
Textures on Rank-1 Lattices

S. Dammertz1 and H. Dammertz1 and A. Keller2 and H. P. A. Lensch3

1(sabrina, holger).dammertz@uni-ulm.de Ulm University, Germany
2alex@mental.com, mental images GmbH, Germany

3hendrik.lensch@uni-ulm.de Ulm University, Germany

Figure 1: Comparison of standard textures with rank-1 lattice textures where each image contains the
same number of picture elements (64× 64). Rank-1 lattices can very closely approximate the hexagonal
lattice. This reduces aliasing and results, among other things, in an improved reproduction of non axis-
parallel lines as can be seen clearly in the middle image.

Abstract

Storing textures on orthogonal tensor product lattices is pre-
dominant in computer graphics, although it is known that their
sampling efficiency is not optimal. In two dimensions, the
hexagonal lattice provides the maximum sampling efficiency.
However, handling these lattices is difficult, because they are
not able to tile an arbitrary rectangular region and have an
irrational basis. By storing textures on rank-1 lattices, we re-
solve both problems: Rank-1 lattices can closely approximate
hexagonal lattices, while all coordinates of the lattice points
remain integer. At identical memory footprint texture quality
is improved as compared to traditional orthogonal tensor prod-
uct lattices due to the higher sampling efficiency. We introduce
the basic theory of rank-1 lattice textures and present an algo-
rithmic framework which easily can be integrated into existing
off-line and real-time rendering systems.

1. Introduction

The traditional orthogonal equidistant lattice with its square
texture elements is far from optimal for storing and displaying
general images. In the context of sampling for signal processing
this has been recognized already very early by Petersen et al.
[PM62]. They quantify the quality of a sampling lattice by its
sampling efficiency

η :=
R

P
,

where R is the area of the in-circle of the fundamental Voronoi
cell and P denotes the volume of the fundamental Voronoi cell
itself in the dual lattice. The sampling efficiency measures how
well the sampling points of a given lattice capture the isotropic
spectrum of a band-limited function. In this context a sampling
efficiency of 100% would allow to perfectly represent the band-
limited function. Petersen et al. derive the optimal sampling
lattices for up to 8 dimensions. While in 2D the optimal lattice
is the well known hexagonal lattice with η = 90.7%, the 2D
square lattice has a sampling efficiency of only η = 78.5%.

Hexagonal sampling lattices have been investigated for more
than 40 years, giving rise to the field of hexagonal image pro-
cessing. With applications in medicine, cameras, or hexagonal
displays, hexagonal image processing (HIP) is an active field in

0

1

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

b1

b2

g

Figure 2: Generating a rank-1 lattice with n = 8 points and
the generator vector g = (1, 3). For each image the
multiple { i

8
· g}1, i = 1, 6, 7 of the generator vector

g is plotted. The rightmost image depicts the whole
lattice L8,(1,3) including the Voronoi cells and the De-
launay triangulation.

computer vision. Middleton et al. [MS05] give a comprehen-
sive survey of research on this topic and present a framework for
hexagonal image processing based on hierarchical aggregates.

Both, square and hexagonal texture elements have the prop-
erty of tiling the plane. Thus hexagonally and square sam-
pled images can be considered as a periodic monohedral tiling
[MS05]. These tiles represent the Voronoi cells of the sampling
points. The basis of a hexagonal lattice is BH = ((1, 0)>, 0.5 ·
(1,

√
3)>), with the first basis vector being parallel to the x-axis

and the second one being rotated by 60◦ from the first. Due to
the irrational basis the points of a hexagonal lattice cannot be
represented exactly on a computer and it is impossible to tile
the unit square. Generally, for both the square and hexagonal
lattice there are numbers n of texture elements, for which the
unit square I = [0, 1)2 cannot be tiled, e.g. for n being prime
numbers.

In this paper we introduce rank-1 lattices for texturing with the
following advantages:

• An arbitrary number of texture elements can be used in
contrast to square and hexagonal lattices where the num-
ber of texture elements is always a product of x- and y-
resolution.

• All computations on rank-1 textures can be performed us-
ing fast integer arithmetic.

1

• The new texture scheme provides a close rational approx-
imation to hexagonal textures for any resolution (even
power of 2). We also show the equivalence of hexagonal
and rank-1 textures for a subset of rank-1 lattices.

• We provide the necessary theory and algorithms to effi-
ciently implement rank-1 textures into any rendering sys-
tem.

Figure 2 conceptually illustrates the construction of a rank-1
lattice from a single generator vector (hence rank 1). Looking
at the geometry of such lattices, a rank-1 lattice tiles the plane
by its Delaunay triangulation and Voronoi diagram. Thus we
can structure the pixel layout by the Voronoi cells of a rank-1
lattice. Contrary to the hexagonal and square lattice, rank-1
lattices perfectly tile the unit square I = [0, 1)2 periodically for
any number n of points. Therefore more flexibility is offered
with respect to the shape of the image domain and the number
of pixels can be chosen freely. As shown in Figure 3 for n = 56,
rank-1 lattices can be chosen such that they approximate the
hexagonal grid. This results in a sampling efficiency close to the
optimum [MS05, PM62]. Compared to the traditional square
lattice a better angular resolution is achieved as there are more
nearest neighbors, i.e. adjacent lattice cells.

2. Previous Work

A lot of research has been performed with respect to generating
hexagonally sampled images. For example [MS05, VVPL02,
CVF08] address the problem of resampling between orthogonal
and hexagonal images. However, hexagonal images have not
been used as textures in rendering so far.

In three dimensions, non-Cartesian lattices have been studied
with respect to the visualization of volumetric data. [EVM08]
use box splines in order to efficiently reconstruct volumetric
data sampled on the Body Centered Cubic (BCC) lattice, tak-
ing advantage of its optimal spectral sphere packing property.
In [NM02], 4D BCC grids are examined in the context of vi-
sualizing 4D data sets. [Csb05] proposes a novel high-quality
reconstruction scheme to reconstruct volumetric data sampled
on an optimal BCC grid.

Rank-1 lattice rules were first proposed by Korobov [Kor59]
and have been widely examined since then [Nie92, HW81].
Sloan and Joe [SJ94] give a mathematical survey on rank-1 lat-
tices. The basic theory of 2D rank-1 lattices with maximized
sampling efficiency is described in [DK08]. In this paper the
use of rank-1 lattices for anti-aliasing is analyzed and the idea
of using rank-1 lattices for storage of images and building dis-
plays is first mentioned without further investigation. Here we
develop the necessary data-layout, neighborhood computation
and addressing scheme for an efficient use of rank-1 lattices for
texturing. Additionally, we provide numerical evidence for the
improved texturing quality.

3. Rank-1 Lattices

In this section we give a theoretical overview of rank-1 lattices
and how to approximate the hexagonal lattice.

The points xi of an s-dimensional rank-1 lattice [Nie92, SJ94]
in the unit cube Is = [0, 1)s

Ln,g :=

xi :=

i

n
g

ff
1

˛̨̨
i = 0, . . . , n− 1

ff
(1)

are generated by using one suitable integer generator vector
g ∈ Ns for a fixed number n ∈ N of points, where {x}1 denotes
the fractional part of a vector x, i.e. {x}1 := x mod 1. The mod

1 operation restricts the lattice to the unit square resulting in
a one-periodic pattern. In two dimensions the generator vector
corresponds to g = (g1, g2) with g1, g2 ∈ {0, . . . , n − 1} due to
the modulo operation.

Generally, a lattice L in Rs is a discrete subset of Rs which is
closed under addition and subtraction and consequently always
contains the origin. Lattices can be classified by their rank r,
which corresponds to the minimum number of vectors being
necessary to generate L [SJ94]. Examples for lattices of rank 2
are the well known square and hexagonal lattice, for which the
dimension coincides with the rank. Contrary, an s-dimensional
rank-1 lattice is defined by only one generator vector g.

Figure 2 visualizes the geometric properties of rank-1 lat-
tices. The solid lines depict the Voronoi diagram. Each cell
is generated by a lattice point and contains the points of the
unit torus, which are closer to this lattice point than to any
other. In addition, the lattice points are the centroids of the
Voronoi cells. The dashed lines represent the dual graph, i.e.
the Delaunay tessellation, which can be generated by dividing
the fundamental parallelepiped along its shorter diagonal.

Note that even though for easier explanation we only show
rank-1 lattices on square regions in this paper, they are not
restricted to the unit square, but can be constructed for any
rectangular region for any number of lattice points by means of
weighted norms. This is illustrated in Figure 4.

3.1. Lattice Bases

The basis of a lattice L is an s × s matrix B = (b1, . . . ,bs) if
every point in the lattice can be generated by an integer linear
combination of the basis vectors b1, . . . ,bs.

L = {x = B · l : l ∈ Zs} (2)

The number s of basis vectors is said to be the dimension of L.
The basis vectors and the origin span the so-called fundamental
parallelepiped which induces a partition of Rs into lattice cells
of the same volume and orientation, as illustrated by the red
parallelogram Λ in the rightmost image of Figure 2.

Λ = Λ(b1, . . . ,bs)

= {γ1b1 + . . . + γsbs : 0 ≤ γi ≤ 1, 1 ≤ i ≤ s}, (3)

A lattice has infinitely many different bases which all share the
same determinant, i.e. the volume of the fundamental paral-
lelepiped. This means that det(L) := | det(B)| is invariant for
each lattice L, therefore being called the lattice determinant.
Hence, a matrix B of linear independent vectors only represents
a valid basis for L if its determinant equals det(L) [Kan87].
For example the vectors (b1,b2), (b1,g), as well as (g,b2)
or (g + b2,b2) are bases of the rank-1 lattice plotted in the
rightmost image of Figure 2. Contrary, the vectors (b1, 2 · b2)
do not constitute a basis of L8,(1,3). In the following we will
use a Minkowski reduced basis, as visualized by the vectors
b1 and b2 in Figure 2. Such a basis contains the s shortest
linearly independent vectors and can be computed by either a
so-called basis reduction or a linear search over all lattice points
[Kan87, AG85, Hel85].

3.2. Approximating the Hexagonal Lattice

We now investigate how to choose a 2D generator vector to
approximate the hexagonal structure by a rank-1 lattice. This
is related to densest sphere packing in two dimensions (cir-
cle packing) which has been studied for a long time [CSB87,
Mar03, Sie89] and is connected to constructing lattices with
longest possible shortest nonzero vectors for a given lattice den-
sity det(L). This is equivalent to maximizing the minimum

2

1

1

square, η = 78.5%

1

1

g =
` 3
11

´
, η = 44.9%

1

1

g =
`1
9

´
, η = 56.1%

1

1

g =
` 1
21

´
, η = 81.3%

1

1

g =
`4
7

´
, η = 89.8%

1

1

hex., η = 90.7%

Figure 3: In the sequence of rank-1 lattices L56,g the sampling efficiency increases from left to right. For comparison the square
lattice is added to the left, whereas the hexagonal lattice is plotted to the right of the image sequence, each having
n = 7 · 8 = 56 points. For this number of points both the square and hexagonal lattice do not tile the unit square.

g g

Figure 4: Rank-1 lattices on a square and non-square region,
having the same number of n = 30 lattice points.
Note that the left lattice is not a scaled version of
the right one, as the almost hexagonal Voronoi cells
show.

mutual distance in the sampling pattern using the L2 norm on
the unit torus. In computer graphics this concept appears for
example in Lloyd’s relaxation algorithm [Llo82], which yields
sampling patterns with blue noise properties when applied to
an initially random point set.

Similarly we can select rank-1 lattice generator vectors such
that the minimum distance in the lattice is maximized: From
all possible generator vectors g = (g1, g2) ∈ {1, . . . , n − 1}2

for given n, we choose one for which the corresponding rank-1
lattice Ln,g has the maximum minimum distance [DK08]. As
illustrated in the two rightmost images of Figure 3, these so-
called maximized minimum distance rank-1 lattices closely ap-
proximate the hexagonal lattice. A direct construction scheme
for maximized minimum distance lattices is only known for
n = 2FmMm points [CR97] with FM and Mm given by the re-

lation
“

Fm
Mm

”
m=1...∞

= 2
1
, 5

3
, 7

4
, 19

11
, . . ., which is the sequence of

convergents of the continued fraction equal to
√

3. In this con-
text a convergent is a rational approximation of the irrational
number, which is represented by the continued fraction, with
the odd-numbered ones being larger and the even-numbered
ones being smaller than this number. In Appendix B we prove
the following theorem:

Theorem 1 Using a hexagonal lattice for texturing on [0, 1)2

with n = 2FmMm points is equivalent to using the maximized
minimum distance rank-1 lattice with n = 2FmMm points.

For other n the generator vector can be determined by computer
search [DK08] to maximize the sampling efficiency.

Table 1 lists the lattice parameters and the sampling effi-
ciency for some maximized minimum distance lattices which are
used in the results section. The sampling efficiency for those
lattices is very close to the sampling efficiency of the hexago-
nal lattice. Thus maximized minimum lattices can hardly be
visually distinguished from the hexagonal lattice.

4. Rank-1 Lattice Texture Storage and Access

Contrary to the square lattice the points of a rank-1 lattice
cannot easily be addressed by 2-dimensional integer Cartesian
coordinates, since they are not aligned in two orthogonal direc-
tions. In this section we show how data on a rank-1 lattice can

n g indexb1 indexb2 η

16384 (137, 13) 2511 2512 90.4%
30976 (188, 17) 1 1813 90.3%
50176 (211, 116) 4756 4757 90.2%
135424 (13, 395) 52112 52113 90.6%
147456 (413, 27) 54627 54626 90.4%
160000 (430, 17) 65860 65861 90.5%
262144 (1, 1990) 527 395 90.3%

Table 1: Lattice parameters for some maximized minimum dis-
tance lattices used in the results section, including the
indices of the basis vectors indexb1 and indexb2 , and
the sampling efficiency.

be stored as a linear (1D) array and how to compute the ad-
dress from 2D texture coordinates. In the following we perform
all computations on [0, n)2 by multiplying the original defini-
tion of Equation 1 by n. This allows computations to use only
integer arithmetic.

In order to store a complete rank-1 lattice texture we need
the number of texture elements n, a generator vector g and the
corresponding Minkowski reduced basis along with the indices
of the basis vectors being necessary for address computations.
These indices can be acquired during the linear search over all
lattice points in the process of computing the lattice basis. The
image data is organized as a linear array of size 3 ·n (RGB color
model). Exploiting the property that every lattice point xi can
be generated by a single generator vector g allows for a very
simple addressing scheme. As

xi = {i · g}n, {·}n := · mod n

is uniquely defined by i, this index can be used for accessing
the data array.

4.1. Nearest Neighbor Look-Up

The simplest texture look-up strategy uses the color of the tex-
ture element closest to the texture coordinate. This means to
compute the nearest lattice point to (u, v) ∈ [0, 1)2 in Carte-
sian coordinates. For this purpose the texture coordinate (u, v)
has to be transformed into the lattice basis B, yielding the lat-
tice coordinates (s, t) = B−1(u, v)T . Then (d1, d2) = bs, tc is
the anchor point of the lattice cell induced by the fundamental
parallelepiped (in lattice coordinates) in which the point (u, v)
lies in [0, 1)2. The nearest lattice point to (u, v) is contained in
the set M = {(d1, d2), (d1 + 1, d2), (d1, d2 + 1), (d1 + 1, d2 + 1)}
representing the vertices of the lattice cell. Hence it results
as the vertex v ∈ M with the shortest Euclidean distance to
(u, v). Note that the distance computation has to be performed
in the Cartesian coordinate system, as the Voronoi cell is dis-
torted in the rank-1 lattice coordinate system. Since the lattice
coordinates of v are known, its index can simply be computed
according to the addressing scheme described in the next sec-
tion.

3

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

b1

b2

Figure 5: Example for computing the index of an arbitrary lat-
tice point for the lattice L56,(4,7) with indexb1 = 1
and indexb2 = 16.

4.2. Address Computation

Let B = (b1,b2) be a Minkowski-reduced basis of the lattice
Ln,g and let k = indexb1 and l = indexb2 be the indices of the
lattice points corresponding to b1 and b2. Given any lattice
point xi, the first step in computing its point index i consists
in transforming xi into the lattice basis, i.e. its coordinates
xi,B = (s, t) in the lattice basis have to be computed, such that
xi can be expressed as

xi = s · b1 + t · b2, s, t ∈ Z.

Then the index i of a lattice point xi can be computed according
to the following theorem.

Theorem 2 Let xi,B = (s, t) be the representation of the lat-
tice point xi in the Minkowski reduced basis B of Ln,g and let
k = indexb1 and l = indexb2 be the indices of the basis vectors
b1 and b2. Then the index i of xi results as

i = {s · k + t · l}n

The proof can be found in Appendix A.

Figure 5 illustrates the address computation for the lattice
L56,(4,7) with the basis ((4, 7)T , (8, 0)T) and the base indices
k = 1, l = 16. Consider the lattice point x = (4, 21) = 3 ·
b1 + (−1) · b2. Then i = {3 · 1 + (−1) · 16}56 = {−13}56 = 43.
Similarly, for the point x = (52, 35) we have x = 5 ·b1 + 4 ·b2,
yielding i = {5 · 1 + 4 · 16}56 = {69}56 = 13. x43 and x13 are
highlighted in Figure 5.

Neighborhood Computation. The indices of neighboring lat-
tice points are simply computed by addition or subtraction of
the indices k, l and m = {l − k}n modulo n, where m cor-
responds to the index of the vector b2 − b1. This means
that the neighborhood of a lattice point xi is defined by the
set of indices N(i) = {i, {i + k}n, {i + l}n, {i + m}n, {i −
k}n, {i − l}n, {i − m}n}. These are the six closest neighbor-
ing lattice points and form a hexagonal structure. For exam-
ple N(35) = {35, 36, 51, 50, 34, 19, 20} with k = 1, l = 16 and
m = {16− 1}56 = 15.

5. Implementation

Here we provide the necessary details to integrate the rank-1
lattice textures into a rendering system.

5.1. Linear Interpolation

For texture magnification some form of interpolation is needed.
This is also an important issue in real-time applications where
textures are often only available in lower resolutions. As for
the square lattice there are several possibilities regarding tex-
ture interpolation. Additionally to the commonly used bilinear
interpolation, the geometric structure of rank-1 lattices also im-
plies interpolation on the Delaunay triangles. In the following
we describe both interpolation methods.

Bilinear Interpolation on Lattice Cells Induced by the Funda-
mental Parallelepiped: A bilinear interpolation is performed
on the lattice cell xi + Λ (see Equation 3) in which the texture
coordinate lies. The anchor point of the lattice cell (in lattice
coordinates) is given by (d1, d1) = bs, tc, with (s, t) represent-
ing the lattice coordinates of (u, v). Hence the parallelepiped is
spanned by the vertices {(d1, d2), (d1 + 1, d2), (d1, d2 + 1), (d1 +
1, d2 + 1)} and the colors of the associated r1-texels are inter-
polated.

Barycentric Interpolation on Delaunay Triangle: After the
lattice cell xi + Λ in which (u, v) lies has been determined,
the texel colors of both Delaunay triangles are weighted using
barycentric interpolation. That way the triangle in which the
texture coordinate lies is detected automatically. This means
that the texture coordinate is located in that triangle for which
the sum of the barycentric coordinates is less or equal to one
and the coordinates themselves are greater or equal to zero.

Nearest neighbor. Bilinear. Barycentric.

Figure 6: Visual comparison of texture look-up schemes on
rank-1 lattices.

Comparison. Figure 6 compares close-ups of the nearest neigh-
bor look-up and the two linear interpolation methods. While
parallelepipeds become visible in the case of the bilinear in-
terpolation, the Delaunay triangles appear in the barycentric
interpolation scheme. These structures only become visible
for significant magnification. The bilinear interpolation needs
four array accesses while the barycentric interpolation only uses
three values. It is also possible to use the higher order interpo-
lation methods defined on lattices.

5.2. Tiling and Multi-Resolution

In order to use large textures efficiently it is necessary to sup-
port tiling and cached access. Peachy [Pea90] proposed the
textures on demand (TOD) approach, a technique designed to
structure and efficiently access large amounts of stored texture
data such that the I/O and CPU cost of access is minimized.
The key elements of the system are texture tiles (i.e. the texture
is tiled in square units adapted to fixed I/O size) and prefiltered
textures provided by means of resolution sets.

4

Figure 7: Tiled rank-1 lattice r-set with [S0, T0] = [4, 4] and
Ltile

2048,(31,39). The rank-1 lattice r-set thus consists
of the following tiled images [4, 4]n, [4, 2]n, [4, 1]n,
[2, 4]n, [1, 4]n, [2, 2,]n, [2, 1]n, [1, 2]n, [1, 1]n, n =
2048.

Due to their periodicity rank-1 lattices are suited very well to
tiled texture layout. Tiled rank-1 lattice resolution sets (rank-1
lattice r-sets) are built following the example of [Pea90] and by
taking advantage of the rank-1 lattice structure. The tile size n,
i.e. number of lattice points per tile, can be chosen freely, and
thus is independent of source image resolution. For example n
can always be chosen as any integer power of 2, as a rank-1
lattice image can be generated for any target resolution with
arbitrary width-to-height ratio. This is not always possible for
images on square lattices, where the resolution is given as the
product of the x- and y-resolution. A tiled image on a rank-1
lattice is composed of S×T tiles, denoted by [S, T]n. Therefore,
the image resolution corresponds to S · T · n.

The size of the rank-1 lattice r-set is determined by the num-
ber of tiles [S0, T0]n in the highest resolution. The resolution
of the images in the rank-1 lattice r-set is set to be [S, T] where
S and T are integers with S0 ≥ S ≥ 0 and T0 ≥ T ≥ 0.
One possibility to define a complete rank-1 lattice r-set is to
demand the rank-1 lattice r-set to consist of all downsampled
versions of the source image, where the parameters S and T
are determined by consecutive integer bisection so that there
are blog(S0) + 1c × blog(T0) + 1c elements in the rank-1 lattice
r-set. An example for a complete rank-1 lattice r-set according
to this scheme is shown in Figure 7. If S0 and T0 are a power
of 2 the storage cost for a complete rank-1 lattice r-set can be
computed in the same way as in [Pea90] and therefore is at
most four times the storage cost of the original image [S0, T0].

The TOD implementation based on rank-1 lattices princi-
pally follows the structure of [Pea90]. The only difference con-
sists in the rank-1 lattice r-set member identification, which is
performed in two steps. At first we determine the rank-1 lattice
r-set members satisfying the width-to-height ratio of the texture
region (swidth, twidth) with center (s, t) of which the renderer re-
quests a filtered value. Among those candidates we select the
one with 1

n·S·T ≥ swidth · twidth, i.e. we choose the resolution

for which the pixel area corresponds to the area of the required
texture region. Given a suitable member of the rank-1 lattice
r-set, the tile number, which is necessary to build the tile key,
is obtained by bs ·Sc, bt ·T c. In order to fulfill the texture pixel
demand of the renderer the tile itself is indexed as described
in Section 4.1. The use of rank-1 lattices allows for a much
more flexible and easier implementation of a TOD system than
possible with hexagonal lattices.

5.3. Acquisition and Resampling

Similar to hexagonally sampled images there are two methods
to acquire images on rank-1 lattices. The first one is to use spe-
cialized hardware for image acquisition, (in [MS05] a survey is
given in the context of hexagonal sensors, also being apparent
in medical imaging and remote sensing), but up to now there
exists no rank-1 lattice hardware like displays or acquisition de-
vices. The second approach works by using software conversion
of regularly acquired images. Converting an image represented
in one lattice to another lattice representation is called resam-
pling. The typical procedure is to first reconstruct a continuous
image from the original samples by using an interpolation func-
tion. This reconstructed image is then resampled with the new
lattice. In an implementation reconstruction and resampling
are usually combined in a single step.

Middleton et al. generate hexagonally sampled images ac-
cording to this interpolation scheme and compare nearest neigh-
bor, bilinear and bicubic interpolation [MS05]. They conclude
that a bilinear filter kernel is sufficient for the purpose of gen-
erating hexagonally sampled images when the source material
has a similar resolution to the target lattice. In [VVPL02] the
authors propose an algorithm for image resampling between
orthogonal and hexagonal images with similar sampling res-
olutions, which is based on the least squares approach, thus
minimizing loss of information by incorporating a spline trans-
form. [CVF08] present a new grid conversion approach in order
to resample between hexagonal and Cartesian lattices with the
same sampling density. This method allows for recovering the
initial data exactly, when the same algorithm is applied for the
converse operation. All these methods can be directly applied
to resampling on rank-1 lattices when using the associated basis
vectors.

To compute rank-1 lattice textures for the experiments in
the result section we have chosen the very simple generation
approach of downsampling a very high resolution source image
to a rank-1 lattice image of maximal 1

16
of the source image res-

olution. This corresponds to the “box-filter” interpolation and
therefore facilitates the comparison of rank-1 to square lattice
textures, since both kinds of textures are computed using the
same algorithm.

5.4. Optimizations

The structure of rank-1 lattices allows for further optimizations.
The number of lattice points can be chosen to fit for example
the caching structure of the target system. The optimal size is
usually a power of 2. Having n = 2K allows then to additionally
replace the costly modulo operation in the lattice computations
by a simple binary AND.

Another optimization is to use only rank-1 lattices in Ko-
robov form. Korobov lattices Ln,a are a special class of rank-
1-lattices. In two dimensions, their generator vector has the
form g = (1, a), thus being uniquely determined by the tuple
(n, a). While this restricts the possible choice of generator vec-
tors, maximized minimum distance rank-1 lattices can always
be represented in Korobov form for n being a power of 2. Now

5

the x-coordinate of each lattice points xi = i · gn is directly the
index i.

For a given lattice L there exists more than one generator
vector g producing the same lattice. For n = 2k there are 2k−1

different g for the identical lattice. As the generator vector is
responsible for the data layout in the texture array this allows
for some freedom in choosing this layout. For example it can
be optimized for higher locality for filtered texture access.

5.5. GLSL Example

The concept of rank-1 lattice textures can be used in real time
rendering using OpenGL or DirectX for example. Therefore,
the pixel shaders used in the rendering engine have to be ex-
tended by the addressing scheme from Section 4.1. A GLSL
example for rank-1 texture access in Korobov form is given be-
low. This code is written to illustrate an implementation and
could be further optimized. In many shaders the memory ac-
cess is the bottleneck and the additional address computation
can be neglected. For n = 2k the computations are even more
simplified and an efficient hardware implementation would be
possible.

varying vec4 uv ; // 2d t e x t u r e c oo r d i na t e
uniform sampler1D r1data ; // image on the rank−1 l a t t i c e
uniform vec4 L ; // l a t t i c e parameters (n,− ,a , d)
uniform vec4 b ; // the tow b a s i s v e c t o r s f o r L

void main (void) {
// Pro j e c t uv i n t o l a t t i c e b a s i s
vec2 f t = f l o o r (vec2 (uv . x ∗ b . q − uv . y ∗ b . p ,

uv . y ∗ b . s − uv . x ∗ b . t)∗L .w) ;

// 4 i n d i c e s o f t h e 4 corner p o i n t s
vec4 idx = mod(vec4 (f t . x∗b . s+f t . y∗b . p ,

(f t . x+1.0)∗b . s+f t . y∗b . p ,
(f t . x+1.0)∗b . s+(f t . y+1.0)∗b . p ,
f t . x∗b . s+(f t . y+1.0)∗b . p) , L . x) ;

// corner p o i n t s in Car t e s i an c o o r d i n a t e s
vec4 px = idx /L . x ;
vec4 py = mod((idx∗L . z)/L . x , 1 . 0) ;

// squared d i s t a n c e to t h e 2d t e x t u r e c oo r d i na t e
vec4 dp = (px−uv . x)∗ (px−uv . x) + (py−uv . y)∗ (py−uv . y) ;

// g e t t h e index based on the h o r i z o n t a l minimum mm;
f loat mm = min(min (dp . x , dp . y) , min (dp . z , dp .w)) ;
f loat i = (mm==dp . y)? idx . y :

((mm==dp . z)? idx . z : ((mm==dp .w)? idx .w: idx . x)) ;

g l FragColor = texture1D (r1data , i) ;
}

6. Results

We have implemented textures on rank-1 lattices in a ray trac-
ing system and compare them both visually and numerically to
textures using square pixels. For the numerical comparison we
use the L2-norm, which has been shown to yield similar results
as visually motivated error metrics [Edw07].

To show the advantage of these textures compared to square
lattices we use four different textures at different resolutions.
The rendering system creates high dynamic range images and
the comparison computes the mean square error between the
reference image and the downsampled texture images. The ref-
erence image was computed using 1024 random samples per
pixel at a resolution of 512×512 pixels (using a high resolution
texture on the square lattice). The comparison images were
computed with 128 random samples per pixel.

The resolution of the source image was 2048 × 2048 and we
vary the target resolution from 128× 128 to 512× 512 in steps
of 16×16. The target texture is always a downsampled version
of the source image using a box filter in both cases. The rank-
1 lattice texture contains exactly the same number of points
as the square lattice texture. For a direct visual comparison
see Figure 1, which contains example textures for n = 64× 64

texture elements. Figure 8 shows the results of the numerical
comparison. Except for the checker board texture, rank-1 lat-
tice textures consistently outperform the square lattice textures
for any resolution as expected due to the increased sampling
efficiency. The checker board is the worst-case comparison for
maximized minimum distance rank-1 lattice textures to square
lattices as the checker board itself can be perfectly represented
by a square lattice. Nevertheless, the rank-1 lattice shows a
consistent behavior and outperforms the square lattice when
the resampled resolution is not a divider of the source resolu-
tion.

The addressing on rank-1 lattices is slightly more expensive
than the addressing of square lattice textures. In our rendering
system the performance drop was about 5% for all tested scenes.
Since these scenes contain only simple geometry and lighting
calculations the relative performance cost is even less when a
more complex scene is rendered.

Using rank-1 lattices for texture storage non-axis aligned
structures are visually more pleasing when the textures are
magnified and due to the good isotropic properties of MMD
rank-1 lattices the quality does not depend largely on the ori-
entation of the basis vectors. Nevertheless the basis vectors
define the preferred directions for straight lines as in any lat-
tice. For texture minification our numerical results clearly show
the improved sampling efficiency over regular lattices.

7. Conclusions and Future Work

We have presented a new image and texture representation,
which easily can be integrated in ray tracing and real-time ren-
dering systems. For that purpose we have introduced an ad-
dressing scheme based on the lattice point indices, as apparent
in the rank-1 lattice definition. Thereby the natural structure
of rank-1 lattices is exploited. The periodicity of rank-1 lattice
allows for a simple tiled image representation, with the number
n of lattice points per tile being independent of the original
image resolution. Therefore n always can be chosen freely, ac-
cording to the application need, as a prime number or a power
of 2 for example. Note that even though most of the examples
were on square regions maximized minimum distance rank-1
lattices can be constructed for any aspect ratio and thus used
for non-square textures as well without changing any of the
computations.

Thanks to a higher sampling efficiency rank-1 lattice images
provide a better image quality than images on the square lat-
tice at same storage cost. In fact, the sampling efficiency of
maximized minimum distance rank-1 lattices very closely ap-
proximates the one of the hexagonal lattice. We showed that
for a subset of the rank-1 lattices they are in fact equal to the
hexagonal lattice for texturing.

Using the proposed addressing scheme neighboring lattice
points are not necessarily neighbors in the image array on disk,
which can influence cache performance. In Section 5.4 we al-
ready indicated beneficial choices of generator vectors, however,
an investigation with respect to cache performance still needs
to be performed.

While for general isotropic textures the rank-1 lattices out-
perform the traditional square lattice, textures containing
mostly vertical and horizontal lines can not be represented
smoothly. In this case the rendering system should allow for
traditional texturing. We have not yet investigated embedded
lattices that would allow for classical image pyramids. Thus
our multiresolution textures need to be always computed from
the full resolution source image.

As rank-1 lattices are not restricted to the isotropic spectrum,
they are also able to catch anisotropic structures by choice of

6

 6.8

 6.9

 7

 7.1

 7.2

 7.3

 7.4

 7.5

 7.6

 150 200 250 300 350 400 450 500

M
e

a
n

-S
q

u
a

re
 E

rr
o

r
*

1
0

e
4

Resolution

Square Lattice
Rank-1 Lattice

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 150 200 250 300 350 400 450 500

M
e

a
n

-S
q

u
a

re
 E

rr
o

r
*

1
0

e
4

Resolution

Square Lattice
Rank-1 Lattice

 6.6

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 8.6

 150 200 250 300 350 400 450 500

M
e

a
n

-S
q

u
a

re
 E

rr
o

r
*

1
0

e
4

Resolution

Square Lattice
Rank-1 Lattice

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 150 200 250 300 350 400 450 500

M
e

a
n

-S
q

u
a

re
 E

rr
o

r
*

1
0

e
4

Resolution

Square Lattice
Rank-1 Lattice

Salad Sign Cactus Checker

Figure 8: Results of the comparison of square lattice textures to rank-1 lattice textures. The top row shows the reference images
and the bottom row the scaled mean square error at different resolutions.

a different generator vector, which could be taken advantage of
for anisotropic textures. In the future we would like to study
texture synthesis based on Fourier transform and the implemen-
tation of image processing algorithms, such as edge detection,
using the rank-1 texture framework.

Acknowledgements

The first two authors would like to thank mental images GmbH
for funding and support of this work. This work has been par-
tially funded by the DFG Emmy Noether fellowship (Le 1341/1-
1).

A. Proof for the rank-1 lattice addressing scheme.

Due to the periodicity of the lattice

b1,j =

{k · gj}n if {k · gj}n ≤ n− {k · gj}n

{k · gj}n − n otherwise
(4)

b2,j =

{l · gj}n if {l · gj}n ≤ n− {l · gj}n

{l · gj}n − n otherwise
(5)

holds for the basis vectors for j ∈ {1, 2}. We first consider the
case for {k · gj}n ≤ n − {k · gj}n and {l · gj}n ≤ n − {l · gj}n

in equations (4) and (5). Then for the basis vectors b1 and b2

we have

b1 = xk = {k · g}n (6)

b2 = xl = {l · g}n. (7)

Writing xi as a linear combination of the basis vectors and
inserting equations (6) and (7) for b1 and b2 yields

xi = (s · b1 + t · b2) = {s · xk + t · xl}n

= {s · {k · g}n + t · {l · g}n}n (8)

= {s · k · g + t · l · g}n

= {(s · k + t · l) · g}n = {{(s · k + t · l)}n · {g}n}n,

where we use the rules from modular arithmetic that {a+b}n =
{{a}n + {b}n}n and {a · b}n = {{a}n · {b}n}n [Ste01]. Finally,
by comparison of coefficients we have i = {s · k + t · l}n, as
xi = {i · g}n. Now let

b1 = {k · g}n − n and b2 = {l · g}n − n. (9)

In this case

xi · n = (s · b1 + t · b2)

= {s · ({k · g}n − n) + t · ({l · g}n − n)}n

= {s · {k · g}n − s · n + t · {l · g}n − t · n}n (10)

= {s · {k · g}n + t · {l · g}n}n. (11)

As −s ·n mod n = 0 and −t ·n mod n = 0, equation (10) yields
in equation (11), which already has been covered in equation
(8).

The remaining two cases for

b1 = {k · g}n, b2 = {l · g}n − n (12)

and

b1 = {k · g}n − n, b2 = {l · g}n (13)

can be shown in a similar way.

B. Proof of Equivalence of Hexagonal Lattices
and Rank-1 Lattices for Texturing when
n = 2MmFm.

Lattices used for texturing have to tile [0, 1)2. The hexagonal
lattice tiles the plane, but not [0, 1)2 for any uniform scaling

factor s due to its irrational basis BH =

„`
1
0

´` 1
2√
3

2

´«
. Assuming

nx hexagonal elements in x-direction (i.e. the basis is scaled by
1

nx
BH) at most ny =

j
2nx√

3

k
hexagonal elements in y-direction

fit. Non-uniform rescaling in y-direction with a factor sy =
2nx√

3j
2nx√

3

k allows for perfect tiling. The basis scaling factor is S =“` 1
nx
0

´`
0

sy

´”
. This factor in fact removes the irrational value

from the basis (S ·BH).

For the lattices constructed from the continued fraction of
√

3
(see Section 3.2), the generator vector is g =

`
Mm
Fm

´
for a lattice

with n = 2MmFm points. Computing on [0, n)2, we construct
a basis from the generator vector by the following observation:
On the x- (i.e. y = 0) axis we have Fm points at a distance
of 2Mm, because yi = (iFm) mod (2MmFm) = 0 ⇔ i = 2Mm.
Now we select as the first basis vector b1 =

`
2Mm

0

´
. As the

second basis vector we choose the point with index i = 1 :
b2 =

`
Mm
Fm

´
. This is surly a basis of the rank-1 lattice because

b1 × b2 = 2MmFm = n.

7

This rank-1 lattice has a basis of the form BL = Sr

“`
1
0

´` 1
2
1

´”
,

with Sr =

„` 1
nx
0

´`
0
1

ny

´«
, and is equivalent to a hexagonal lattice

scaled to tile the square with nx = Fm and ny = 2Mm. This is
true for all lattices with n = 2FmMm.

References

[AG85] Afflerbach L., Grothe H.: Calculation of
Minkowski-reduced Lattice Bases. Computing 35,
3-4 (1985), 269–276.

[CR97] Cools R., Reztsov A.: Different Quality Indexes
for Lattice Rules. J. Complex. 13, 2 (1997), 235–258.

[CSB87] Conway J., Sloane N., Bannai E.: Sphere-
packings, Lattices, and Groups. Springer-Verlag
New York, Inc., 1987.

[Csb05] Csbfalvi B.: Prefiltered Gaussian reconstruction
for high-quality rendering of volumetric data sam-
pled on a body-centered cubic grid. In IEEE Visu-
alization (2005), IEEE Computer Society, p. 40.

[CVF08] Condat L., Van De Ville D., Forster-Heinlein
B.: Reversible, fast, and high-quality grid conver-
sions. IEEE Transactions on Image Processing 17,
5 (May 2008), 679–693.

[DK08] Dammertz S., Keller A.: Image Synthesis by
Rank-1 Lattices. In Monte Carlo and Quasi-Monte
Carlo Methods 2006, Keller A., Heinrich S., Nieder-
reiter H., (Eds.). Springer, 2008, pp. 217–236.

[Edw07] Edwards D.: Practical Sampling for Ray-Based
Rendering. PhD thesis, University of Utah, 2007.

[EVM08] Entezari A., Ville D. V. D., Möller T.: Prac-
tical box splines for reconstruction on the body cen-
tered cubic lattice. IEEE Transactions on Visualiza-
tion and Computer Graphics 14, 2 (2008), 313–328.

[Hel85] Helfrich B.: Algorithms to construct Minkowski-
reduced and Hermite-reduced lattice bases. Theor.
Comput. Sci. 41, 2-3 (1985), 125–139.

[HW81] Hua L., Wang Y.: Applications of Number Theory
to Numerical Analysis. Springer-Verlag and Science
Press, Berlin-New York, and Beijing, 1981.

[Kan87] Kannan R.: Algorithmic Geometry of Numbers.
Annual Reviews in Computer Science 2 (1987), 231–
267.

[Kor59] Korobov N.: The Approximate Computation of
Multiple Integrals. Dokl. Akad. Nauk SSR 124
(1959), 1207–1210 (in Russian).

[Llo82] Lloyd S.: Least Squares Quantization in PCM.
IEEE Transactions on Information Theory 28, 2
(1982), 129–137.

[Mar03] Martinet J.: Perfect Lattices in Euclidean Spaces.
Springer-Verlag, 2003.

[MS05] Middleton L., Sivaswamy J.: Hexagonal Image
Processing: A Practical Approach (Advances in Pat-
tern Recognition). Springer-Verlag New York, Inc.,
2005.

[Nie92] Niederreiter H.: Random Number Generation
and Quasi-Monte Carlo Methods. SIAM, Philadel-
phia, 1992.

[NM02] Neophytou N., Mueller K.: Space-time points:
4d splatting on efficient grids. In VVS ’02: Proceed-
ings of the 2002 IEEE symposium on Volume visu-
alization and graphics (Piscataway, NJ, USA, 2002),
IEEE Press, pp. 97–106.

[Pea90] Peachy D.: Texture On Demand. Pixar technical
memo 07-06, Pixar, 1990.

[PM62] Petersen D. P., Middleton D.: Sampling and
Reconstruction of Wave-Number-Limited Functions
in N-Dimensional Euclidean Spaces. Information
and Control 5, 4 (1962), 279–323.

[Sie89] Siegel C.: Lectures on Geometry of Numbers.
Springer-Verlag, 1989.

[SJ94] Sloan I., Joe S.: Lattice Methods for Multiple
Integration. Clarendon Press, Oxford, 1994.

[Ste01] Steger A.: Diskrete Strukturen (Band 1).
Springer-Verlag, 2001.

[VVPL02] Van De Ville D., Van De Walle R., Philips
W., Lemahieu I.: Image Resampling Between Or-
thogonal and Hexagonal Lattices. In Proceedings of
the 2002 IEEE International Conference on Image
Processing (2002), vol. III, pp. 389–392.

8

