easily be seen in the one-dimensional
case [K el03a]. L et J ( ! ) be the Fourier transform of the one dimensional jittered grid pattern in � gure
4.11. F igure 4.12 (a) represents the Fourier transform of a cosine-function with period p. T hen � gure

F igure 4.11: J ittered sampling in one dimension.

F igure 4.12: (a) Fourier transform of f (x ) = cos(x ) with period p. (b) Spectrum of f (x ) � j (x ) .

4.12 (b) is the spectrum F ( ! ) F ( ! ) of f (x ) � j (x ) . R econstructing by means of the sinc-function for

(b) Jittered grid
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1
p � 1

2� x yields the original frequency superposed by some noise, as il lustrat ed in �g ure 4.13 (a). If the

sampling theorem is not met, i.e. 1
p > 1

2� x , only noise is recovered instead of the spectru m of the cosine.
This is shown in � gure 4.13 (b) .

Figu re 4.13: (a) For 1
p � 1

2� x the original frequency can be reconstructed with some addit ional noise.

(b) Only noise is recovered for 1
p > 1

2� x .

Figu re 4.14: Lar cher-Pi llichshammer point set for n = 24 points (on the left) and randomized Larc her-
Pi llichshammer point set (on the right).

The Larcher Pil lichshammer point set forms a (0; m; 2)-net in base b = 2. Th is means that it consists
of a point set of n = 2m points of low discrepancy and every elementary interval of volume 2 m contain s
exactly one point (see section 2.3) . Th is sample pattern is based on the Larc her-P ill ichshammer radical
inverse function, which is a (0; 1)-s equence in base b = 2 [K ol02]. For t > 0, an in� nite point sequence is
de�n ed to be a (t; s)- sequence in base b, if 8k � 0 and m � t the vectors x k bm +1 ; : : : ; x ( k +1) bm 2 I s form
a (t; m; s)-net. The Lar cher-Pi llichshammer radical inverse function is calculated by algorithm 4.2.3.

double RI_LP(uint i, uint r = 0)
{

for(unsigned int v = 1<<31; i; i >>= 1, v |= v>>1)
if(i & 1)

r ^= v;
return (double) r / (double) 0x100000000LL;

}

Co de 4. 2.3 L archer-Pil lichsha mmer radical inverse [K ol02]. Th e parameter r is zero by default.

Add ing the component i
bm to the � rst bm points of a ( t; s)-s equence in base b yields a (t; m; s + 1)-

net. In our case a (0; m; 2)-net is extended from the Larc her-Pil lichshammer radical inverse function by
adding the component i

n , with n = 2m . This is shown in algorithm 4.2.4.
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(f) Shifted L16,3

Figure 7: As sampling pattern the regular and jittered grid, the Larcher-Pillichshammer (LP)
and randomized Larcher-Pillichshammer points, and rank-1 lattices are used. We analyze both
the maximized minimum distance rank-1 lattices in Korobov form and the lattices resulting
from the condition gcd(n, a) = 1. Additionally, the lattices are shifted such that the bounding
box of the lattice points is centered within the pixel.

4.1.2 Speed of Convergence

In the following we compare the test patterns of Figure 7 with respect to their convergence.
The sampling patterns are applied both for the integration problem (i.e. per pixel) and for
the integro-approximation setting (i.e. over the whole quadratic screen). The test scene is
given by the checker board of Figure 8(a).

In order to analyze the convergence of the test patterns, the L2-norm of a converged refer-
ence image to the corresponding test image is computed for an increasing number of sampling
points per pixel. Then the resulting value is diagrammed in the error graph, displaying the
number of samples on the x- and the error norm on the y-axes. Both axis are scaled logarith-
mically. The reference image, shown in Figure 8(b), was computed by applying a jittered grid
sampling pattern with 1024 × 1024 samples at each pixel. Obviously there are still aliasing
artifacts in this image resulting from the problem of rendering a deterministic function on a
deterministic display.

It is important to note that there are two different visual artifacts in image 8(a). The first
one results from the case of only one edge lying in a single pixel. At low sampling rates these
edges appear very jagged. Increasing the sampling rate solves this problem, though. Walking
towards the horizon of the checker board, the single cells of the checker board get smaller and
smaller. Therefore, many small cells, i.e. many edges fall within one pixel near the horizon
as shown in Figures 8 (e) and (f), yielding the aliasing structures in the converged image.
Thus, we compute the error graphs only for the lower half of the checker board scene, where
the convergence to the correct image is guaranteed.

Integration We start by applying the test patterns (Figure 7) per pixel. For each pixel
n rays are shot from the camera into the screen and the resulting color values are averaged
by means of the box filter. Although the regular grid possesses a worse discrepancy than
the Larcher-Pillichshammer or lattice points, we notice that it performs extremely well, even
surpassing them for certain n. This can be explained by the discrepancy being an anisotropic
measure in fact. The large error spikes in Figure 9 arise from the factorization of n, since
it is not always possible to find a good one. Jittered grid sampling turns aliasing into noise,
and thus, the error proceeds on a lower level. However, this sampling pattern suffers from
the same factorization problem as the regular grid.

The idea of using rank-1 lattices for computing the pixel integral is already mentioned
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 8: (a) Aliasing due to the discrete representation of the checker board.
(b) Reference image used to determine the L2 error. (c)-(f) Magnification of the highlighted
areas of (b), comprising 2 × 2 pixels each: (c) Roughly the same number of light and dark
gray checker board cells cover this area averaging to half gray in (b). (d) The light and dark
gray cells do not cover the same area in the pixels leading to aliasing. (e) The light and dark
gray cells do not cover the same area in the pixels leading to aliasing. (f) Two pixels are
completely covered by one dark gray cell, whereas an edge between two cells runs through
the other two. 11
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Figure 9: Comparison of the regular and jittered grid, the Larcher-Pillichshammer points,
shifted maximized minimum distance lattices and the maximized minimum distance lattices
with gcd(n, a) = 1.
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Figure 10: Comparing the Larcher-Pillichshammer points and maximum minimum distance
lattices scaled to the whole screen.
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Figure 11: Comparison integration/integro-approximation for the rank-1 lattices.
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Figure 12: Comparison integration/integro-approximation for the Larcher-Pillichshammer
points.
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in [Nie92a], however, not with respect to maximized minimum distance. Examining the
maximized minimum distance lattices, we observe that postulating gcd(n, a) = 1 sometimes
severely restricts the search space; e.g. for n = 4 we get the pixel diagonal as sampling pattern
which clearly is not a good distribution. Altogether the error curves expose a relatively strong
oscillation. This is due to the structure of the lattice points featuring families of hyperplanes
which are sometimes aligned to the checker board edges in such a way that these cannot
be captured. As the Larcher-Pillichshammer points do not suffer from this, clearly scene
dependent, problem, they offer a relatively smooth error curve.

Integro-Approximation Next we use the Larcher-Pillichshammer points and maximized
minimum distance lattices over the whole quadratic screen (xRes = yRes), i.e. these sampling
patterns are scaled from [0, 1)2 to [0, xRes) × [0, yRes). To obtain a certain number n of
samples per pixel, the number of sampling points has to be chosen as xRes · yRes · n. Since
the Larcher-Pillichshammer pattern for n = 2m points represents a (0,m, 2)-net in base b = 2,
we can guarantee a certain number of samples per pixel if the screen resolution is chosen as
a power of 2. If the number of sampling points equals xRes · yRes · k = 2m for k = 1, we
can take each pixel as an elementary interval of volume b−m = 2−m = 1

xRes ·
1

yRes . For k > 1,
each pixel contains k elementary intervals of volume 1

xRes ·
1

yRes ·
1
k . So each pixel is sampled

by the same number of points, with each pixel being sampled by a different pattern at the
same time. Considering the correlation between the pixels, the scaled Larcher-Pillichshammer
points obtain an even smoother error curve than in the integration setting, as can be seen in
Figure 12. This is even true for the case n 6= 2m.

In contrast to the Larcher-Pillichshammer points, the rank-1 lattices cannot achieve the
same number of sampling points per pixel and the image becomes quite noisy, especially for low
sampling rates. Moreover, there are again orientations in the checker board, which fall exactly
between two hyperplanes, resulting in an oscillating integration error. This also affects the
comparison to the integration setting. So, in contrast to the Larcher-Pillichshammer points,
the error graph for the integro-approximation problem is slightly worse than the one of the
integration setting, which is illustrated in Figure 11.

Altogether, the test patterns converge to the reference image, which still exposes aliasing
in the case of using the box filter for integration. The Larcher-Pillichshammer and maxi-
mized minimum distance sampling patterns show the fastest convergence rate, with the first
outperforming the latter for this test scene.

4.2 Images on Rank-1 Lattices

A raster display is typically formed from a matrix of pixels representing the whole screen.
Whereas a pixel is usually represented as a square on the integral raster being defined by the
display resolution, we now structure the pixel layout by the Voronoi diagram of a maximized
minimum distance rank-1 lattice, i.e. the single picture elements are represented as the cells
which are induced by the Voronoi diagram of the rank-1 lattice points.

This kind of display technology has several advantages. Since rank-1 lattices are available
for any number n of points, the number of pixels can be chosen freely. As seen in Section
2.2 maximizing minimum distance approximates a hexagonal grid in the limit yielding almost
hexagonal picture elements. The concept of hexagonal pixels has already been studied in the
context of hexagonal image processing ([MS05]) and is used in the SmartSlab LED panels
(www.metropolismag.com). Moreover, this pixel layout permits optically better results than
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Traditional display, 48× 48
pixels

Original image, 512× 512
pixels

Rank-1 lattice display,
48× 48 pixels

Figure 13: Comparison of rank-2 (left) and maximized minimum distance rank-1 lattice
(right) displays at identical pixel resolution for approximating the high resolution image in
the middle.

rank-2 lattices, as for example a smoother representation of curved objects. This can be seen
in Figure 13, where the original image (middle) has been computed in reduced resolution, once
on a traditional rank-2 lattice and once on a maximized minimum distance rank-1 lattice.
At the same time, image processing algorithms are simplified in comparison to hexagonal
lattices. In the same way image processing algorithms which are based upon the fast Fourier
transform become simpler and can be implemented in a slightly more efficient way [DKD07].

This concept can technically be realized in a number of ways: One possibility consists in
making up the display of point light sources, like for example RGB LEDs, which are arranged
in the center of each Voronoi cell. Composing the display of area light sources which cover
the single picture elements yields a technique for TFT and LCD displays, respectively. This
may be realized by means of OLEDs for instance. Moreover, the layout of the sensors, i.e. the
photosites, of a CCD (Charge-Coupled Device) camera can take the form of a rank-1 lattice
cell. Further applications are given by projector technology, 3d-Displays, etc.

4.2.1 2n Display Modules, Sensors, and Images

Since rank-1 lattices can be tiled seamlessly, it is possible to compose a display of k modules
each of which having the same number of lattice cells. This is illustrated in Figure 14.

The idea of 2n display modules consists in choosing the number of picture elements for
one display module as a power of 2. This has the advantage that the single cells easily can
be addressed by means of a demultiplexer. If the number k of modules is set to a power of 2
as well, the single modules can be controlled the same way.

Such displays can be produced quite cheaply by fabricating small modules of the same
layout and the same number of lattice cells which can easily be assembled to a display of
desired resolution. More generally, the concept of 2n displays perfectly fits all aspects of
computer technology, taking advantage of memory layout, cache lines, addressing, etc.

Storing images according to this scheme leads to the concept of 2n images which equally
benefit from the advantages of 2n displays. The O(2n) memory requirements ideally fit paging
(memory alignment). As a further example storing a sequence of textures as 20 · · · 2n images

15



Figure 14: The display is composed of 4 modules each of which contains 256 cells. Left:
Quadratic layout of the single modules, i.e. the rank-1 lattice is searched on the unit square.
Right: Rectangular layout, i.e. the rank-1 lattice is searched on a rectangular domain by
means of a corresponding weighted norm.

naturally supports MipMapping and allows for a simple fast Fourier transforms [DKD07]
processing.

4.2.2 Rasterization

Mathematical (ideal) primitives, such as lines, triangles, or circles are usually described in
terms of 2-dimensional vertices on a Cartesian grid. In order to render them correctly a
so-called rasterizer approximates them by assigning the appropriate colors to sets of pixels
[FvDFH96]. The rasterizer converts the two-dimensional vertices in screen space into pixels
on the display.

Changing the pixel layout by the introduction of rank-1 lattice displays also yields new
algorithms for rasterization. Instead of rasterizing on a rectangular grid, the rasterization is
now performed on the Voronoi cells of a maximum distance rank-1 lattice.

The basic idea for converting the traditional rasterization algorithms to rank-1 lattices
simply consists in changing the basis in which the rasterization is performed. This means
that the rasterizer switches from the Cartesian coordinate system to that coordinate system
which is formed by the basis of the corresponding rank-1 lattice. Whereas this method can
be simulated on traditional raster displays by means of a software solution, it can even be
performed on current graphics hardware in the following way: Since the rasterizer is only
capable of operating on rectangular grids, in a first step the scene has to be transformed
into the lattice basis, which in fact corresponds to a shear of the rectangular grid. After this
change of frame the rasterization can be performed on the graphics hardware as usual. In
order to display the rasterized scene, the resulting image has to be transformed back into the
pixel basis. Performing the rasterization directly on a rank-1 lattice would have yielded the
same result.
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Figure 15: Examples for rasterizing a triangle and a circle on the lattice L576,155.

5 Conclusion

We examined maximized minimum distance rank-1 lattices in the context of integro-approximation
and display technology. We derived an error bound for the class of Lipschitz continuous, peri-
odic functions. Numerical experiments proved that these lattices perform quite well in image
synthesis. However, the visual results are mixed: On the one hand extreme performance and
quality gains were observed, on the other hand the convergence rate heavily depends on the
function class, as the checker board example showed. Due to their algorithmical simplicity,
maximized minimum distance rank-1 lattices are very promising with regard to data layout
and image processing at a power of 2 pixels.
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