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Abstract—Inter-vehicle communication (IVC) systems disclose
rich location information about vehicles. State-of-the-art security
architectures are aware of the problem and provide privacy
enhancing mechanisms, notably pseudonymous authentication.
However, the granularity and the amount of location information
IVC protocols divulge, enable an adversary that eavesdrops all
traffic throughout an area, to reconstruct long traces of the
whereabouts of the majority of vehicles within the same area.
Our analysis in this paper confirms the existence of this kind of
threat. As a result, it is questionable if strong location privacy is
achievable in IVC systems against a powerful adversary.

I. INTRODUCTION

Inter-vehicle communication (IVC) systems have been ac-

tively researched over the past years. Vehicles that can com-

municate with each other and road-side units (RSUs) enable a

range of applications. For example, applications that provide

warnings on road dangers and traffic jams, or those that offer

comfort enhancements (e.g., automated update of point-of-

interest information to car navigation systems). Many of the

envisioned IVC protocols and applications rely on position

and time information. This requires all vehicles frequently

broadcasting their position, combined with a time stamp of

the message generation, openly to all of its neighbors.

As vehicle transmissions can be eavesdropped by anyone

within radio range, there exists a clear threat: location infor-

mation could be collected and misused [18]. By establishing a

network of RSUs, any public, private, commercial, or criminal

attacker can collect these packets and create detailed location

profiles of vehicles and consequently their drivers. Possession

of such location profiles could easily breach the privacy of

drivers, as there is usually a strong correlation between a

vehicle and its driver; most vehicles are used by only very

few drivers [8].

IVC protocols and applications provide various identifiers of

the vehicle, in particular the vehicular communication equip-

ment. This can be an identifier for a networking protocol or an

identifier for an application. We abstract away implementation

details and consider the basic problem at hand: the correlation

of an identifier ID with a time t and a location l. The (ID, t, l)
tuple is called a location sample, and a location profile is set

of multiple tuples (ID, ti, li) for the same identifier ID, with

i simply the index of sample.

In order to enhance privacy, one could blur the informa-

tion such a profile provides. For example, by decreasing the

accuracy of the data in a location sample, that is, the time

information, t, or the location information, l. Providing inac-

curate location information is also no option, as many VANET

applications require very high location accuracy to determine

the correct position and lane of neighboring vehicles. Location

obfuscation, i.e. the intentional blurring of the own position,

would render such applications useless. Moreover, the attacker

receiving directly messages sent from a vehicle directly can

easily record a time stamp t on its own.

A feasible approach is to hide the ID of the sending vehicle

from eavesdroppers. Nonetheless, most communication and

application protocols require a unique identifier, for example

as source or destination address of packets. The middle-ground

solution for such protocols is to use a pseudonym, PSNY M ,

instead of the ID. Pseudonyms do not contain any identifying

information, e.g., no vehicle identification numbers (VIN),

clearly no driver names, and it simply identifies the vehicular

node. We term a tuple (ti, li) an anonymous position sam-

ple, and a (PSY NM, ti, li) tuple a pseudonymous position

sample.

Still, pseudonymous position samples can be col-

lected and combined into pseudonymous location profiles

(PSNY M, ti, li). An attacker that manages to obtain such

pseudonymous location profiles could relatively easily relate

them to specific vehicles; off-line information, could be ob-

tained via cameras, and profiles could be correlated to specific

areas (e.g., profiles starting/ending on weekday mornings at the

same location would likely reveal home and work addresses

that could then be connected to individuals).

Therefore, the use of a single pseudonym is not enough

to protect privacy. To address this problem, solutions in the

literature propose that each vehicle use multiple pseudonyms,

changing frequently from one pseudonym to another [16]. The

attacker could then only record location profiles, also denoted

in the rest of the paper as tracks, each of them consisting

of tuples of the form (PSNYM x, ti, li) with each PSNYM x

representing one of the pseudonyms used by a node. Use

of changing pseudonyms can be considered the state-of-the-

art in VANET privacy enhancing technologies; such schemes

were designed with the intention to thwart adversaries that

eavesdrop parts of the network.

However, the accurate location and time information IVC

messages contain, and the very frequent transmission of



messages (typically, for transportation safety, 10 messages

per second) raise an important question. Can pseudonymous

location samples with different pseudonyms be linked to each

other? Or, even further, could anonymous location samples

be linked? If so, lengthy over time tracks of vehicles could

be generated by an adversary. If the adversary covered large

areas and obtained rich sets of location samples, it could then

create extensive location profiles.

In this paper, we investigate this question. We consider

an area where that the adversary can collect IVC messages,

notably pseudonymous location samples. We analyze how

effectively it can create location profiles, that is, essentially, for

low long it can extract tracks for the same vehicle. Utilizing

one approach relating to the problem of multi-target tracking,

in particular Multi-Hypothesis-Tracking (MHT) [20], we find

that linking between samples under different pseudonyms for

the same vehicle can be surprisingly successful under various

system setups. This clearly indicates that the adversary consid-

ered here can indeed significantly weaken the location privacy

of vehicular network users. Moreover, it points out the need

of additional investigations on the location privacy that can

be achieved given the constraints of vehicular communication

systems.

In the rest of the paper, we first review the related work in

Sec. II and outline the system and adversary models (Sec. III).

Then, we describe our tracking approach in Sec. IV and

present the results of our simulation-based study in Sec. V;

these results demonstrate the effectiveness of our approach.

Sec. VI summarizes lessons learned.

II. RELATED WORK

Changing pseudonyms is regarded as one of the best so-

lutions so far to the privacy problem in vehicular commu-

nications. Many approaches have been proposed to address

different aspects in the pseudonym life cycle. [17] proposed

a pseudonym-based security architecture which covers the

management and organizational issues of pseudonyms. It also

introduced a framework on how to change pseudonyms. [4]

devised mechanisms to improve the efficiency and robustness

of pseudonym generation and authentication in VANETs. [19]

suggested to change pseudonyms according to the vehicle

speed. [6] focused on integration and implementation of

pseudonymity support for a realistic VANET communication

stack. [23] found that frequent pseudonym change can have a

negative impact on communication performance. The lack of

an omnipresent infrastructure and loose connectivity in vehic-

ular networks pose challenges on propagating information on

revoked pseudonyms; [13] proposes multiple mechanisms to

revoke misbehaving and faulty nodes.

Although progresses have been made in pseudonym gener-

ation, management, and application, there are few studies on

the effectiveness of pseudonym changes in terms of achieved

privacy levels and how to maximize protection of location pri-

vacy. [12] applies the concept of mix-zones first introduced in

[2] and studies of the effectiveness of changing pseudonyms:

the unobservable by the adversary regions are modeled as mix-

zones, and essentially nodes change pseudonyms when they

traverse such a zone. They find that an adversary can still

successfully track vehicles, if it places receivers at half of the

intersections in the road network. [7] proposed a context-

aware pseudonym change algorithm to improve pseudonym

change effectiveness and identified parameters and potential

tracking algorithms that influence the attacker‘s success rate.

[21], [10] showed that an attacker can use correlation tracking

to link changing pseudonyms by assigning a non-uniform

probability distribution to the target anonymity set and choos-

ing the target with the highest probability.

A more recent work on measuring the effectiveness of

pseudonym systems in vehicular communication systems is

presented in [14], [15]. The authors propose a comprehensive

privacy metric to assess the anonymity level provided by

pseudonym systems. The results of our work presented here

can be used to determine the source-destination trip probability

required for this metric.

[9] related the issue of linking anonymous location samples

to the data association problem in target tracking systems.

Their experiment applies Reid’s algorithm for Multiple Hy-

pothesis Tracking (MHT) [20] to track anonymous Global

Positioning System (GPS) data, generated by a group of stu-

dents in and around a university campus. Anonymous location

samples from three different tracks are used as input to the

MHT algorithm. The tracking results show that despite several

temporary incorrect assignments, most anonymous samples

can be associated with the correct tracks. This demonstrated

that anonymous location samples can be linked by a tracking

algorithm such as MHT to reveal user movements, even though

their experiment was of limited scope. Inspired by [9], we

applied the MHT approach to vehicular networks. We take a

similar approach, applying a multi target tracking algorithm

on anonymous location samples, but in a more complex and

larger scale setting that has different characteristics (VANET

vs. pedestrian).

III. SYSTEM AND ADVERSARY MODEL

We assume that vehicles participating in the vehicular

network send beacon messages at regular intervals. Those

beacons carry only an identifier and the vehicle’s current

position. To protect from simple location tracking, the vehicles

use pseudonymous identifiers and change their pseudonym

regularly. In the best case for privacy protection, a new

pseudonym is used for each packet sent. We note that we

do not dwell on the details of pseudonym construction and

the exact node identification; e.g., the pseudonyms can be

elliptic curve public keys and whenever there is pseudonym

change there is also a change of node identifiers (e.g., network

addresses) [16]

In terms of the adversary, we assume a passive attacker

with perfect eavesdropping capabilities, i.e. our attacker can

receive all beacon messages sent in the network. One might

object that such an attacker is quite unlikely to occur, as it is

hard to cover a large area with an eavesdropping infrastructure.



However, this attacker model allows us to determine the effect

of a “perfect attacker” and later serve as a benchmark for

future results for less powerful attacker models.

Moreover, such a global adversary might not be as unlikely

as it initially seems; at least within a given area the adversary

could have complete coverage. One example is a widespread

distribution of micro roadside units deployed during road

construction. Or, advances in the design of smart directional

antenna arrays might allow large coverage areas with only

limited number of adversarial nodes or reliable reception in

harsh conditions (congested medium). Or the attacker could

tap on other wireless infrastructure.

If such infrastructures are used to create large collections of

VANET-related information, notably location and time, such

data could be abused to mount exactly the kind of attacks

we consider here. After having collected a large quantity

of anonymous position samples (PSNY Mx, ti, li), such an

attacker would use the MHT algorithm to connect those

samples to anonymous location profiles. As motivated earlier,

connecting such anonymous location profiles to real identifiers

is an easy final step [8].

Our goal is to determine the harm that can be done to

to a driver’s privacy in a vehicular network. We assume the

prevalent model for such systems and security architectures,

and a powerful global adversary. Our intention is to consider

in a sense a worst-case scenario that is not nonetheless very

far from what a motivated, strong adversary could achieve.

A partially present adversary or an adversary that does not

receive all location samples would be clearly weaker, and in

principle any given privacy enhancing scheme would achieve

better protection. On the other hand, here we experiment and

evaluate the tracking abilities of the adversary equipped with a

specific mechanism. Accordingly, additional knowledge could

be available and more advanced techniques could be devised.

All such aspects are parts of future work.

IV. TRACKING APPROACH

A. Multi-Hypothesis Tracking and Kalman filtering

Multiple-target tracking has applications in many areas,

such as aircraft tracking, surveillance, and visual tracking.

Generally speaking, multiple targets are moving in a given

area and their positions are sampled, at random or periodic

intervals. Then, the tracking algorithm associates position

measurements of the targets in order to form appropriate

tracks, that is, a sequence of measurements deemed to belong

to (be related to) the same target. In other words, a track

reveals the target’s movement in space and time. The difficulty

lies in generating correct associations in spite of the noise

and errors that usually accompany position measurements.

This is known, in the target tracking community, as the data

association problem.

Multiple Hypothesis Tracking (MHT) is an established al-

gorithm in the field. It addresses the data association problem,

by generating a set of data association hypotheses each time

a new batch of measurements arrives. Each hypothesis is a

possible association of a measurement with a target. Then,

Fig. 1. An example to illustrate MHT

the probability for each of the hypotheses to be correct are

calculated, and the hypothesis with the highest probability is

chosen as the best solution. MHT relies on Kalman filters [11]

to estimate the state variables of each target. In the case

of tracking vehicles on a two-dimensional plane, the state

variables are the positions and velocities of the targets.

First, we use a simple example to illustrate how the MHT

implementation works. Consider the situation in Fig. 1: in the

left panel a target has a previously determined track of (1, 2).
The MHT uses the Kalman filter to estimate the next position

(3) based on the earlier results. Then, the MHT receives two

measurements, A and B, which can be either associated with

the existing track or be used as the origins of new tracks. In

our case, the MHT generates two hypotheses (illustrated in

the form of a tree at the bottom) to account for the possible

associations.

The two alternatives are annotated with probabilities. As B

is closer to the estimated position (3) than A, the probability of

hypothesis (1, 2, B) is higher than that of (1, 2, A). Therefore,

the analysis suggests that the most likely associations are B =
3 and that A is the first point of a new track. Next, the MHT

uses the Kalman filter again to estimate a new set of positions

for each of the two hypotheses.

The middle panel in the figure shows that the Kalman

filter estimates two new positions (2) and (4) based on the

hypothesis with B = 3 and A = 1. The other alternative

(A = 3 and B = 1 in the first step) is not illustrated. After

the MHT receives two new measurements, C and D, new

hypotheses are generated as branches of the previous ones. At

this point, the measurements C and D can be associated either

with (2) or (4).1 Based on the distance of each measurement

to the estimated position, the MHT calculates the probabilities

for each hypothesis. It is obvious that D is neither close to (4)
nor close to (2), therefore p21 and p22 will be very small. As

a consequence, the hypothesis p11 illustrated in the right panel

is eventually chosen as the most likely one, as it yields the

highest probability when both steps are considered.

Next, we provide a more formal introduction of the MHT

algorithm and the Kalman filter. Interested readers are referred

to the original paper [20] and other literature such as [3]

for detailed descriptions. In its simplest form, the process

1Corresponding to p21 and p22; the alternatives p11 and p12 are not shown.



of the MHT can be divided into three steps. Those steps

run repeatedly for each discrete time step. When receiving

new measurements, the MHT first uses the Kalman filter to

predict the state variables for each target. Second, hypotheses

for each measurement are generated, and their probabilities

are calculated based on the deviation between prediction and

measurement. The hypotheses are used to build a hypothesis

tree. Third, for each new hypothesis, parameters of the Kalman

filters are updated with the new measurements. To prevent a

state explosion, various reduction techniques are applied, as

detailed in Sec. IV-B.

The following equations give an overview of the three steps.

The state of a target x at time k is modeled as a linear equation:

xk = Axk−1 + w (1)

where xk−1 is the state of x in the previous time step, A is

called state transition matrix, and w is the disturbance noise.

The state variables are building a vector of the form:

x =









px

py

vx

vy









where (px, py) and (vx, vy) are x’s position and velocity,

respectively, in an x-y plane. The state variables can be related

to a measurement z as:

zk = Hxk + v (2)

where H is a measurement matrix and v is the measurement

noise. The noises in the above two equations, w and v, are

assumed to be white, with normal distribution with zero means

and covariances Q and R, respectively. The matrices Q, R, A
and H are of the form:

Q =

[

qT 0
0 qT

]

, R =

[

r 0
0 r

]

,

A =









1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1









, H =

[

1 0 0 0
0 1 0 0

]

where A is used to estimate the state variables and the error

covariance from the previous time-step, k − 1, to the state

at the current step, k, and H is used to relate the state xk

to the measurement zk. These matrices can be adapted over

time if detailed information about movement patterns or the

measurement process is available.

As we are using two-dimensional position information for

our tracking, we chose a generic, time-invariant form for A
and H , which was also proposed in [20]. Q is determined

by T , which is the difference between the time of the actual

prediction and the time of the previous measurement, and

a value q. R is only determined by a value r. These two

parameters had to be set very carefully, as they have a strong

influence on the results of the Kalman filter. The values that

we used for our tracking setup are described in Sec. V-A.

When the algorithm receives a new set of measurements

at time k, it uses the Kalman filter to estimate the state of a

target xk and its error covariance P caused by the disturbance

noise:
xk = Axk−1

P k = APk−1A
T + Q

(3)

where Pk−1 is the error covariance at the previous time-step,

k − 1.

Based on the set of new measurements Zk, the algorithm

generates a set of hypotheses Ωk. Each hypothesis represents

a different assignment of a measurement to a target. To

prevent a combinatorial state explosion, a measurement is

only associated with a target, if the measurement lies within

a certain validation region surrounding the prediction. Other

optimizations are discussed in the next section. Since the mean

and the covariance of the target estimation are x and P , we can

write Eq. (2) as v = zk − Hxk, and calculate the covariance

of v as:

B = HP kHT + R (4)

A measurement zk lies with an ”η-sigma” validation region if

(zk − Hxk)T B−1(zk − Hxk) ≤ η2 (5)

After all hypotheses are generated, the probability of each

hypothesis Ωk
i is calculated as:

P k
i ≡ P (Ωk

i |Z
k) ≈

M
∏

m=1

f(zm) (6)

where M is the cardinality of the measurements set Zk and

f(zm) = N(zk − Hxk, B) (7)

in which N(x, P ) denotes the normal distribution

exp
[

− 1

2
xT P−1x

]

/
√

(2π)n[P ]. The values of x and B
are the Kalman filter’s estimates before time k, calculated

through equations (3) and (4).

When a hypotheses was chosen, the algorithm updates the

projected estimate of the state variables in the Kalman filter

as:
K = PHT R−1

xk = xk + K(zk − Hxk)
Pk = P − PHT (HPHT + R)−1HP

(8)

where K is called the Kalman gain. The values of xk and Pk

will be used in the calculation in the next time step k + 1.

B. Optimizations

The number of hypotheses can grow very quickly when

MHT is used. To enhance the tracking speed, we use the so

called zero-scan algorithm. After each time step, the zero-

scan algorithm only follows the hypothesis with the high-

est probability, and discards all other alternatives. Still, all

permutations of new location samples within the validation

region assigned to existing paths have to be considered, and

the corresponding probabilities have to be calculated. The

number of hypotheses to be checked mainly depends on

the density of the nodes in the simulation area. As we are



simulating an inner city traffic scenario, very high vehicle

densities can occur and therefore large numbers of hypotheses

have to be processed. In order to be able to calculate a

result with limited resources, the hypotheses tree has to be

reduced as much as possible. In traffic scenarios, most of

the combinations are obviously not possible, as the vehicles

are restricted by environment physical limitations. Samples

may not be reachable from the end of a specific path given

specific limitations on acceleration/deceleration or speed of

vehicles are neglected. Before the hypotheses for a sample are

generated, those with a probability below a certain threshold

are discarded. Moreover, paths (tracks) that were not extended

for some time are considered “dead” and they are no longer

taken into account.

We have implemented the described algorithm and we

applied it to data-sets of anonymized position samples created

through various mobility models and traces. The implemen-

tation allows us to track up to 175 vehicles in real time

on a common desktop computer (with a 2 GHz CPU). In

our simulation environment, experiments with more than 175

vehicles result in traffic jams and thus in vehicle density that

rises sharply on some road segments; this increases the delay

and memory needs for tracking. We describe our evaluation

setup and results next.

V. EVALUATION

In order to test the performance of our tracking approach,

we have conducted extensive simulations. Our evaluation setup

includes two steps: first, we use a discrete event simulator

and a vehicular mobility model to generate mobility traces.

Based on these traces, we create sample data containing

the anonymized position samples. In the second step, those

anonymized position samples are processed by our Multi-

Hypothesis Tracker. The tracker’s results are finally compared

to the original traces. As for the evaluation metric we use

the maximum period of time the tracker was able to correctly

reproduce the trace of each vehicle, averaged over all traces

in the simulation.

A. Simulation and Tracking Setup

Due to the lack of real-world data covering hundreds of

vehicles over a long period of time, we depend on traffic

simulations to produce the tracker input. For trace generation

we use the JiST/SWANS ad-hoc network simulator [1] in com-

bination with the STRAW vehicular mobility model [5]. This

combination has been found to simulate vehicular mobility

reasonably well [22].

STRAW simulates vehicle movements in traffic networks

composed of road segments, which are sub-divided into lanes.

Depending on the type of the street, there are traffic lights

and the amount of lanes in each direction and the maximum

speed differs. Vehicles moving on each lane are periodically

calculating the acceleration or deceleration for the next time

step. The calculation considers the free space to the preceding

vehicle within the actual or the next road segment. A vehicle

has to wait at the end of a segment, until there is room on a

Mobility model STRAW (urban/central Boston map)

Number of nodes 25 – 250

Fieldsize 1000 m x 1000 m
Simulation time 1000 seconds

Beacon rate 1 Hz (if not noted otherwise)

Max. node velocity 11− 26 m/s (road dependent)

Max. acceleration 2.23 m/s2

Max. deceleration 11.15 m/s2

Simulation runs 10 (per number of nodes)

TABLE I
OVERVIEW ON SIMULATION PARAMETERS.

lane in the following segment. To smoothen out the vehicle

movement, i.e., to avoid jumps between road segments, an

intersection area is defined in-between road segments. Vehicles

inside the intersection area are moving along Bézier curves

from one lane end to the starting point of another. There is

no collision recognition implemented, so vehicles crossing an

intersection at the same time may contact each other. Moving

on one road segment, vehicles cannot change lanes, thus

overtaking does not happen. But vehicles can change lanes

when entering a new road segment. On average, this happens

every few seconds, thus they are able to pass slower vehicles

on a neighboring lane.

Among the advantages of this setup are (i) the broad avail-

ability of map data (with the help of a converter, maps of the

TIGER2 format are supported), and (ii) the realistic simulation

of vehicle behavior according to the physical movements

of massive objects with limited acceleration. The fact that

vehicles sometimes drive through each other on intersections

makes it hard for the tracker to find the correct path in

the specific situation, so, keeping a safety distance between

vehicles would further improve tracking results. Table I lists

the most important configuration settings for the generation of

mobility traces. The resultant position data is then fed into the

Multi-Hypothesis Tracker. Our MHT implementation is widely

configurable and contains almost 50 different preference set-

tings. We tracked several thousands of single simulations to

learn about the influence of the different settings on tracking

success. Here we only want to introduce the ones that we

found to be most relevant.

The disturbance and measurement covariances (i.e. Q and

R) of the Kalman filter turned out to be a determining factor

for tracking accuracy. They are determined each by only one

variable (q and r), and we have tested different ranges in

our simulations. As shown in Fig. 2, it is mostly the ratio

of these two values that determines the tracking accuracy. The

tracking success is measured as the average of the duration of

each path that is correctly tracked, and it can be a fraction of

the total simulation duration. We found that if the disturbance

covariance gets too large, one can observe strong oscillations

in Kalman predictions and the results get almost random. If

the measurement covariance gets too large, then there is a

2Topologically Integrated Geographic Encoding and Referencing,
http://www.census.gov/geo/www/tiger/.
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Fig. 2. Effect of Kalman measurement and disturbance covariance on tracking
results.

strong attenuation of predictions and the system gets very

inert. As one can see in the figure, there is a plateau with

good tracking results from the point where parameters with

the right ratio have to be chosen, in order to get good tracking

results. Parameters need only to be adapted if, for example,

the position measurements are very noisy or the behavior of

the nodes becomes very unpredictable. Thus, q and r were

chosen statically for most of the simulations.

Other important parameters govern the behavior of the MHT

itself. In order to have an acceptable runtime performance,

one has to decide where and how to prune the hypothesis

tree. Too aggressive pruning reduces the tracking success,

whereas too lax pruning can increase the runtime by some

magnitudes, rendering tracking impractical. Another important

parameter called false samples is introduced to allow for

false correlations of single position samples to tracks. In our

simulations false samples is always set to 1. This means that

even though a track contains a single wrong position sample,

it is still considered as correctly tracked if it then continues

with the correct samples. This is needed for situations where

position samples of intersecting paths are located closely

together. Then, the tracker is not able to correctly distinguish

which sample belongs to which vehicle. However, as the two

vehicles continue their trip, the tracker is again able to tell

them apart.

B. Tracking Results

In our first evaluation, we want to check what tracking

results can be achieved for different beaconing rates. We

vary the beaconing rate and use a fresh pseudonym for every

message sent, so that the beacon messages are essentially

anonymous. Fig. 3 shows that for high beaconing rates (one

per second and faster) and for a lower number of vehicles the

tracking duration is about 800 seconds and above. This means

that on average any vehicle in the simulation is tracked for 800

seconds out of 1000. At higher vehicle densities, the average

tracking success goes down to about 700 seconds. Manual
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analysis of the simulations shows that wrong correlations

occur almost exclusively at intersections, where traces are

crossing each other. One could also observe that the variation

between simulation runs with same parameters increases, as

vehicle density increases. As higher vehicle density leads to a

higher probability of multiple vehicles being at an intersection

at the same time, this also increases the risk for tracking errors

and is the cause for the poorer performance.

For lower beacon rates, of one beacon per 2 seconds and

less, we see that the tracker performs much worse: there is

simply not enough data available to reliably track vehicles

through intersections. Beacon rates could be seen as one

way of ensuring privacy. However, as current field trials and

standardization activities assume a beaconing rate of 1 to 10

Hz, one cannot count on low beaconing rates for privacy

protection.

Up to now, we have assumed that vehicles change their

pseudonyms for every packet. However, current research on

VANET security suggests that vehicles will only have a limited

set of pseudonyms and will have to reuse each of them

for multiple packets (also for practical reasons due to the

IVC protocol functionality and applications) [16]. In Fig. 4,

vehicles are assumed to use a constant beacon rate of 1 Hz,

but to keep their pseudonym identifiers for intervals of up to

10 seconds, i.e. they reuse one pseudoynm for ten successive

packets before changing to another one. In reality, the reuse

periods of time might even be in the magnitude of minutes.

As one can see, pseudonym change intervals of 4 seconds and

above lead to almost 100 % tracking success: the vehicles were

tracked consistently during almost the whole simulation time

of 1000 seconds. Pseudonym change intervals are assumed to

be constant, but for short random time offset for each vehicle

to prevent ’synchronization’ effects.

Another effect could be that at least in the initial deployment

phase only a small percentage of vehicles will be equipped

with VANET communication units. Therefore, vehicles send-
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Fig. 4. Effect of pseudonym change interval (1 - 10 seconds) on tracking
results.

 0

 200

 400

 600

 800

 1000

 50  100  150  200  250

M
e
a
n
 t
ra

c
k
in

g
 d

u
ra

ti
o
n
 (

s
)

Vehicles

Variation of equipment rate

10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %

100 %

Fig. 5. Impact of equipment penetration rate (10 - 100 %) on tracking results.

ing beacon messages will be separated from other senders by

a large number of unequipped cars. This facilitates the tracker

(the adversary), as the tracks of equipped cars will cross only

rarely. As shown in Fig. 5 low equipment penetration rates,

when only 10 or 20 % of vehicles use VANET communication

units, lead to an average tracking duration of more than 900

seconds. Of course, only equipped cars are tracked in such a

scenario.

Finally, we want to analyze how noisy position informa-

tion influences the tracking success. Assuming ordinary GPS

receivers, the positions reported by cars might be off by

several meters. Fig. 6 assumes a scenario where the position

reported in beacon messages includes the exact coordinates

plus a random, normally distributed, value with σ up to 5

meters in a randomly chosen direction. The results show

that even a σ of 1 or 2 meters already reduces the tracking

success of our attacker very effectively. One has to note that

for many envisioned transportation safety applications, such

as intersection collision detection or lane change warning, a
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tracking results

very high positioning accuracy is required. Therefore vehicles

will very likely be equipped with high-end GPS receivers,

or use other mechanisms known from navigation systems to

enhance location accuracy. To use random noise for modeling

the GPS error is just an approximation. Usually the deviation

between the GPS and the real position does not vary randomly

from beacon to beacon, but is more constant over time. Just

for few situations, for example, due to interference with tall

buildings in city centers, the GPS error may change more

spontaneously. In case of the MHT, only varying deviation

effects the tracking results, as the tracker is working with

distances between locations and not on absolute positions. So

with real data, in most cases the tracker results will not be

severely decreased by location inaccuracy from GPS.

VI. CONCLUSION

To sum up our findings, in a scenario with vehicles sending

beacon messages at 1 Hz and changing their pseudonyms every

10 seconds and having an equipment rate of 20 %, an attacker

with the capabilities described in Sec. III can effectively track

vehicles and their drivers with an accuracy of almost 100 %

using the approach described in this paper. Lower beacon rates

and spatial noise of a certain level prevent a tracker from

connecting anonymous position samples to a continuous path.

But this would render the majority of transportation safety

applications – based on vehicular communication – useless,

because they require exact position information.

In contrast to results on tracking pedestrians, discussed

in Sec. II, vehicle tracking is significantly more effective.

Vehicles usually move very orderly along streets and mix

only at intersections and this makes the task of the attacker

comparatively easier. For our admittedly strong attacker, we

have shown that our tracking approach can be astonishingly

effective. Of course, pseudonymous approaches for VANETs

were proposed to thwart a partially present adversary. But

our results raise a valid question on the effectiveness of



pseudonymous (or even anonymous) schemes in VANETs and

the level of achievable location privacy protection.

For future work, we will investigate the effectiveness of

other tracking mechanisms, as well as different attacker

models. In particular, we consider weaker adversaries and

different variants; e.g., attackers that can collect a fraction

of IVC packets, or/and that they are restricted to certain

areas, or/and have other limitations on the quality of infor-

mation they have (e.g., time). Inversely, we will investigate

how enhance data processing methods could possibly lead

to effective tracking even for such lower quality location

data. Another item of future investigations that our results

motivate: enhanced privacy-enhancing mechanisms, as well as

evaluation of various privacy-related metrics. Overall, we hope

these results will contribute and inspire work that leads to a

more precise understanding of and mechanisms for improved

location privacy in VANETs.
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