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Summary. Selecting rank-1 lattices with respect to maximized mutual minimum
distance has been shown to be very useful for image representation and synthesis
in computer graphics. While algorithms using rank-1 lattices are very simple and
e�cient, the selection of their generator vectors often has to resort to exhaustive
computer searches, which is prohibitively slow. For the two-dimensional setting, we
introduce an e�cient approximate search algorithm and transfer the principle to the
search for maximum minimum distance rank-1 lattice sequences. We then extend
the search for rank-1 lattices to approximate a given spectrum and present new
algorithms for anti-aliasing and texture representation in computer graphics.

1 Introduction

Due to their algorithmic e�ciency, rank-1 lattices [17, 20] and rank-1 lattice
sequences [9, 10] are very interesting objects for computer graphics [3, 4]: The
n points xi of an s-dimensional rank-1 lattice

Ln,g :=
{
xi :=

i

n
g mod 1 : i = 0, . . . , n− 1

}
⊂ [0, 1)s (1)

are generated by a suitable vector g ∈ Ns. Rank-1 lattices Ln,a in Korobov
form [20] use generator vectors of the restricted form g = (1, a, a2, . . . , as−1).

Using a van der Corput sequence (radical inverse) Φb in base b [17] instead
of the fraction i

n extends rank-1 lattices to rank-1 lattice sequences

LΦb
g := {xi := Φb(i) · g mod 1 : i ∈ N0} ⊂ [0, 1)s (2)

in the sense that for any m ∈ N0 the �rst bm points x0, . . . ,xbm−1 are a rank-1
lattice Lbm,g [10]. Thereby the van der Corput sequence Φb mirrors the b-ary
representation of an integer i at the decimal point
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Φb(i) : N0 −→ Q ∩ [0, 1)

i =
∞∑

j=0

aj(i)bl 7−→
∞∑

j=0

aj(i)b−j−1, (3)

where aj(i) denotes the j-th digit of the integer i represented in base b.
In [4] we investigated the concept of maximized minimum distance (MMD)

rank-1 lattices with applications to image synthesis and representation. Since
lattices are closed under addition and subtraction, the minimum distance

dmin(Ln,g) := min0<i<n‖xi‖ (4)

of a rank-1 lattice Ln,g is determined by the minimum norm of the lattice
points themselves. In this paper we use the L2-norm on the unit torus unless
noted otherwise.

Algorithms for computing the shortest vector in a general lattice have been
developed in [5, 7, 12] and e�cient implementations exist even for higher di-
mensions [14]. Specializing the setting to rank-1 lattices in two dimensions
allows one to take simpler approaches, as for example the Gaussian basis
reduction [11, 18]. This basis reduction is a simple algorithm to e�ciently de-
termine a lattice basis where the �rst basis vector is the shortest vector in the
lattice and thus yields its minimum distance. In two dimensions, this algorithm
computes a Minkowski-reduced basis and has a computational complexity of
O(log n) which is su�cient for our application [11].

The problem of constructing lattices with longest possible shortest nonzero
vectors for a given lattice density is connected to the problem of �nding the
densest packing of spheres which has been studied for a long time [1, 16, 19].
Computer searches for good lattices based on the lengths of shortest nonzero
vectors have been reported in [13, 15] for example. They focus on the dual
lattice, though, and use either exhaustive or random searches, the latter of
which poses the problem of deciding how much time to spend on the search
process. Due to the low-dimensional structure of many graphics applications,
we will consider only s = 2 dimensions henceforth. However, the number of
potential generator vectors for the number n of points required in graphics
applications is so large that a naïve search algorithm for MMD rank-1 lattices
as well as tables become prohibitive in time and space. For image storage or
sampling it is not uncommon have n > 40002.

We present e�cient approximate search algorithms for MMD rank-1 lat-
tices and sequences, and introduce a method that searches rank-1 lattices to
better represent and integrate functions with an anisotropic Fourier spectrum.
The �ndings result in new algorithms for anti-aliasing and texture represen-
tation [3], i.e. numerical integration and function approximation.
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2 E�cient Search by Restricting the Search Space

There exists a construction for MMD rank-1 lattices [2], where the generator
vector g and the number of lattice points n are described by the sequence of
convergents of the continued fraction equal to

√
3. However, the number n of

points of this construction increases very fast, reducing their applicability in
practical applications. For other n the generator vector has to be determined
by computer search. The naïve algorithm enumerates all possible generator
vectors in order to �nd MMD lattices. Already for only s = 2 dimensions,
scanning O((n−1)2) candidates becomes prohibitive for large n as used in our
applications. Restricting the search space to lattices in Korobov form (i.e. g =
(1, a)), the minimum distance can be determined e�ciently, as described in
[12]. However, not all MMD rank-1 lattices can be represented in Korobov form
[4]. For example the MMD rank-1 lattice for n = 56 points has the generator
vector g = (4, 7). In the following we examine a restriction of the search space
for which the e�cient search algorithm resembles rasterization algorithms as
used in computer graphics. This search is not restricted to Korobov lattices
and we show that it can �nd MMD rank-1 lattices that cannot be represented
in Korobov form. This allows a much more �exible use of rank-1 lattices.

2.1 Approximate Search for MMD Rank-1 Lattices

In order to enable an accelerated search for MMD rank-1 lattices we restrict
the search space to a small subset of all possible lattice generator vectors.
We base our restriction on two observations: First, for any lattice there is
more than one generator vector for the identical lattice. For example if the
number n of lattice points is prime, all lattice points scaled by n are generator
vectors and thus the shortest vector is generator vector, too. For arbitrary n we
noticed that it is still often the case that the shortest vector is also a generator
vector. The second observation is, that the largest possible minimum distance
l would result from a point set, whose triangulation consists of only equilateral
triangles [1] (analogue to hexagonal lattices). This distance is an upper bound
on the maximized minimum distance that can only be approximated by rank-
1 lattices. Equating the area A = 1

n of the basis cell of a rank-1 lattice and
twice the area of such an equilateral triangle of side length l yields

A =
1
n

= 2
(

1
2
· l · h

)
, h = l ·

√
3

2
⇐⇒ l =

√
2

n ·
√

3
. (5)

With the assumption that the generator vector is also the shortest vector it
would su�ce to search the integer generator vector only within a circle of the
radius n · l. However as noted above this is not always the case. Experiments
showed that using a slightly larger upper bound allows one to �nd better
lattices. To perform the approximate search we restrict the search space for
the generator vectors g to a ring around the origin with inner radius r and
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Fig. 1. Idea of the restricted search
space.
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Fig. 2. Di�erence n · l − |g| of the max-
imally possible length l scaled by n and
the shortest generator vector of the ex-
haustive search for n = 4, . . . , 10000.

outer radius R, where r = n · l − k
2 < n · l < n · l + k

2 = R and k is a selected
positive integer (see Figure 1).

By rasterizing this ring on the integer lattice Z2 using e�cient algorithms
from computer graphics [8], all potential generator vectors are enumerated.
However, due to symmetry only one eighth of the ring needs to be rasterized
(see Figure 3). Fixing the ring width k independent of n, the rasterization runs
in O(n · l) = O(

√
n) time. The approximate search then runs in O(

√
n log n)

time, where the minimum distances are computed using the Gaussian basis
reduction.

Restriction of the Search Space

We computed the di�erence n · l− ‖g‖ for n = 4, . . . , 10000, where ‖g‖ is the
length of the shortest generator vectors found by the exhaustive search. Gen-
erator vectors are integer vectors and therefore l has to be scaled by n. Note
that when the generator vector of the MMD lattice is not the shortest vector
the di�erence can be negative. The graph in Figure 2 justi�es the approach
to restrict the search space to a ring of a �xed width. Due to the complexity
of the exhaustive search, the range of n > 10000 has been investigated for
random samples only. An empirically chosen value of k = 6 has proven to be
a reasonable ring width as described now.

Numerical Evidence

For n = 4, . . . , 10000 and k = 6 we now compare the approximate rasterization
search to the exact exhaustive search. In 99.1% (i.e. 9908 out of 9997 cases),
the approximate algorithm �nds the optimal generator vector with respect to
maximized minimum distance. The percentage of lattices for which a generator
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vector coincides with a shortest vector equals 71% (7098 cases), whereas in
28.1% (2810 cases) a generator vector producing a lattice with maximum
possible minimum distance is determined inside the ring with width k even
if the generator vector is not the shortest vector. Otherwise the new search
algorithm yields a maximized minimum distance that is never worse than 90%
of the optimum.

The restricted search always yields the correct results for n being prime.
We showed above that it is likely to also �nd generator vectors for MMD
rank-1 lattices for arbitrary n. Additionally if the best lattice is not found, at
least an acceptable one is found (i.e. one with a minimum distance not worse
than 90% of the optimum). Examples for the di�erent cases are visualized
in Figure 3. The search space is depicted by the light gray squares, which
represent the rasterized region of a ring with radius n · l and width k = 6.
Due to a very simple rasterization algorithm the rasterized region is slightly
larger than required. The light gray circle is of radius n · l, while the black
circle's radius is the maximized minimum distance MMDe determined by the
exhaustive search. The set of generator vectors which result from this exhaus-
tive search algorithm and lie in the displayed range are plotted using hollow
dots. The solid dots belong to the lattice generated by the displayed vector as
one element of the generator vectors resulting from the approximate search
with maximized minimum distance MMDr.

In order to show the improvements of our new algorithm we compare
the best lattice found in Korobov form with minimum distance (MMDk)
and the resulting maximized minimum distance using the approximate search
(MMDr). In Figure 4 the ratio MMDk/MMDr for n = 4, . . . , 10000 is plotted.
As is apparent from the graph the new search yields nearly optimal results
with respect to the search criterion and delivers better results than the Ko-
robov form in most cases. More precisely MMDr ≥ MMDk in 99.1% of the
cases, of which for 6.2% we have MMDr > MMDk, if the MMD rank-1 lattice

(a) L127,(12,1) (b) L134,(12,5) (c) L210,(14,9)

Fig. 3. Illustration of the rasterization search. (a) n = 127, MMDr = MMDe.
The generator vector g = (12, 1) is a shortest vector in the lattice. (b) n = 134,
MMDr = MMDe. g = (12, 5) does not correspond to a shortest vector. (c) n = 210,
MMDr < MMDe.
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cannot be represented in Korobov form, and MMDr = MMDk in 92.9% of the
cases.
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Fig. 4. Ratio MMDk/MMDr for n ∈ [4, 131072).

2.2 Search for MMD Rank-1 Lattice Sequences

Using a �xed n for the number of lattice points is often insu�cient for graphics
applications. For example hierarchical representations of images or progres-
sive sampling need a varying number of sample points. Lattice sequences can
provide this functionality and we examine two approaches in this section how
to construct rank-1 lattice sequences with MMD property.

As de�ned in Section 1, a rank-1 lattice sequence LΦb
g contains a sequence

of rank-1 lattices Lbm,g for m ∈ N0. We search for rank-1 lattice sequences
with maximized minimum distance in the sense that the weighted sum

mmax∑
m=mmin

(dmin(Lbm,g))2bm (6)

is maximized. Scaling the squared minimum distance by bm assigns equal
importance to all lattices of the sequence since the area of a basis cell is 1

bm .

Lattice Sequences based on an Initial MMD Rank-1 Lattice

One way of constructing a MMD rank-1 lattice sequence is by taking a gen-
erator vector g of a MMD rank-1 lattice Lbm,g and using it in Equation (2).
For q ∈ N0 and a �xed m, each set of points {xq·bm , . . . , x(q+1)bm−1} ⊂ LΦb

g

is a copy of Lbm,g shifted by ∆(q) := Φb(q)b−mg [10]. The minimum distance

of all copies is identical, as dmin is shift invariant. For the example of LΦ2
(1,3)

this structural property [9] is depicted in Figure 5. We now consider a two-
dimensional generator vector g = (g1, g2) with gcd(n, g1, g2) = 1. Then all
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∆(0) = (0, 0) ∆(1) = ( 1
16

, 3
16

) ∆(2) = ( 1
32

, 3
32

) ∆(3) = ( 3
32

, 9
32

)

Fig. 5. The shifted lattices L8,(1,3)+∆(q) = L8,(1,3)+Φ2(q)2
−3(1, 3) for q = 0, 1, 2, 3

from the lattice sequence LΦ2
(1,3).

n = 23 n = 24 n = 25 n = 26

Fig. 6. The lattices L2m,(1,3) of the lattice sequence LΦ2
(1,3) started with the initial

MMD rank-1 lattice L8,(1,3).

points of the rank-1 lattice sequence LΦb
g lie on at most nh = g1 + g2 − 1 hy-

perplanes, independent on the number of points. As a consequence, all points
of the previous example LΦ2

(1,3) reside on three hyperplanes (induced by the

generator vector), as illustrated in Figure 6. This means that the generator
vector has to be modi�ed such that the undesirable uniform bound on the
minimum distance induced by the number of hyperplanes is improved.

Considering generator vectors of the form

gi,j := (g1 + i · bm, g2 + j · bm) for i, j ∈ N0,

we have gi,j ≡ g mod bm. As a consequence Lbm,g = Lbm,gi,j
, i.e. the mini-

mum distance remains unchanged for bm points. However, the upper bound
on the number of hyperplanes is increased to nh = g1 + i · bm + g2 + j · bm− 1,
as desired. For example LΦ2

(41,11) with (41, 11) = (1 + 5 · 8, 3 + 1 · 8) does not
restrict points to only three hyperplanes, but for n = 8 points generates the
same rank-1 lattice as LΦ2

(1,3), i.e. L8,(1,3) = L8,(41,11) (compare Figures 6 and

7).
The search procedure is started by selecting both a minimum number of

points bmmin and maximum bmmax . First a search of the previous section is run
to �nd an initial MMD rank-1 lattice generator vector g for bmmin points. Then
the sum of minimum distances (6) is evaluated for each potential generator
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d(3) = 8 = 8 d(4) = 10 < 16 d(5) = 26 < 32 d(6) = 58 < 65

d(7) = 74 < 137 d(8) = 250 < 277 d(9) = 362 < 580 d(10) = 362 < 1160

Fig. 7. Searching an MMD rank-1 lattice sequence for the initial lattice L23,(1,3)

(see Figure 6) and mmax = 7, yields LΦ2
(41,11) with g5,1 = (1 + 5 · 23, 3 + 1 · 23) =

(41, 11). The gray lines show all possible hyperplanes. For each lattice of the rank-1
lattice sequence we compare its minimum distance d(m) := dmin(Lbm,g)2bm to the
maximum minimum distance that can be obtained by a single MMD rank-1 lattice.

vector gi,j in order to �nd the maximum, where the search range is determined
by

g1 + i · bmmin ≤ bmmax ⇒ i ≤ bmmax − g1

bmmin
< bmmax−mmin and

g2 + j · bmmin ≤ bmmax ⇒ j ≤ bmmax − g2

bmmin
< bmmax−mmin .

Due to symmetry, an obvious optimization is to bound the range of j by
bmmax−mmin − i. Again, minimum distances are computed using the Gaussian
basis reduction. An example result of the search is illustrated in Figure 7,
where minimum distances obtained by the rank-1 lattice sequence are com-
pared to the distances that can be obtained by rank-1 lattices alone.

Approximate Search by Restricting the Search Space

In the second approach the search is not based on an initial MMD rank-1
lattice. Instead we choose mmin = 1 and �x a value for mmax, looking for a
generator vector that maximizes Equation (6).

In order to accelerate the search process, the search space can be re-
stricted using the same strategy as in the rasterization search algorithm for
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d(1) = 2 = 2 d(2) = 5 < 9 d(3) = 26 = 26 d(4) = 65 < 85

d(5) = 113 < 261 d(6) = 701 < 810 d(7) = 2117 < 2522

Fig. 8. LΦ3
(47,19) in base b = 3. For each lattice of the rank-1 lattice sequence we

compare its minimum distance d(m) := dmin(Lbm,g)2bm to the maximum minimum
distance that can be obtained by a single MMD rank-1 lattice.

rank-1 lattices (see Section 2.1). Then the search space is the union of the
restricted search spaces for Lbm,g, 1 < m ≤ mmax. In experiments, the re-
stricted search achieved the same results as the exhaustive computer search
for nmax := bmmax ≤ 256 and b = 2, 3, 4, simultaneously reducing the run-time
from O(n2

max log nmax) to O(
√

nmax log nmax).
We compare the two search approaches presented in this section by sum-

ming the minimum distances of the �rst bm points of each sequence

7∑
m=2

d(m) =
7∑

m=2

dmin(Lbm,g)2bm.

Although the second approach is more general than the �rst one, the lattices
produced by the sequence might not necessarily have the maximal possible
minimum distance for the corresponding n = bm points, which is assured at
least for the initial lattice in the �rst approach. Figure 8 shows the resulting
lattice sequence for b = 3 and mmax = 7, while Table 1 shows the results of
the numerical comparison. By de�nition for m = 2 the lattice of the sequence
LΦ3

(82,129) represents an MMD rank-1 lattice, whereas for m = 3 the rank-1

lattice of the sequence LΦ3
(47,19) achieves the largest possible minimum distance

as well.



10 Sabrina Dammertz, Holger Dammertz, and Alexander Keller

m d(m) �rst approach d(m) second approach

2 9 5

3 25 26

4 34 65

5 229 113

6 745 701

7 1033 2117

Σ 2075 3027

Table 1. Comparing the lattice sequences LΦ3
(82,129) and LΦ3

(47,19) with respect to
the minimum distance of the �rst bm points of the lattice sequence for b = 3 and
2 ≤ m ≤ 7. The initial MMD rank-1 lattice for LΦ3

(82,129) is given by L32,(1,3).

3 Search of Anisotropic Rank-1 Lattices to Approximate

Spectra

In many graphics applications the image functions exhibit a strong anisotropic
behavior in their Fourier spectrum. By constructing rank-1 lattices with
knowledge of these functions the image quality can be improved. The Fourier
transform of the Shah function

XLn,g(x) :=
∑
p∈Zs

δ(x−B · p)

over the lattice Ln,g with basis B, where δ(x) is Dirac's delta function, yields
another Shah function over its dual lattice L⊥n,g [6]. This means that we can
describe the spectrum Sn,g of Ln,g by the fundamental Voronoi cell of the
dual lattice L⊥n,g.We characterize the shape of this cell by two parameters,
namely by its orientation −→ω L and by its width wL, which are computed by
means of the basis B⊥ of L⊥n,g. Given a lattice basis B = (b1b2)t, where t

means transposed, the dual basis can be easily determined by B⊥ = (B−1)t.
In order to assure that B⊥ spans the Delaunay triangulation and thus the
Voronoi diagram, the dual basis has to be reduced, for example using the
Gaussian basis reduction. Let

v :=
{

b⊥1 + b⊥2 if b⊥1 · b⊥2 < 0
b⊥2 − b⊥1 otherwise

be the diagonal of the basis cell spanned by b⊥1 and b⊥2 , such that v and b⊥1 or
v and b⊥2 form a valid basis of the dual lattice as well. Then we approximate
the orientation of the fundamental Voronoi cell by

−→ω L := b⊥2 + v =
{

2 · b⊥2 + b⊥1 if b⊥1 · b⊥2 < 0
2 · b⊥2 − b⊥1 otherwise.

(7)

The width wL of Sn,g is de�ned as the length of the shortest basis vector
normalized by the hexagonal bound l, i.e.
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wL =
||b⊥1 ||
l · n

. (8)

Note that l · n also represents an upper bound on the maximized minimum
distance of the dual lattice, as the length of shortest vector in L⊥n,g corresponds
to the length of the shortest vector in Ln,g scaled by n [4].

The spectrum Td,w, according to which we want to search the rank-1 lat-
tice, is speci�ed by its main direction, i.e. orientation, d ∈ R2 and its width
w. The two-dimensional vector d and the scalar w are passed as an input
parameter to the lattice search by an application. The width w takes values
in the range of [0, 1] and represents the measure of desired anisotropy. The
most anisotropic spectrum is denoted by w = 0, whereas w = 1 represents
the isotropic one. Note that we have to allow gi = 0, i = 1, 2 for the genera-
tor vector in order to be able to approximate spectra aligned to axes of the
Cartesian coordinate system.

For n ∈ N the search algorithm steps through all distinct lattices. This
can be realized for example by using an n×n array, where the generator vec-
tors of identical lattices are marked. Given any g ∈ [0, n)2, the set of vectors
yielding identical lattices is {k · g mod n : gcd(n, k) = 1, k = 1, . . . , n − 1}.
After computing a Minkowski-reduced basis of the dual lattice, the orienta-
tion and width of the fundamental Voronoi cell are determined according to
Equations (7) and (8). Then the lattices are sorted with respect to |wL − w|.
For the smallest di�erence we choose the lattice, whose orientation −→ω L best
approximates the main direction d of Td,w. Thereby the similarity

sim =
d · −→ω L

‖d‖ · ‖−→ω L‖

between those two vectors is measured by calculating the cosine of the angle
between −→ω L and d. Figure 9 shows an example for anisotropic rank-1 lattices
having n = 56 points, where the spectrum is speci�ed by d = (cos α, sinα)
with α = 303◦ and the width varies from 0.1 to 1.0 in steps of 0.1. Using the
Gaussian basis reduction for the lattice basis search, the algorithm runs in
O(n2 log n) time.

4 Weighted Norms

So far we considered rank-1 lattices only on the unit square. However, graphics
applications often require arbitrary rectangular regions. Just selecting a corre-
sponding region of the lattice de�ned in the entire real space and scaling it to
the unit square is not an option as this would destroy for example the needed
periodicity and complicate address computations in image applications. We
now show how to extend our approximate search for isotropic and anisotropic
rank-1 lattices to such regions.
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b⊥1

−→ω

d

wL = 0.1, g = (27, 2)

b⊥1

−→ω

d

wL = 0.3, g = (13, 2)

b⊥1

−→ωd

wL = 0.5, g = (13, 1)

b⊥1

−→ω
d

wL = 0.7, g = (8, 7)

b⊥1

−→ω

d

wL = 0.9, g = (5, 7)

b⊥1

−→ω
d

wL = 1.0, g = (7, 4)

Fig. 9. Resulting spectra for a �xed direction d = (cos 303◦, sin 303◦) and width
varying from 0.1 to 1.0.

Fig. 10. Searching on a rectangular domain. Left: MMD rank-1 lattice L512,(4,45)

in a domain of width-to-height ratio x : y = 4 : 1 in world coordinates. Right: The
same lattice in the scaled basis with x : y = 1 : 1. The search region becomes an
ellipse.

All that needs to be done is considering the weighted norm ||Brxi|| in the
de�nition of the minimum distance in Equation (4) instead of the Euclidean
norm where Br describes the transformation of the unit square to the desired
region. Note that as before the distance to the origin has to be computed with
respect to the unit torus.

Approximate Search for MMD rank-1 lattices

For the special case of scaled rectangular domains, i.e. Br = (br
1b

r
2) =

((x, 0)t(0, y)t), the rasterization search can be adapted easily. Therefore the
lattice basis B has to be transformed into world coordinates before computing
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its determinant, i.e. area A. For the �weighted� lattice basis Bw = Br ·B the
area of the basis cell is

A = |det Bw| = |det Br| · |det B| = x · y
n

⇒ l =

√
2 · x · y
n ·
√

3

in analogy to Equation (5).
Since we perform the rasterization directly in the sheared basis, the short-

est vectors lie within an ellipse (see Figure 10). Its axes ax = ((n · l)/x, 0)t

and ay = (0, (n · l)/y)t result from transforming the circle axes ((n · l), 0)t and
(0, (n · l))t into the sheared basis Br of the actual region.

As the rasterization runs in less than O(||ax||+ ||ay||), with ||ax||, ||ay|| ∈
O(
√

n), we still have a run-time complexity of O(
√

n). Finally the Gaussian
basis reduction needs to be adapted to weighted norms in order to compute
the minimum distance. For that purpose the only modi�cation consists in
weighting the initial basis before performing the reduction steps. Therefore
the search algorithm maintains a run-time complexity of O(

√
n log n).

Anisotropic Rank-1 Lattices

Using the algorithm from Section 3 with weighted norms only requires to
transform the desired main direction d ∈ R2 into the sheared basis Br of the
desired domain.

5 Applications in Computer Graphics

The search algorithms from Section 2.1 allow one to �nd suitable generator
vectors for the graphics applications introduced in [3, 4] much faster. Here,
we introduce two new applications of anisotropic rank-1 lattices.

5.1 Anti-Aliasing by Anisotropic Rank-1 Lattices

In graphics applications rank-1 lattices can be used to integrate the image
function over the pixels. By adapting the quadrature rule to the Fourier spec-
trum of the image function in a way that more of the important frequencies
are captured, aliasing artifacts can be reduced. The improved anti-aliasing is
illustrated by a comparison in Figure 11.

Given the algorithm from Section 3, an anisotropic MMD rank-1 lattice
is speci�ed by the main direction d and the width w. We globally assume
maximum anisotropy by �xing w = 0. The main direction d is determined
by projecting the normal of the �rst object intersected by a ray through the
center of a pixel onto the image plane and normalizing the resulting vector.
This way the samples from the anisotropic rank-1 lattice in the pixel become
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Fig. 11. An in�nite checker board rendered with 16 samples for each pixel. The left
image uses the same MMD rank-1 lattice L16,(1,4) for all pixels, while in the right
image an anisotropic MMD rank-1 lattice adapted to the spectrum of each pixel is
used. Clearly some aliases under the horizon become much more attenuated.

isotropic and more uniform, when projected onto the surface seen in the scene
(see Figure 12 on the left). As a consequence the texture is averaged more e�-
ciently, resulting in reduced aliasing. Note that for this argument, we assumed
only one plane perpendicular to the normal seen through a pixel, which is a
useful approximation in many cases.

As the perspective projection does not have an impact on the variance
of the checker board until a certain distance from the camera, anisotropic
rank-1 lattices are used only for those pixels for which the hit point of a ray
through a pixel midpoint and the checker board exceeds a certain distance
to the camera (which is determined experimentally for this special setting).
Otherwise MMD rank-1 lattices are used per pixel.

In Figure 12 on the right, we compared the anisotropic rank-1 lattices
to MMD rank-1 lattices and jittered grid by computing the L2-norm of a
converged reference image to the corresponding test images for an increasing
number of sampling points per pixel. Note that both axes in the error graph
are scaled logarithmically and that the reference image was computed by
applying a jittered grid sampling pattern with 1024 × 1024 samples at each
pixel. We observe that using the anisotropic rank-1 lattice outperforms the
other sampling patterns especially for lower sampling rates. In contrast to
the MMD rank-1 lattices, the error curve of the anisotropic lattices does not
expose a strong oscillation any more.

5.2 Rank-1 Lattice Images and Textures

In [4] the Voronoi diagram of MMD rank-1 lattices was used as an approxima-
tion to hexagonal pixel layout. While the visual quality at the same number of
pixels was superior to classic rectangular layouts, the algorithms were simpler
than for hexagonal layouts.

If now an image, or more speci�cally a texture, exposes an anisotropy,
anisotropic MMD rank-1 lattices can be used to further improve the visual
appearance, i.e. the approximation power. This is illustrated in Figure 13 for
a wood grain texture, which exposes one main direction with large variance.
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Fig. 12. Left: The arrows indicate the pixels and directions for which anisotropic
rank-1 lattices are used. Right: Comparison of the anisotropic rank-1 lattices, to
MMD rank-1 lattices and jittered grid.

The parameters for determining the anisotropic MMD rank-1 lattice are
computed from the structure tensor of each pixel. Without loss of generality
let λ1,i > λ2,i be the eigenvalues of the structure tensor and v1,i and v2,i the
corresponding eigenvectors for each pixel i ∈ [0, xRes · yRes). Then the main
direction d is computed by averaging the eigenvector of the largest eigenvalue
over all pixels. The width

w = 1.0− 1
Amax

·
xRes·yRes∑

i=0

λ1,i

λ2,i

subtracts the normalized texture anisotropy from 1, since 0 means maximum
anisotropy for the search algorithm from Section 3. The normalization con-
stant Amax must be determined experimentally for a set of textures.
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Fig. 14. Error graph showing the di�erent approximation qualities
measured with respect to a reference image.

In Figure 14 isotropic rank-1 lattice textures are compared to anisotropic
ones by means of the L2-error of the test images to a reference solution for
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Fig. 13. Magni�cations of the highlighted squares in the texture on the left repre-
sented on the regular grid, MMD rank-1 lattice, and anisotropic rank-1 lattice by
16384 pixels each. Note that for the anisotropic rank-1 lattice the mean square error
(MSE) to the high resolution reference on the right is about half of the regular and
MMD rank-1 lattice.

an increasing number of lattice points for the source image of Figure 13. As
can be seen from the error graph, the anisotropic rank-1 lattice textures are
superior, as they are able to capture even small details, which are lost in the
isotropic case.

6 Conclusions

We introduced algorithms that e�ciently search for generator vectors of rank-1
lattices and sequences with important new applications in computer graphics.
Useful results were obtained for both image synthesis and representation.
Future research will concentrate on applications of rank-1 lattice sequences
and the fast search of generator vectors for the anisotropic case.

Acknowledgement. The authors would like to thank mental images GmbH for sup-
port and funding of this research.
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