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Abstract—Telematics applications in automobiles have at-
tracted considerable attention for their promise of value-added
services. However, new challenges arise from the integration of
telematics applications that require a multitude of vehicular data.
The safety-critical context of the automotive domain calls for
reliable access control mechanisms, especially when applications
access sensitive data. However, those mechanisms must also re-
spect the requirement of minimal driver distraction. To cope with
these issues we propose Ginger – an access control framework
for telematics applications. Ginger is context aware, provides
enhanced privacy protection, and realizes advanced access control
paradigms. We demonstrate Ginger’s feasibility with an Android-
based implementation in a functional evaluation consisting of
two representative use cases and in a comparative analysis with
related approaches.

I. INTRODUCTION

Enhanced telematics platforms equipped with wireless com-
munication technologies (e.g., UMTS, LTE, 802.11x, etc.)
will enable numerous automotive applications in the future.
Similar to the ongoing trend of mobile apps for current
smartphones, customer expectation of modern vehicles will
require customization and integration of applications in au-
tomotive platforms. Envisioned telematics applications range
from weather forecast, social networks, location-based ser-
vices up to complex and information-rich applications, such
as corporate fleet management and Pay as you drive car
insurance. These applications are enabled by tapping into
vehicle data, such as vehicle speed and location, or driver’s
personal information. Similar to smartphones, automotive apps
can benefit from vehicle’s sensor infrastructure and provide
advanced and tailored services to the driver.

However, vehicular sensor data can be sensitive and safety
critical. Therefore, access control mechanisms that respect
essential security and privacy concerns play a fundamental role
in enabling automotive apps. Today’s conventional telematics
platforms are inadequate and too inflexible to fulfill additional
access control requirements such as context awareness and
privacy protection for telematics applications. Telematics con-
straints like regulations on driver distraction further necessitate
the development of access control systems that are better
tailored to requirements of the automotive domain.

Due to the increased popularity of smartphones, various
access control concepts have been introduced for mobile
application platforms, such as Android, Blackberry, iOS, and

Windows Phone 7. In fact, telematics platforms share sim-
ilar conditions with smartphone platforms such as mobility
and sensor infrastructure. Not surprisingly, some headunit
suppliers already started adapting smartphone platforms to
the automotive domain, e.g., AutoLinQ1 based on Android.
However, existing access control approaches cannot be directly
applied from smartphone platforms to telematics applications.
Especially pop-up dialogues are impractical and unsuitable for
letting drivers grant or deny permissions to applications during
run-time. Moreover, privacy-aware drivers should be able to
express their privacy wishes and preferences without having
to define and handle complex access rules.

In this work, we propose Ginger – a new approach towards
a generic access control framework for telematics applications
that comprises different access control paradigms. The frame-
work copes with the requirements of telematics constraints
and integrates context awareness as well as privacy protection
mechanisms. The Ginger access control framework uses a
permission model based on attributes, conditions, obligations,
and post-updates, in combination with isolation domains and
a simplified trust model.

In Section II, we introduce the concepts of our access
control framework in detail, followed by a brief overview of
the Android-based implementation in Section III. In Section IV
we provide a discussion of related Android frameworks, which
serves as a prerequisite for the comparative analysis and func-
tional evaluation of our framework in Section VI based on two
representative use cases presented in Section V. Section VII
concludes the paper.

II. GINGER ACCESS CONTROL FRAMEWORK

In this section, we describe the concepts and architectural
design of the Ginger framework with a generic, and platform-
independent specification of the framework components. We
will use the following terms throughout the paper:

• Entity: a piece of software, e.g., an application, a library,
a software component.

• Message: the communication medium that entities use to
interact with each other.

• Subject: the calling entity that initiates a message pass.
• Object: the target entity that handles a message pass.

1AutoLinQ project website: http://www.autolinq.de/
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Fig. 1. Control of data flow between apps in different isolation domains.

Fig. 2. Interface description and permission assignment to messages.

To clarify these terms, a message is used by entities to inter-
act with each other. The communication process is referred to
as messaging or a message pass. A message pass is initiated by
the subject, invoking an operation on the object. The object
handles the message pass, e.g., by executing the requested
operation and providing some data. Subsequently, the result is
returned to the subject. Thus, data is flowing from the object
to the subject, being transported through a message.

In the following, we detail the framework’s main concepts
isolation domains, trust levels and permission model, and
explain how they are integrated in the Ginger framework
architecture.

A. Isolation domains

A basic design choice is to keep entities in isolation do-
mains. Isolation is a well-known concept realized for example
in application sandboxing [1], [2], virtual trusted domains [3],
trusted privacy domains [4], or info spaces [5].

In Ginger, isolation domains logically separate entities from
each other, thus providing strong security boundaries at run-
time. Compared to application sandboxing in mobile operating
systems, a prime distinction is that Ginger isolation domains
do not grant entities access to private persistent storage.

Operations and data flow within an isolation domain are
not controlled by Ginger, whereas operations and data flow
between isolation domains, i.e., access that crosses a domain
boundary, is controlled (see Fig. 1). In other words, Ginger
controls inter-domain messaging but not intra-domain mes-
saging. Ideally, each entity is assigned its very own isolation
domain so that Ginger is able to monitor all data flow from
and to an entity.

B. Trust levels

Entity is an abstract term used in the framework to refer
to active processes or components. Since there is no straight-
forward distinction between system components, sensor APIs,
third-party applications, etc., we assume that each entity
provides a self-imposed interface description. This description

Fig. 3. Isolation domains on different trust levels.

defines the messages this entity can handle and responds
to. Furthermore, for each message a permission is defined,
which is required to access such a message. The relations are
clarified in Fig. 2; the permissions concept is described in the
following section. Thus, the interface description defines an
entity’s provided functionality and what data it exports.

To enhance data flow monitoring, we adopt a simple trust
model in order to express confidence levels for inter-domain
data flow. Various trust definitions and representations can be
found in literature, see [6], [7] for an overview. In Ginger,
trust is used to measure Ginger’s confidence that an entity
genuinely declared the content of its exportable data. Trust is
represented on a discrete, ordered scale.

Thus, a fully trusted entity provides a valid interface de-
scription including accurate definition of message data types
and does not hide undefined data in messages, i.e., messages
are not used as covert channels to export data. An untrusted en-
tity may likely violate these requirements. As a consequence,
an untrusted entity must not be the object of a message pass
since it may export sensitive data. In addition, we propose
that certain entities are granted less restrictive access based
on their trust level, as shown in Fig. 3. For instance, system
components, such as scheduler or application installer, can be
considered high-privileged entities and should be handled less
restrictive according to their trust level. If the trust level of an
entity does neither allow nor deny sending of a message, that
access is mediated according to the permission model.

C. Permission model

A permission is the abstract representation of a specific
privilege an application holds. The permission acts as an
intermediary between subject and object. This facilitates that
authorization rules can be specified on an entity-specific per-
permission basis as well as on a device-wide per-permission
basis. Permission assignment governs when a permission is
required for a message pass; permission authorization governs
under which circumstances the permission is granted.

By assigning a permission to an object (see Fig. 2), Ginger
requires the subject to be authorized for that permission;
otherwise, the subject cannot access the object. This assign-
ment relation can be modeled as the three-tuple (o, m, p),
meaning that message m to object o requires permission p.

The corresponding authorization relation for permission p
can be expressed by the four-tuple (s, p, c, u). Hereby,



Fig. 4. When entity A sends message m to entity B, Ginger verifies whether a
permission is assigned to m and if A is authorized to exercise that permission.

<c> := <x> AND <x> | <x> OR <x> | NOT <x>
<x> := (<key>, <opr>, <val>)
<key> := SATTR|OATTR|COND|OBLG:<name>

<u> := SATTR|OATTR:<name>, <opr>, <val>

Fig. 5. Constraint <c> and post-update <u> expression language.

subject s is granted permission p if, and only if, constraint
expression c holds true and post-update u is executed. Fig. 4
illustrates Ginger’s verification process.

For constraints c and post-updates u, we adopt the concepts
of attributes, conditions, obligations, and post-updates from
the UCONABC model [8]. A constraint c is expressed as
(key, operator, value)-triples. The constraint’s type
and name is identified by key, where the type is either
attribute, condition, or obligation. Further, attributes are dis-
tinguished between subject attributes (SATTR) and object at-
tributes (OATTR). Operator and value specify the checks
that should be performed, i.e., they determine the circumstance
under which constraint c evaluates to true. Complex con-
straint expressions can be built by applying AND, OR, NOT
operations to the predicates. If the constraint evaluates to
true, the permission is granted; otherwise, it is denied.

A post-update u can be optionally set for an authorization
rule. If set, a post-update alters attributes of the subject or
object as consequence of the authorization. The complete
language for constraint and post-update expression is depicted
in Fig. 5. Next, we describe provide a detailed description of
attributes, conditions, obligations, and post-updates and give
examples for intended use:

1) Attributes: Entities are characterized through their at-
tributes. Example attributes are an application’s version num-
ber, author, or the last time of a certain access. Attributes can
be mutable or immutable. Mutable attributes may be altered
through post-updates as consequence of a granted permission.
Moreover, attributes are either volatile or persistent. Volatile
attributes apply only to an entity’s current (run-time) instance,
i.e., attribute values are reset when a new entity instance is
created, whereas values of persistent attributes are stored for
all instances of an entity.

2) Conditions: A common definition of context is any
information that can be used to characterise situation, so that
a system becomes context-aware if it uses context to provide
services [9]. We adopt this definition and provide context-

aware access decisions through conditions. A condition refers
to device-wide system context and is therefore not under direct
control of an entity. For example, a condition may specify a
time-window or the state of the vehicle, e.g., speed > 20 km/h.

3) Obligations: In privacy-aware access control models, a
common understanding is that obligations are usually coupled
with some action request – that is, subjects commit themselves
to complete some obligations to execute a specific action on
some objects [10]. In Ginger, the understanding is that an
obligation is coupled with some action on message data, i.e.,
the framework completes an obligation on message data in the
execution of a message pass. That definition explicitly means
both examination and manipulation of the message data that
is being exchanged between entities.

For example, assume that a subject should only be
granted access to coarse location data. Such a be-
havior can be achieved by specifying an obligation
(location-granularity, >, N). When the subject is
sending a corresponding message to an object, the framework
intercepts the message and extracts the returned data. Ginger
would then ensure that the object’s provided location data
adheres to the constraint, i.e. granularity of location data is
greater than the desired level N, by applying an obfuscation
algorithm. Technically, location obfuscation can be achieved
with random noise, spatial cloaking, temporal cloaking, and
other approaches. In Ginger, the actual implementation of an
obligation action is provided by evulation modules that will
be described later.

4) Post-Updates: Setting post-updates is optional. If a post-
update is set and a permission is being granted, attributes of
the entity are subsequently altered accordingly.

For example if a permission p1 is granted to a subject,
a post-update could be used to append p1 to the subject’s
attribute exercised-permissions. On subsequent ac-
cess attempts, an attribute-based constraint could be used
to evaluate whether the subject did exercise permission p1
before, thus enabling features similar to separation of duties
in RBAC [11].

D. Framework architecture

Ginger’s framework architecture consists of four main com-
ponents that implement the introduced concepts (see Fig. 6):
Policy Enforcement Points (PEPs), a Policy Decision Point
(PDP), evaluation modules, and Policy Administration Points
(PAPs).

A PEP mediates inter-domain messaging between a subject
and an object. A PEP has multiple tasks. It handles the
message pass, translates the message into a canonical internal
data format, and enforces the actual access decision. PEP
operation is transparent to the subject, i.e., a PEP manipulates
the message in such a way that the calling entity does not
recognize the PEP’s existence.

The PEP queries the PDP to resolve the access decision for
the current message pass. First, the PDP checks trust levels of
both subject and object; if the object is an untrusted entity, the
access decision is denied; if the subject is a high-privileged



Fig. 6. Framework components and system architecture: an entity’s access
that crosses the boundary of an isolation domain is mediated by a PEP.

entity, the access decision is granted. If the above is not the
case, the PDP determines whether and what permission is
required for the message pass according to the permission
assignment relation. Then, the PDP evaluates the permission
authorization relation and delegates evaluation of constraints
and post-updates to registered evaluation modules. In this step,
the access decision resolves to either granted or denied and
the message data may be modified. Both access decision and
message data are provided to the PEP, which enforces the
access decision accordingly.

In order to evaluate constraints and post-updates, the Gin-
ger framework uses a flexible approach based on evaluation
modules. While conditions and post-updates are generic, de-
scriptive expressions, an evaluation module provides the actual
functionality to evaluate a specific constraint or post-update
identified by a certain key. The evaluation module registers
itself for a specific key at the PDP so that the PDP can dele-
gate evaluation of conditions and post-updates to appropriate
modules. Evaluation modules take the predicate given by an
authorization rule and a key-value list of reference data as its
input parameters. For example, an attribute evaluation module
would take the predicate describing an attribute expression and
a list of entity attributes as input and would check whether the
list of entity attributes matches the predicate. A module returns
either true if the evaluation was successful or false,
otherwise.

The task of a PAP is administration of a device policy.
Similar to PEPs, multiple PAPs exist. For instance, one PAP is
consulted upon installation of an entity. It evaluates the entity’s
interface description, determines its trust level, and updates
permission assignment relations, if necessary. Other PAPs han-
dle administration of permission authorization relations. One
important question is who should be the policy writer that is
authorizing entities to perform privileges? There is no straight-
forward answer to that question, ranging from user-centered
security approaches to remote device administration. Hence,
we propose that PAPs offer an interface to edit permission
authorization for the stakeholder policy writer and we aim to
investigate this issue in future work.

III. ANDROID IMPLEMENTATION

As a proof-of-concept, we implemented Ginger based on
the Android Open Source Project (AOSP) v2.3.7r_1 and

Fig. 7. Ginger Implementation: Framework components are implemented
as part of the middleware system_server. Light-blue boxes indicate modified
Android components, dark-blue boxes are new components in Ginger.

released it as open source2. We argue that Android has all the
ingredients to realize the proposed access control framework
and implement Ginger on top of the application sandbox and
Binder inter-process communication (IPC). Fig. 7 illustrates
the Android-based Ginger implementation..

We utilized Android’s application sandbox, technically real-
ized by assigning each application a unique and distinct Unix
user id [12], [13], to provide an enforcement mechanism for
isolation domains.

Interaction between Android applications is built on top of
Binder IPC, a synchronous IPC mechanism based on shared
memory. We modified the Binder framework in such a way
that applications must send messages through a system-level
message service; using the message service is mandatory and
cannot be bypassed. The message service implements a PEP,
transforms message contents into a canonical data format, and
queries the permission manager, i.e., the PDP implementation,
for an access decision. Furthermore, we provided stand-in
replacements for Android API implementations to make calls
to the message service transparent.

PEP and PDP implementations are realized according to the
framework design presented in Section II. They are running
as system services in Android. Android features a permission
model of its own which expresses permissions as string-based
security labels. We adopted this approach for our implemen-
tation and express permissions as plain string labels.

In Android, access to some APIs, such as sockets, is
protected by permissions associated with a Unix group
id. For such APIs, we set the respective permissions to
systemOrSignature level to prevent third-party applica-
tions from being granted those permissions. Then, we imple-
mented trusted (system) components providing the API func-
tionality to applications and made these components accessible
through the message service; as for the other APIs, we provide
stand-in replacements of the API implementation classes.

2GINGER project website: https://gitorious.org/ginger/



IV. RELATED ANDROID FRAMEWORKS

Recent research focuses on improving security of mobile
application platforms. Most notably, several extended security
frameworks have been proposed for Android due to the
platform’s open source code. This section provides a brief
overview of available Android modifications and highlights
the differences to the Ginger framework (see Sec. II). In
Section VI follows a comparative analysis of Ginger and the
related approaches introduced here.

The Apex framework [14] allows users to specify run-time
constraints for individual permissions. After application in-
stallation, a policy configuration tool gives the user the ability
to grant, deny, or conditionally allow individual application
permissions. Conditional allow specifies run-time constraints
such as “let application send a maximum of 5 text messages
per day”. PrimAndroid [15] augments the Apex framework by
implementing a privacy aware RBAC framework on Android.
Neither Apex nor PrimAndroid are able to inspect and modify
data flow of inter-process communication.

The application-centric SAINT framework [16] facilitates
semantically rich policies that are enforced at both install-
time and run-time. In addition to permission declaration, the
framework enables applications to specify MAC policies that
are associated with permissions, thus controlling to whom
permissions are granted and how these permissions are used.
Furthermore, SAINT’s administrative policy gives the user the
ability to override policy rules. Like Apex and PrimAndroid,
SAINT is not capable of inspecting and modifying data flow
of inter-process communication.

ConUCON [17] implements a context-aware usage control
framework on Android. It utilizes obligations, states and
context for usage decisions based on the family of UCONABC
models for usage control [8]. ConUCON focuses on adapting
the existing Android permission model and thus does not
extend the concept of obligations to inspect data flow of inter-
process communication, hence it does not provide fine-grained
privacy controls such as location granularity.

AppFence [18] implements a privacy framework for An-
droid. It is able to block network transmissions that contain
data flagged for on-device usage only. AppFence is able to
transparently substitute shadow data in place of private data.
However, the data labeling relies on taint tracking [19], thus
being vulnerable to implicit data flows [18]. The YAASE
framework [20] provides a similar approach to AppFence but
also relies on taint tracking. Neither of them is capable of
respecting contextual constraints in access decisions.

MockDroid [21] provides a similar approach, allowing users
to “mock” an application’s access to resources so that the
resource is subsequently reported as empty or unavailable.
However, mocking and data shadowing do not allow fine-
grained privacy constraints such as location granularity.

Porting SELinux to the Android kernel provides a kernel-
enforced MAC framework that augments the application sand-
box and hardens devices [22]. A similar approach is Trust-
Droid [23], a framework for practical and lightweight domain

isolation implemented by TOMOYO Linux. Both frameworks
may be used to harden the enforcement mechanism for isola-
tion domains, thus improving the implementation of Ginger.

ACPlib [24] utilizes an approach similar to Ginger by
enforcing application-centric permission through trusted ser-
vices. In addition, the Redexer tool modifies application pack-
ages and Dalvik binaries so that applications use the trusted
ACPlib services instead of the original APIs. However, ACPlib
permissions do not enforce the fine-grained level of privacy
controls provided by Ginger.

V. USE CASES

In this section, we outline two use cases, for our evaluation
in Section VI, that highlight specific access control require-
ments of representative telematics applications. A summary of
the two use cases is given in Table I.

A. Use case I: Corporate Pay As You Drive Insurance

Recently, car insurance companies started to realize that
telematics applications serve as platforms for new business
concepts. One of these concepts is the idea of Pay As You
Drive (PAYD) insurances, i.e., usage-based or milage-based
car insurance. Three common PAYD insurance models exist:
(1) coverage based on the odometer, (2) coverage based on
time driven and (3) coverage based on vehicle data (e.g.,
vehicle speed, navigation route and location). In this use case
we anticipate the idea of corporate PAYD car insurance where
company car fleets are equipped with the PAYD service to save
insurance fees. We assume a dynamic insurance rate, which
depends on the vehicle data collected by the service. This
way companies providing specific vehicle data to the insurance
company can benefit by having cars being classified in a lower
rate category. In contrast preventing disclosure of vehicle data
will change insurance fees to a more expensive basic rate.
We assume that the corporate PAYD car insurance application
behaves in the following simplified way:

1) The application accesses different vehicle device sensors
to read required information, such as vehicle speed,
location, navigation route and odometer,

2) the application opens a network connection and sends
the obtained driving information to a remote endpoint.

We further assume that company cars are also used by
employees for personal use. In personal use situations, the
continuous collection of sensitive vehicular and personal data
(e.g., speed, odometer and location) by the PAYD service
could violate privacy expectations of employees.

Here, context-aware access can overcome this issue by
distinguishing between the different vehicle states business
and personal use with appropriate access limitations. Thus,
preventing the service to collect and use data while a company
car is used for personal purpose. In times of personal use, com-
pany cars would be charged with the basic insurance rate (no
reward). This context-sensitive approach tries to strike a trade-
off between drivers’ privacy expectations and the company’s
business strategies, as well as minimizing the inquiries to the
driver while the vehicle is moving or in business use.



a) (app.corporate.payd, permission.SENSOR, (COND:business-trip, is, true), -)
b) (app.corporate.payd, permission.INTERNET, -, -)

Listing 1. Permission authorization rules for use case I.

a) (app.info.weather, permission.LOCATION, (OBLG:location-granularity, greater, X), -)
b) (app.info.weather, permission.LOCATION, (OBLG:location-granularity, greater, X) AND

(SATTR:last-access, was-ago, T), (SATTR:last-access, set-to, NOW))
c) (app.info.weather, permission.LOCATION, -, (SATTR:location-access, set, true))

(app.info.weather, permission.INTERNET, (SATTR:location-access, is-not, true), -)

Listing 2. Permission authorization rules for use case II

TABLE I
SUMMARY OF USE CASE FEATURES.

use case vehicle data user wishes Ginger feature

Corporate PAYD speed, location, only context-sensitiveodometer, route business trip

Weather Service location exact location privacy-sensitiveprotection

B. Use case II: Weather Service Application

A prevalent privacy concern in (auto)mobile platforms is
that applications disclose unique device id’s (e.g., MAC ad-
dress, vehicle identification number, etc.) and user location to
remote services [18]. Based on such information, long-term
tracking is possible and fine-grained movement profiles of
users can be reconstructed. Thus, privacy-aware users must
be able to control disclosure of their location data, while
maintaining an application’s functionality.

A typical use case is a weather service application enabled
by accessing the vehicle’s current location and sending it
to a remote server in order to provide weather forecast for
the particular location. Thus, the weather application requires
Internet access as well as to the vehicle’s location. Although
the weather service application is not that complex it is one
of the most attractive location-based services in the area
of telematics application provisioning. We assume that the
weather service behaves in the following way:

1) The application accesses the device’s location sensors
and reads the user’s (vehicle’s) location data,

2) the application opens a network connection and sends
the obtained location data to a remote endpoint.

Now, considering users’ privacy wishes, disclosure of user’s
exact location data to a remote endpoint might violate the
user’s privacy expectations. On the one side, users want to
prevent the weather service from tracking their exact location,
but on the other side, they want to receive accurate weather
forecasts. By completely blocking access to a vehicle’s loca-
tion data, the weather service would be unusable. Thus, this is
neither a desirable solution for users nor for OEMs deploying
telematics applications. Ginger provides a solution which
respects privacy while maintaining application functionality.

VI. EVALUATION

We evaluate Ginger by showing the effectiveness of pro-
posed access control features for use cases I and II. Further-
more, we provide a comparative analysis on how these use
cases are addressable in the related frameworks AppFence,
MockDroid, YAASE, ConUCON, and Apex (see Sec. IV).
We chose these five frameworks as they provide the most
promising features and also have several similarities to the
Ginger framework. The results are summarized in Table II.

A. Evaluation Use Case I

In this use case, the entities involved are the PAYD appli-
cation, which collects data, the networking interface, and a
number of sensor interfaces for vehicle speed, location, navi-
gation route, and odometer. For simplicity, all sensor interfaces
are assumed to require the same permission.SENSOR in
order to provide sensor data.

According to the use case, the PAYD application should
only collect sensor data when the car is used for business
purposes. In Ginger, this can be achieved by means of
the condition concept. An adequate condition predicate is
business-trip and an evaluation module provides the
capability to determine whether the car is being used for busi-
ness or personal purposes. In a simple solution, the evaluation
module would check the vehicle’s system clock against a fixed
business schedule (e.g., 8AM - 6PM on weekdays) to evaluate
the predicate. Listing 1 a) depicts a corresponding authoriza-
tion rule, with the effect that the PAYD application can access
sensor data only when the car is used for corporate means.
Regarding permission.INTERNET, the authorization rule
could be more lenient in this case (see Listing 1b); even if the
PAYD application would connect to the network outside the
business schedule, it would not be able to collect and disclose
sensor data during personal use of the car.

In AppFence, such a conditional rule is not expressible. A
workaround would be to have a private sensor data source
and a corporate sensor data source, i.e., having one data
source for each condition. Then, tainting private sensor data
as sensitive still leaves the problem of leaking sensitive data
through implicit data flows. In Mockdroid and YAASE, a
similar workaround would be required to distinguish a private
from a corporate sensor data source. By mocking or applying
filter actions private sensor data would be made inaccessible to



the PAYD application. However, neither of these frameworks
supports modeling of conditional rules. Hence, AppFence,
MockDroid, and YAASE do not offer a straight-forward
solution for use case I.

In ConUCON and Apex, conditional authorization rules
can be set for the permission required to access sensor data,
achieving the same effect as Ginger’s business-trip
condition.

B. Evaluation Use Case II

In this use case, the entities involved are the weather service
application, the location sensing service of the device, and a
networking API that enables the application to connect to the
remote weather service. The permission required to access the
location sensing capabilities is permission.LOCATION
and a corresponding entry is set in the permission assignment
relation. The required permission for accessing the networking
API is permission.INTERNET.

In Ginger, there are two possibilities to address this
use case. First, an authorization rule for the weather
application can be associated with an obligation. The
location-granularity obligation provides the func-
tionality to obfuscate a user’s location data as described
earlier in Section II. Setting the authorization rule as shown
in Listing 2a ensures that the weather application receives
location data that is obfuscated with granularity level X. Thus,
the application is unable to disclose the user’s exact location in
subsequent Internet communication. In addition, the frequency
of location access can be limited by adding a post-update and
an attribute constraint. The final authorization rule is shown
in Listing 2b. When accessing location data, the post-update
sets the application’s attribute last-access to the current
system time. On subsequent access, the attribute constraint
ensures that the attribute value indicates a point in time that
is at least T timeunits in the past.

Second, an authorization rule can be set to block subse-
quent Internet access in case the weather application has read
location data before. An authorization rule as in Listing 2c
results in the attribute location-access being set to
true as consequence of location access. Then, the autho-
rization rule requires the evaluation of the attribute constraint
upon accessing the networking API. Since the application
did access location data before, the attribute value is set and
network access is blocked. Compared to the first approach,
while achieving better privacy protection, this stricter ap-
proach would prevent the application from offering its weather
information functionality. Ginger’s privacy approach can be
summarized as giving an application as few data as possible,
while giving it as much data as functionally required; i.e.,
trading off some privacy with functionality.

In AppFence, tainted location data is labeled for on-device
use only. If tainted data is about to be transmitted via the
networking API, sending of tainted data is blocked. However,
if the application is malicious and employs an implicit data
flow trough control flow operations [18] it may leak sensitive

TABLE II
SUMMARY OF FEATURE EVALUATION.
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conditional access  # # #   
data obfuscation  # G#  # #

data flow tracking #  #  # #
data minimization  # # #   
network blocking   #   #

not supported (#), partially supported (G#), supported ( )

data. Since the application obtained the exact position, it would
disclose the user’s exact location to the remote endpoint.

In MockDroid, access to location data can be mocked, thus
resulting in the location data being reported as empty to the
application. However, such a coarse-grained data obfuscation
would render the weather application’s functionality unusable.

In YAASE, a filter action can be utilized to achieve an
effect equal to Ginger’s location-granularity obli-
gation. This approach enables fine-grained data obfuscation,
thus effectively preventing the user’s exact location from being
disclosed. YAASE also supports data flow tracking, but suffers
from the problem of implicit data flows.

In ConUCON, the concept of obligations provides some
privacy protection but requires a device-wide global action. In
this use case, upon accessing location data, a ConUCON obli-
gation could require the networking API to be turned off; i.e.,
powering down the device’s wireless communication. Another
possibility would be to use a post-update in combination with
an attribute authorization rule, similar to the second possible
solution of Ginger. However, ConUCON would render the
application’s functionality unusable in both cases. ConUCON
also enables a data minimization technique similar to Apex
and Ginger, as described in the following.

In Apex, it would be possible to set a condition for location
access such as read location data 5-times per hour. That
approach is equal to limiting the access frequency in Ginger.
However, it is a data minimization technique only and does
not prevent the application from accessing and disclosing the
user’s exact location.

C. Performance

To show that our approach is feasible, we conducted a
performance evaluation comparing the Ginger implementation
to the AOSP baseline Gingerbread v2.3.7_r1. We implemented
a demo application that mimics the behavior of use case II
and uses the policy settings from Listing 2b. The performance
evaluation was conducted running an Android emulator on
an OS X 10.7.3 machine, 2.26 GHz Intel Core 2 Duo, 4GB
1067 MHz DDR3. We let the demo application repeatedly
(n=1,000) receive location data and transmit network data,
while measuring time instances for each operation.

Mean timing results are provided in Table III. They show
that location access causes an overhead of about 17% for
Ginger, due to the evaluation of Ginger policies, including



TABLE III
PERFORMANCE BENCHMARK OF USE CASE II

Location Access
Android Ginger Factor

� 29.86ms 34.88ms 1.17
� 15.47ms 14.12ms 0.91

Network Access
Android Ginger Factor

� 2.16ms 9.54ms 4.42
� 4.44ms 4.56ms 1.03

the location obfuscation algorithm. In contrast, network access
causes an overhead of about 442%. This relatively high
value might be due to the fact that network access needs
an additional IPC operation in Ginger compared to a native
library call in Android. This could be further improved by
implementing the required functionality in native libraries.

VII. CONCLUSION

As the landscape of mobile platforms has already shown,
solutions for flexible integration of third party applications
provide the opportunity of driving a dynamic development
of new applications with promising features. Similar benefits
could stem from automotive application frameworks for future
telematics platforms. However, the safety-critical context of
automotive applications in particular when accessing vehicle
sensors or other in-vehicle systems raises the need for reliable
access control mechanisms that respect the requirement of
minimal driver distraction. To cope with these requirements
we introduced Ginger, a generic access control framework
for telematics applications. The core access control model of
Ginger is based on attributes, conditions, obligations, and post-
updates, combined with a simplified trust model and the con-
cept of isolation domains. The resulting framework provides
context-aware access decisions as well as privacy protection.
Our framework was implemented on top of Android’s appli-
cation sandbox and Binder IPC. We evaluated the feasibility
of the Ginger framework in two use cases highlighting the
features of privacy protection through post-updates and of
context-aware access control. A comparative analysis with
related approaches and the results of our performance analysis
demonstrate the effectiveness of Ginger and its underlying
concepts for the proposed use cases. We believe that an
open framework for telematics applications poses numerous
advantages for both users as well as for OEMs. However,
reliable and unobtrusive access control plays an essential role
in such systems which can be provided by our framework. The
current limitations of Ginger are the lack of data flow tracking
mechanisms as well as missing PAPs in our implementation.
We plan to address these limitations in future work.
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