Simulation of MANETSs: A Qualitative Comparison between
JiST/SWANS and ns-2

Frank Kargl, ElImar Schoch
Ulm University, Institute of Media Informatics
89069 Ulm, Germany

{frank.kargl | elmar.schochy@uni-ulm.de

ABSTRACT

Simulations play a vital role in the development and testing
of ad-hoc networking protocols. However, the simulation of
large networks is still a tedious task that consumes a lot
of computing power, memory, and time. JiST/SWANS is
a relatively new, Java-based ad hoc network simulator that
reaches very good runtime behavior. Though the creators
of JiIST/SWANS already proved the capability of the sim-
ulation engine, they did not provide results that show the
validity of simulations using the SWANS ad hoc network
stack.

In this paper, we compare protocols and models imple-
mented in SWANS to the corresponding implementations in
ns-2. Using identical input parameters, we show where re-
sults are comparable and analyze reasons for differences. By
showing that results achieved with JiST/SWANS are equiva-
lent to those of ns-2, we support the usage of JIST/SWANS.
As ns-2 performance problems when simulating hundreds
or thousands of nodes and the complex mixture of Tcl and
C/C++ code in ns-2, JiST/SWANS could be an interest-
ing alternative. For a further simplification when using
JiST/SWANS, we shortly introduce our simulation execu-
tion framework, which allows for generation, execution and
evaluation of complex simulation studies.

Categories and Subject Descriptors: 1.6.7 [Simula-
tion and Modeling]: Simulation Support Systems

General Terms: Performance, Measurement, Man-
agement

Keywords: Simulation, JiST/SWANS, ns-2, MANET

1. INTRODUCTION

The development and testing of mobile ad-hoc network-
ing protocols heavily depends on the support of simulation.
Simulations are used e.g. when scalability of MANETS is
to be tested and cost constraints allow the usage of only a
small number of real devices. Another important advantage
of simulations is the fact that the environmental conditions
can be repeated an infinite number of times. This allows

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MobiEval’07, June 11, 2007, San Juan, Puerto Rico, USA.

Copyright 2007 ACM 978-1-59593-762-9/07/0006 ...$5.00.

41

simulations that compare the performance of different pro-
tocols in exactly the same scenario. In the real world tests,
small changes in movement and environment influence the
transmission of radio waves and change the outcome of ex-
periments. Finally, simulations may be used to test new
systems that have not been build in hardware yet.

For all these reasons simulations have been used exten-
sively for modeling of ad hoc networks. The authors of [1]
have reviewed all publications from the MobiHoc workshops
between 2000 and 2005 and found that 114 out of 151 pa-
pers published there used simulations to verify their results.
The same paper also discusses the fact that doing a solid
simulation study is a demanding endeavor.

For simulating MANETS, one usually needs the following
components:

e A simulation software. Whereas this can be a self writ-
ten piece of software, most researchers base their stud-
ies on readily available network simulators like ns-2,
OPNET Modeler, Omnet++ etc.

e A software emulation of the physical environment which
encompasses radio propagation model, simulation area,
node mobility model.

e A software implementation of all network elements be-
low the network layer, like emulation of the radio, the
layer-2 network (e.g. IEEE 802.11 WLAN), etc.

e An implementation of protocols and applications, like
AODV or DSR for ad hoc routing, TCP and UDP and
data traffic generation.

e A mechanism to configure parameters for all the above
mentioned components of the simulation and to col-
lect results, e.g. by writing statistics to a log-file or a
database.

When verifying a MANET system, there are two impor-
tant properties that must be taken into consideration. The
most important is of course accuracy: real world conditions
and results must be reproduced also by the simulation as
closely as possible. The second important aspect is the run-
time behavior of the simulation, namely required processing
power and memory consumption. Since usually available
computing power and memory are fixed, the setup of a sim-
ulation study needs to be adapted to be able to run it in a
reasonable amount of time. In addition, resource consump-
tion depends strongly on the implementations of the used
simulation tool.

Next, we will describe some of the most commonly used
simulators for MANETSs. They all fall in the category of

so called discrete-event simulators, which means that the
simulation is run in discrete (time) steps and that events are
used as mean of communication between simulation entities.

ns-2 |2| has its origin in wired network simulation, but has
become one of the most prominent tools used for MANET
simulation since CMU integrated their ”wireless extensions”
[3]. It uses a combination of C/C++ and OTcl as an object-
oriented variant of the Tcl scripting language to model sim-
ulations. One big advantage of ns-2 is the availability of
a large amount of modules ranging from radio propagation
models over implementations of a lot of wireless network-
ing technology to ad hoc routing protocols and application
models. On the other hand, ns-2 simulations become rel-
atively slow and consume a very large amount of memory,
once the number of nodes exceeds several hundreds. We will
give details on that later in this paper.

There is also a parallelized version called PDNS |4]| that
allows to distribute ns-2 simulations to a cluster of machines.
In |5] the authors claim that they have successfully simulated
a network with 600,000 nodes using using 136 processors and
high-end hardware with a very fast interconnection network.

Another commonly used simulator is GloMoSim |6] which
is based on the Parsec simulation language |7|. Parsec is a
C-like programming language for discrete-event simulation
which like GloMoSim has been developed by UCLA. Glo-
MoSim allows the simulation of wired and wireless networks,
it is configured through a configuration file and provides a
reasonable number of readily available protocols, radio lay-
ers, etc. However, available modules by far do not match
that of ns-2. Custom extensions are realized by implement-
ing additional Parsec modules. Speed and memory of Glo-
MoSim is slightly better than that of plain ns-2 and allows
simulations of networks of roughly 10,000 nodes on standard
hardware. There is also a commercially available parallel
version called QualNet [8]. The manufacturer claims that
QualNet scales up to ”10s of thousands of nodes”.

Another simulator is OPNET Modeler |9], which is a com-
mercially available simulation environment. In contrast to
the previous tools, OPNET simulations are usually created
and configured using a mix of graphical editors, state-dia-
grams and C++. At the end, simulations are compiled into
a runtime that is executed. OPNET provides a large col-
lection of protocols, layers, and other modules. In [10], the
authors show that OPNET Modeler also has a relatively
poor scalability which is comparable to plain ns-2.

Thus, only few alternatives remain for large-scale MANET
simulations. Therefore, most researchers keep on using ns-2
and restrict their evaluations to smaller networks. At Cor-
nell University, Rimon Barr e.a. developed a very interesting
alternative called JIST/SWANS that gained a lot of interest
in the MANET community lately. Although the simulator
is still in an early stage and support with readily available
modules is quite poor by now, its surprising performance
benefits and a number of other advantages attracts more
and more attention.

Whereas the original authors did some performance com-
parison between ns-2 and JiST/SWANS, there has been no
comparison yet that investigates the quality of the SWANS
components, i.e. whether MANET simulations actually lead
to results that can be reproduced by other simulators. But
in order to compare simulations that have been done on dif-
ferent simulation environments, it is vital to show that the
systems and the implemented protocols are actually compa-
rable. It is our goal in this paper to compare AODV and
DSR simulations done with both ns-2 and JiST/SWANS.

42

Listing 1: A simple JiST Entity
1 import jist.runtime.JistAPI;
2 class hello implements JistAPI.Entity {

3 public static void main(String[] args) {

4 System.out. println (”simulation.
start”);

5 hello h = new hello ();

6 h.myEvent () ;

7

8 public void myEvent() {

9 JistAPI.sleep (1);

10 myEvent () ;

11 System.out.println (” hello_world , .
t="4+JistAPI.getTime());

12

13 }

In the next section we will first give a short introduction
to JiST, SWANS, and a custom extension called which sim-
plifies the creation and analysis of simulations. After that,
we present the setup and analyze the results of the simu-
lations of AODV and DSR networks which we did both in
JiST/SWANS and ns-2. We conclude the paper with re-
marks on the comparability of JIST/SWANS with ns-2 and
where special care has to be taken to produce meaningful
results in own simulations.

2. JIST/SWANS

JiST [11] is an abbreviation of ”Java in Simulation Time”
and describes a discrete-event simulator developed by Rimon
Barr e.a. at Cornell University. The central idea is to trans-
form the Java virtual machine into a scheduler for events by
modifying the way how method calls between simulation en-
tities are conducted. On top of this basis, the authors have
created SWANS [12|, the ”Scalable Wireless Ad hoc Net-
work Simulator”, which provides all the mechanisms needed
to simulate MANETS.

2.1 JiST

In JiST simulations, objects are implemented as ordinary
Java objects which means that all the advantages' of Java
can also be used in JiST. Simulation components are called
Entities and are marked with the interface JistAPI. Entity.
Each entity has its own entity simulation time ¢. which de-
termines, at what time calls to other entities are scheduled.
An Entity progresses its t. by calling the JistAPI.sleep()
function. On the other hand, the system time ¢; determines
what scheduled calls are called in what time-step.

Before execution, the classes of a JiST simulation are
transformed using a byte-code modifier. In this step, calls
to public methods of entities are asynchronously decoupled.
This means that a call will return immediately, the call is
queued in an Event queue and the corresponding code in the
invoked object is executed when the called entity reaches the
same simulation time of the calling entity.

Listing 1 shows a basic example of a JiST entity. The
entity hello is created in the main method of the class. At
the beginning (s = 0), the simulation time for all entities is
implicitly set to te = 0. Then, method myEvent () is called.
This method first increases the local simulation time counter
by one time unit (. = 1). After that, method myEvent ()
calls itself again. As the simulator engine decouples this call

Iplatform-independence, large library, familiarity with lan-
guage, etc.

Application Node
ConstantBitRate

Transport
uDP

Network Routing
IPv4 DSR

Node
Node
Node
Node

MAC
802.11b

E ¢ o i | UL

Field
FreespacePathloss — RaleighFading — 2D - Field]

Figure 1: SWANS Architecture

to a public entity method, this is no recursion! Instead, the
call returns immediately, the println() method is called
and the myEvent () methods returns. As no other method
calls are scheduled for ts = 0, simulation time advances to
ts = 1 and the pending call to myEvent () is processed which
starts over again. Scheduled calls for ¢; = 2 are processed
and the loop continues infinitely.

Note that non-public methods in entity objects are called
directly. Internally, JiST replaces all entity references by
proxy objects, so called separators, so that entity calls are
never executed directly. Moreover, calls to public methods
of entities are not allowed to return any values.

The JiST approach has a number of significant benefits:
Type-safety: Asthe ”delivery of events” is simply a method
call, the virtual machine always checks the compatibility of
source and destination. So when receiving events, no addi-
tional type-checking needs to be done by the receiving entity.
No marshaling/demarshaling: As there are no explicit
event data structures, there is no overhead for marshal-
ing/demarshaling data. Instead, the entities just pass ref-
erences within the VM. Using RMI, references can even be
passed beyond VM boundaries.

Java: Using Java provides a large amount of benefits: ro-
bustness due to type safety, large library, ease of use, well-
known to many developers, platform independence, garbage
collection, etc.

Byte-code rewriting: Because class files are directly trans-
formed, no source access is necessary. Existing libraries,
protocol implementations, etc. can directly be used for sim-
ulations.

Parallel distribution: The JiST event scheduling can sup-
port parallel and optimistic execution, which crosses VM
boundaries and is transparent for the application. However,
in the current version, this is not implemented.

2.2 SWANS

SWANS is a collection of components to simulate ad hoc
networks based on the JiST simulation engine. Figure 1
shows the architecture of typical SWANS simulations. Nodes
consist of several entities that are linked together and rep-
resent the different stack elements of a network application.
The lowest radio entity of each node is connected to a com-
mon field entity which is responsible for delivering packets
passed down the stack to other nodes in wireless transmis-
sion range.

Packets are handed from stack to stack by simply pass-
ing references between entities, duplicating the packet via
clone() where appropriate. As calling a method and pass-
ing a reference comes at virtually no cost, SWANS stays

extremely fast, even with large node stacks and high data
traffic load.

SWANS comes with a basic set of simulation entities cov-
ering basic scenario elements like different fading and path-
loss models, several modules for positioning and mobility of
nodes, radio noise models, an 802.11b MAC layer, an [Pv4
layer, DSR, AODV, and ZRP MANET routing protocols,
TCP and UDP transport layers. As an application, one can
use e.g. a CBR traffic generator or an application proxy that
allows any Java network application that uses the socket in-
terface to be used atop of SWANS.

The field implementation of SWANS uses an optimization
that uses hierarchical binning in order to further speed up
simulations |11]. Whenever a node delivers a packet to the
field, the field must deliver the packet to a set of other nodes
that get affected by this packet after considering fading, gain
and pathloss. A small subset of all nodes will be in reception
range, whereas some other nodes get affected by interference
above the sensitivity threshold. Depending on the field size
and the transmission power, the majority of nodes will not
be affected however, which is exploited by the hierarchical
binning approach.

In contrast, ns-2 and GloMoSim implement a simple lin-
ear search through all nodes in order to determine affected
ones. This clearly does not scale well with growing number
of nodes and packets on large fields. ns-2 has recently im-
plemented a better grid-based algorithm that enhances its
scalability significantly [13|. The authors state that they
have run simulations with up to 3000 nodes. SWANS’ hier-
archical binning performs even better and is one reason for
its superior scalability. Next, we take a look at some perfor-
mance evaluation results from the authors of JiIST/SWANS
at Cornell university.

2.3 Performance Evaluation

In |11], the authors evaluate both the micro-performance
of JiST and the application performance of complete SWANS
simulations.

In the micro-benchmarks they compare the raw event thr-
oughput in a simulation that is similar to the hello world
program in listing 1. The program schedules an identi-
cal event for the next time step and then continues to the
next step, which is repeated 5 million times. The authors
show that JiST completes this task 1.97 times faster than
the already highly optimized Parsec, 3.36 times faster than
an ns-2 implementation in C, 9.84 times faster than Glo-
MoSim and 78.97 times faster than an ns-2 event loop in
Tcl. On the other hand, JiST is only 31% slower than a
hand-crafted C program that inserts and removes elements
from an efficient implementation of an array-based priority
queue, which serves as a performance baseline.

At the same time, JiST uses only 36 Bytes per entity and
event. As a comparison, ns-2 uses 544 Bytes per entity and
40 Bytes per event.

When looking at more complete simulations using SWANS,
the numbers are similarly favorable for JiST/SWANS. The
authors have implemented and compared a simple neighbor
discovery protocol for JIST/SWANS, GloMoSim, and ns-2.
With hierarchical binning enabled, JiST/SWANS outper-
forms all competitors. With 500 nodes, SWANS runs only
43 seconds and consumes 1,101 kB of memory. GloMoSim
already takes 82 seconds and 5,759 kB and ns-2 uses 7,136
seconds and 58,761 kB. The memory and time requirements
prevent running ns-2 with 5,000 nodes, but here GloMoSim
takes 6,191 seconds and 27,570 kB compared to 430 seconds

and 5,284 kB for JiST/SWANS. SWANS even computes sim-
ulations with 50,000 nodes rather efficiently in 4,377 seconds
using 49,262 kB of memory.

While previous work clearly showed the considerable per-
formance advantages of JiST/SWANS, still the question re-
mains open whether produced results are correct. This means
that SWANS components have not been compared qualita-
tively with other ad hoc network simulators. As ns-2 simu-
lations are widely accepted, an answer to this question may
also raise the acceptance of JiIST/SWANS. Thus, this work
focuses on the problem of comparability of SWANS compo-
nents corresponding to the results of a well-known simulator
like ns-2.

24 DUCKS

Basically, doing simulations involves three steps: defining
the simulation setup, executing the simulations, and finally
evaluating gained results. In ns-2, this is usually the task
of a mixture of various scripting tools. As an additional ad-
vantage of JIST/SWANS, setup and evaluation can also be
done in plain Java. In the terminology of JiST/SWANS, a
so called driver program is responsible to build up all re-
quired components and to start the execution. It is up to
the developer to write own drivers for specific simulations.

As running complex simulation studies involves many sin-
gle simulations with many parameters and large amount of
output, a more sophisticated solution is desirable to handle
the data. We have therefore developed an execution frame-
work which we called DUCKS. DUCKS delivers solutions
to every step in the typical simulation cycle. First of all,
it implements a generic "driver” for SWANS simulations,
which takes all necessary information from a configuration
file and generates a set of corresponding simulations. For
the execution, a central component is available which can
distribute simulations to an arbitrary number of simulation
servers. Finally, results from the simulation servers are col-
lected and stored in a database. To simplify the evaluation
of the results, there is also a graphical tool that allows visual
generation of graphs from the data in the database.

3. SIMULATIONS

In order to evaluate qualitative properties of SWANS,
we have developed simulations with identical parameter set
both in ns-2 and SWANS. Focusing on application and rout-
ing level measurements, we are able to compare high-level
key parameters of mobile ad hoc networks like successfully
delivered packets or end-to-end packet delay.

3.1 Simulation Environment

The most important requirement for a valid comparison of
the two simulators is a concise definition of the simulation
setup. For instance, it is vital to assure that the packets
to transport across the net are generated in the same way.
Otherwise, different data traffic could influence underlying
protocol layers and thus reduce comparability. This section
gives a detailed description of all relevant simulation en-
vironment parameters and denotes differences in simulator
basics where necessary.

The simulated scene comprises parameters like number of
nodes, field dimension, node mobility model and simulated
time. Table 1 briefly summarizes used values.

Field dimensions vary from 500m to 1500m, with a square
shape. The network density, i.e. the average number of
nodes in mutual vicinity, can be varied either by changing
the field size while keeping the number of nodes fixed or

Parameter Value(s)

Number of nodes 50,100

Field 500-1500m square
Avg. node speed (m/s) 2.5, 5
Pause times (s) 0.0

Mobility model
Link-/MAC-Layer

Random Waypoint
IEEE 802.11 DCF

Transmission range (m) 250
Data traffic bursts of 15 messages, 0.5/second
Simulation time (s) 120
Simulation runs 10

Table 1: Short overview on simulation parameters

by using different numbers of nodes for the same field size.
In our simulations, we also use different numbers of nodes
varying from 50 to 100 nodes, always keeping in mind that
node density is the significant parameter.

Another important property of the scenario is node mobil-
ity. Both ns-2 and SWANS implement the widely used ran-
dom waypoint mobility model which we also selected for our
simulations, applying maximum node speeds of 5m/s and
10m/s and no pause times at waypoints. Setting node pause
time when having reached a waypoint to 0.0 seconds means
that nodes move around continuously. Following the JiST
paradigm of scheduling, SWANS does not use pre-generated
node movements like ns-2 does, but computes node move-
ments in parallel to virtual time progress.

Finally, each simulation runs for 120s of virtual time, man-
tled with a start offset of 10 seconds and a settle period of
20 seconds at the end of the simulation.

Beyond the scene, main components of the simulation are
network nodes. Each node consists of a stack of layer, in-
cluding radio, MAC, IP, routing and application entities that
are described in the following.

The radio interfaces’ omnidirectional antenna of a node is
supposed to be attached 1.5m above the ground, therefore
wave reflection is modeled according to the two-ray-ground
principle. Transmission power is set to a dedicated value in
each of the simulators that results in a wireless transmis-
sion range of ~250m. The MAC/Link layer uses the 802.11
implementations of the simulators, using a bandwidth of
1 Mbps. As routing protocol, we apply AODV, which is
well-known and is implemented both in ns-2 and SWANS.

While we use the original code of each simulator distribu-
tion regarding all ISO/OSI layers including routing, we have
developed a dedicated application to send packets. Thus we
can guarantee that data packets are created with the same
timing and size both in ns-2 and SWANS. This applica-
tion generates data packets in bursts of 15 packets which
are sent to the same destination. After a waiting time of
30s, the application selects another destination for the next
burst. This rather lightweight data traffic scheme tries to
avoid congestion effects while still keeping a considerable
effort for routing.

In order to get representative and meaningful result val-
ues, each simulation configuration is executed ten times. For
these ten simulations, all input parameters remain identical,
whereas of course, all randomly chosen values are changed
in each simulation. In our results, we show mean values
and standard deviations of the 10 runs. Randomization
particularly influences generation of data traffic and node
movements. With each single simulation, source—destination
pairs and send jitter as well as node waypoints and speeds
differ.

100

80 -

Delivery success ratio (%)

20

AODV, 1000m, 5 m/s ——
AODV, 1000m, 10 m/s

100 120

,,,,,,,,,

20 40 60 80
Number of nodes

Delivery success ratio (%)

100

AODV, 1000m, 5 m/s ——
AODV, 1000m, 10 m/s

,,,,,,,,,

80

60

40t

20

80 100 120 140
Number of nodes

20 40 60

Figure 2: Comparison of delivery ratio with different node numbers (left ns-2, right JiST/SWANS)

100

Delivery success ratio (%)

20 - AODV, 50 nodes, 5 m/s —— |
AODV, 100 nodes, 5 m/s
AODV, 50 nodes, 10 m/s =%

AODV, 100 nodes, 10 m/s —a-

1000 1250
Network size (m x m)

,,,,,,,,,

0 L
500 750

Delivery success ratio (%)

1500

100

" AODV, 50 nodes, 5 m/s ——
AODV, 100 nodes, 5 m/s +--x---
AODV, 50 nodes, 10 m/s -

80 _AODV, 100 nodes, 10 m/s &

60 -

m‘
ok

40+

20

1000 1250

Network size (m x m)

0 L
500 750 1500

Figure 3: Comparison of delivery success ratio with different node density (left ns-2, right JiST/SWANS)

3.2 Simulation results

Four our analysis, we mainly focus on measurements on
application level, namely successfully delivered packets and
end-to-end delay. Because the communication stack includes
the same components in SWANS and ns-2 and packets are
handled by all of them, these measurements implicitly reflect
their operation as well. A more fine-grained investigation of
implemented components is subject to further work.

Fig. 2 shows simulations with different number of nodes
and different mobility. These parameters are particularly
interesting as they have a clear influence on the operation
of MANETSs. For each setup, we present a result set for
ns-2 and JiST/SWANS separately. Essentially, the curves
are very similar in both simulators. Though absolute values
differ to some extent, both graphs show the increase in deliv-
ery ratio when nodes are less mobile and in both graphs, the
highest delivery success is reached at the same node density
with about 70 nodes. Therefore, this indicates a qualitative
equivalence of ns-2 and SWANS regarding AODV and the
lower layers.

Fig. 3 depicts delivery ratio results in dependence of node
density and mobility. The graphs show decreasing delivery
ratio of AODV when the network field size increases and thus
node density decreases. Like before, although the absolute
value decrease in ns-2 (left graph) is slightly larger than in
SWANS (right graph), the main characteristics remain the
same. For instance, node mobility clearly influences the de-
livery ratio, whereas different number of nodes has almost
no impact. From this point of view, the AODV implemen-
tation of ns-2 and SWANS can again be regarded almost
equivalent.

Besides delivery ratio, end-to-end delay is often an impor-
tant factor for network applications. In Fig. 4, we compare
average end-to-end delays of packets between sender and re-

45

ceiver. When using AODV in ns-2, packet delays stay at
a low level throughout all field sizes, when 100 nodes re-
side on the field, whereas with 50 nodes, delay results rise
abruptly starting with a field side length of 1000m. We can
see this difference between 50 and 100 nodes as well in the
results of SWANS, yet all delay values raise slightly with
increasing field size. Apart from that, the absolute delay
values in SWANS are significantly higher than in ns-2 which
is likely due to differences in default settings of the protocol
implementation.

Finally, we present runtime performance measurements
in Fig. 5 that we collected additionally during the simu-
lations. The simulations for the data depicted in Fig. 5
were conducted on the same machine to rule out influences
of hardware equipment. On the left, we see the time that
was needed to process a single simulation. As one can ex-
pect, processing time increases when the network consists of
more nodes. To compute the simulation, ns-2 and SWANS
take nearly the same time. This indicates that not only the
underlying simulation kernel is primarily responsible for the
overall performance, but also the implementation of the sim-
ulated logic. Moreover, these results still include the asym-
metry of mobility generation. Whereas in ns-2, movements
are usually precomputed e.g. by the setdest tool, SWANS
generates node mobility in parallel to the simulation. This
shifts the small advantage of SWANS even a little further.
On the right side, the graph depicts memory consumption
of both simulators. While SWANS requires not much more
than 10 MB, ns-2 consumes nearly 300 MB in the scenario
with 150 nodes. Here, we clearly observe the major disad-
vantage of ns-2. It is very hard hard to use when scenarios
get bigger and exceed several hundred nodes, which is not
the case for JiST/SWANS.

Avg. packet delay (s)

AODV, 50 nodes, 5 m/s ——
AQODYV, 100 nodes, 5 m/s =----- E
AODV, 50 nodes, 10 m/s =

AODV, 100 nodes, 10 m/s &)

750 1000 1250 1500
Network size (m x m)

Figure 4: Delay comparison (left ns-2, right JiST/SWANS)

Total memory consumption (MB)

AODV, 50 nodes, 5 m/s ~—+— '
AODV, 100 nodes, 5 m/s +-----
AODV, 50 nodes, 10 m/s +--x---+

08 | AODV, 100 nodes, 10 m/s & 4
O
oy
S o6f 1
S
3
8 oaf 1
4 g
< g

02t L 1

i — iy S
500 750 1000 1250 1500
Number of nodes

450 T T T T T T T

ns-2 (AODV, 1000m, 10 m/s) —+—

400 - SWANS (AODV, 1000m, 10 mfs) - 1
350 F g
)

GE) 300 1
2 250 e
2
& 200 -
S
5
= 150
2
100 |
50 -
0 L L L L L
20 40 60 80 100 120 140
Number of nodes
Figure

4. CONCLUSION

Our simulation experiments show that JiST/SWANS de-
livers results similar to that of ns-2, at least when including
the components we decided to use, which actually reflect a
typical ad hoc network scenario.

Our comparison also clearly confirms one core problem
of every simulative analysis: deriving absolute values from a
simulation and compare them with other simulations (on the
same simulator or on different simulators) is almost impossi-
ble, even if all parameters and the implementation of all par-
ticipating protocols are identical. The authors of [1] discuss
this problem in more detail. Our study presented here has
also some open questions. We used the default implemen-
tations of the protocols available in ns-2 and JiST/SWANS
without further analyzing the comparability of the imple-
mentations. For instance, they may implement different op-
timizations, have other default settings of tunable param-
eters, etc.. In our future work, we plan a more detailed
review of the component implementations. Additionally, we
also plan to provide a more detailed analysis of the simu-
lations, taking into account additional values like average
hop count or protocol overhead in terms of packet gener-
ated. Moreover, it would be interesting to implement and
include protocols into the evaluation, which are currently
not available for JiIST/SWANS, and test them against their
ns-2 counterparts. Until then, we have provided some first
evidence supporting the usage of JiST/SWANS for simula-
tion of MANETS.

5. REFERENCES

[1] Stuart Kurkowski, Tracy Camp, and Michael Colagrosso,
“Manet simulation studies: the incredibles,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 9, no. 4, pp. 50-61,
October 2005.

[2] “Network Simulator ns-2,” http://www.isi.edu/nsnam/ns/

46

300

" ns-2 (AODV, 1000m, 10 m/s) ——
SWANS (AODV, 1000m; 10 m/s) =

;3]

(4

5]
6]

(7]

8]

19

(10]

(1]

(12]

(13]

80
Number of nodes

100 120 140

5: Processing time (left) and memory consumption (right) of ns-2 and SWANS

D.B. Johnson, “Validation of wireless and mobile network
models and simulation,” in DARPA/NIST Workshop on
Validation of Large-Scale Network Models and Simulation,
May 1999.

G. Riley, R.M. Fujimoto, and M.A. Ammar, “A generic
framework for parallelization of network simulations,” in
Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication, March 1999.

G. Riley, “PDNS website”
http://wwu-static.cc.gatech.edu/computing/compass/pdns/.

X. Zeng, R.L. Bagrodia, and M. Gerla, “Glomosim: a library
for parallel simulation of large-scale wireless networks.,” in
Workshop on Parallel and Distributed Simulation, May 1998.
R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X Zeng, J Martin,
and H.Y. Song, “Parsec: A parallel simulation environment for
complex systems,” IEEE Computer, vol. 31, no. 10, pp. 77-85,
October 1998.

SNT, “Qualnet product homepage,”
http://www.scalable-networks.com/products/qualnet.php.
OPNET, “Opnet modeller homepage,”
http://www.opnet.com/products/modeler/home.html.

B.P. Zeigler and S. Mittal, “Modeling and simulation of
ultra-large networks: Methodology responds to challenges,” in
ULN Workshop, November 2001.

R. Barr, Z.J. Haas, and R. van Renesse, “Jist: An efficient
approach to simulation using virtual machines,” Software
Practice € Experience, vol. 35, no. 6, pp. 539-576, 2005.

R. Barr, Z.J. Haas, and R. van Renesse, Handbook on
Theoretical and Algorithmic Aspects of Sensor, Ad hoc
Wireless, and Peer-to-Peer Networks, chapter 19 - Scalable
Wireless Ad Hoc Network Simulation, Auerbach, 2005.

Valeri Naoumov and Thomas Gross, “Simulation of large ad
hoc networks,” in MSWIM ’03: Proceedings of the 6th ACM
international workshop on Modeling analysis and simulation
of wireless and mobile systems, New York, NY, USA, 2003,
pp- 50-57, ACM Press.

http://www.isi.edu/nsnam/ns/
http://www-static.cc.gatech.edu/computing/compass/pdns/
http://www.scalable-networks.com/products/qualnet.php
http://www.opnet.com/products/modeler/home.html

	1 Introduction
	2 JiST/SWANS
	2.1 JiST
	2.2 SWANS
	2.3 Performance Evaluation
	2.4 DUCKS

	3 Simulations
	3.1 Simulation Environment
	3.2 Simulation results

	4 Conclusion
	5 References

