ulm university universität

uulm

Reed–Solomon Codes over Fields of Characteristic Zero

Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert

ISIT 2019, Paris

NACHRICHTENTECHNIK Universität Ulm

July 10, 2019

Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert ISIT 2019, Paris

Motivation

 $\mathbf{x} \in \mathbb{F}^n$

 $\mathbf{A} \in \mathbb{F}^{m \times n}$

We know Reed–Solomon Codes over

- Elements are represented with a fixed number of bits
- Operations cost a constant number of bit operations

• Floating point operations are used

(

• Problem: Rounding errors

Aim

Reed–Solomon Codes over arbitrary fields with exact calculations during Encoding and Decoding.

Motivation

 $\mathbf{x} \in \mathbb{F}^n$

 $\mathbf{A} \in \mathbb{F}^{m \times n}$

We know Reed–Solomon Codes over

- Elements are represented with a fixed number of bits
- Operations cost a constant number of bit operations

• Floating point operations are used

[[]]

• Problem: Rounding errors

Aim

Reed–Solomon Codes over arbitrary fields with exact calculations during Encoding and Decoding.

GRS Codes over arbitrary Fields

Let K be a field and $k, n \in \mathbb{N}$ such that $k \leq n$. Choose $\alpha_1, \ldots, \alpha_n \in K \setminus \{0\}$ to be distinct and $v_1, \ldots, v_n \in K \setminus \{0\}$. We define the *generalized Reed–Solomon Code* $C_{\text{GRS}} \subseteq K^n$ with parity check matrix

$$\boldsymbol{H}_{\mathsf{Vandermonde}} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \vdots & \vdots & \dots & \vdots \\ \alpha_1^{n-k-1} & \alpha_2^{n-k-1} & \dots & \alpha_n^{n-k-1} \end{pmatrix} \begin{pmatrix} v_1 & & \\ & v_2 & & \\ & & \ddots & \\ & & & v_n \end{pmatrix}$$

GRS Codes over arbitrary Fields

,

A generator matrix is of the form

$$\boldsymbol{G}_{\mathsf{Vandermonde}} = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \vdots & \vdots & \dots & \vdots \\ \alpha_1^{k-1} & \alpha_2^{k-1} & \dots & \alpha_n^{k-1} \end{pmatrix} \begin{pmatrix} v_1' & & & \\ & v_2' & & \\ & & \ddots & \\ & & & v_n' \end{pmatrix}$$

where the $v_i' \in K \setminus \{0\},$ given by the following linear system of equations:

$$\sum_{i=1}^{n} \alpha_i^r v_i v_i' = 0 \quad \forall r = 0, \dots, n-2.$$

If the underlying field is of characteristic zero the coefficients during Encoding and Decoding will grow.

Example: Euclidean Algorithm

 $f_0, f_1 \in \mathbb{F}_{1789}[x] \qquad \qquad g_0, g_1 \in \mathbb{Q}[t]$

$$f_0(x) = x^{10} - 3 \qquad g_0(t) = t^{10} - 3 f_1(x) = 3x^9 - 2 \qquad g_1(t) = 3t^9 - 2$$

$$\begin{array}{ll} (x^{10}-3)/(3x^9-2) & (t^{10}-3)/(3t^9-2) \\ = 1193x \\ \text{Remainder: } 597x+1786 & = \frac{1}{3}t \\ \text{Remainder: } \frac{2}{3}t-3 \end{array}$$

3

Coefficient Growth

over Fields of Characteristic Zero

Example: Euclidean Algorithm - Step 2

$$\begin{aligned} (3x^9 - 2)/(597x + 1786) \\ &= 899x^8 + 1362x^7 + 762x^6 \\ &+ 1640x^5 + 224x^4 + 1008x^3 \\ &+ 958x^2 + 733x + 615 \\ \text{Remainder: 54} \end{aligned}$$

$$\begin{split} &(3t^9-2)/(\frac{2}{3}t-3)\\ &=\frac{9}{2}t^8+\frac{81}{4}t^7+\frac{729}{8}t^6+\frac{6561}{16}t^5\\ &+\frac{59049}{32}t^4+\frac{531441}{64}t^3\\ &+\frac{4782969}{128}t^2+\frac{43046721}{256}t\\ &+\frac{387420489}{512}\\ &\text{Remainder:}\;\frac{1162260443}{512} \end{split}$$

F

 $(597x + 1786)/54 \qquad (\frac{2}{3}t - 3)/\frac{1162260443}{512} \\ = 508x + 1292 \\ \text{Remainder: } 0 \qquad \qquad = \frac{1024}{3486781329}t - \frac{1536}{1162260443} \\ \text{Remainder: } 0$

Question:

Is it possible to derive bounds for the growth of the coefficients during Encoding and Decoding?

 \rightarrow Solution with the help of already known results from computer algebra.

 $(597x + 1786)/54 \qquad (\frac{2}{3}t - 3)/\frac{1162260443}{512} \\ = 508x + 1292 \\ \text{Remainder: } 0 \qquad \qquad = \frac{1024}{3486781329}t - \frac{1536}{1162260443} \\ \text{Remainder: } 0$

Question:

Is it possible to derive bounds for the growth of the coefficients during Encoding and Decoding?

 \rightarrow Solution with the help of already known results from computer algebra.

 $(597x + 1786)/54 \qquad (\frac{2}{3}t - 3)/\frac{1162260443}{512} \\ = 508x + 1292 \\ \text{Remainder: 0} \qquad = \frac{1024}{3486781329}t - \frac{1536}{1162260443} \\ \text{Remainder: 0} \\ \text{Remainder: 0}$

Question:

Is it possible to derive bounds for the growth of the coefficients during Encoding and Decoding?

 \rightarrow Solution with the help of already known results from computer algebra.

We define the *bit width* $\lambda(a)$: (Generalization of [vzGG13] p. 142) • $a \in \mathbb{Z}$:

$$\lambda(a) \coloneqq \begin{cases} \lfloor \log_2(|a|) \rfloor + 1, & \text{if } a \neq 0 \\ 0, & \text{if } a = 0 \end{cases}$$

• $a = \frac{b}{c} \in \mathbb{Q}$ with $b, c \in \mathbb{Z}$, $c \neq 0$, and gcd(b, c) = 1: $\lambda(a) := \max\{\lambda(b), \lambda(c)\}.$

Ulm University

• $a(x) = \sum_{i=0}^{r} \frac{a_i}{b} \cdot x^i \in \mathbb{Q}[x]$ with $a_i \in \mathbb{Z}$ and $b \in \mathbb{N} \setminus \{0\}$ such that $gcd(a_0, \ldots, a_r, b) = 1$:

 $\lambda(a(x)) \coloneqq \max\{\lambda(a_0), \dots, \lambda(a_r), \lambda(b)\}.$

• NEW: $\mathbf{A} = (a_{ij}) \in \mathbb{Q}^{k \times r}$

 $\lambda(\mathbf{A}) = \max\{\lambda(a_{ij}) : i = 1, \dots, k \text{ and } j = 1, \dots, r\}.$

We define the *bit width* $\lambda(a)$: (Generalization of [vzGG13] p. 142) • $a \in \mathbb{Z}$:

$$\lambda(a) \coloneqq \begin{cases} \lfloor \log_2(|a|) \rfloor + 1, & \text{if } a \neq 0\\ 0, & \text{if } a = 0 \end{cases}$$

•
$$a = \frac{b}{c} \in \mathbb{Q}$$
 with $b, c \in \mathbb{Z}$, $c \neq 0$, and $gcd(b, c) = 1$:
 $\lambda(a) \coloneqq \max\{\lambda(b), \lambda(c)\}.$

Ulm University

• $a(x) = \sum_{i=0}^{r} \frac{a_i}{b} \cdot x^i \in \mathbb{Q}[x]$ with $a_i \in \mathbb{Z}$ and $b \in \mathbb{N} \setminus \{0\}$ such that $gcd(a_0, \ldots, a_r, b) = 1$:

$$\lambda(a(x)) \coloneqq \max\{\lambda(a_0), \dots, \lambda(a_r), \lambda(b)\}.$$

• NEW:
$$\mathbf{A} = (a_{ij}) \in \mathbb{Q}^{k \times r}$$
:

 $\lambda(\mathbf{A}) = \max\{\lambda(a_{ij}) : i = 1, \dots, k \text{ and } j = 1, \dots, r\}.$

We define the *bit width* $\lambda(a)$: (Generalization of [vzGG13] p. 142) • $a \in \mathbb{Z}$:

$$\lambda(a) \coloneqq \begin{cases} \lfloor \log_2(|a|) \rfloor + 1, & \text{if } a \neq 0 \\ 0, & \text{if } a = 0 \end{cases}$$

•
$$a = \frac{b}{c} \in \mathbb{Q}$$
 with $b, c \in \mathbb{Z}$, $c \neq 0$, and $gcd(b, c) = 1$:
 $\lambda(a) \coloneqq \max{\lambda(b), \lambda(c)}.$

Ulm University

• $a(x) = \sum_{i=0}^{r} \frac{a_i}{b} \cdot x^i \in \mathbb{Q}[x]$ with $a_i \in \mathbb{Z}$ and $b \in \mathbb{N} \setminus \{0\}$ such that $gcd(a_0, \dots, a_r, b) = 1$: $\lambda(a(x)) \coloneqq \max\{\lambda(a_0), \dots, \lambda(a_r), \lambda(b)\}.$

• NEW:
$$A = (a_{ij}) \in \mathbb{Q}^{k \times r}$$
:
 $\lambda(A) = \max\{\lambda(a_{ij}) : i = 1, \dots, k \text{ and } j = 1, \dots, r\}.$

We define the *bit width* $\lambda(a)$: (Generalization of [vzGG13] p. 142) • $a \in \mathbb{Z}$:

$$\lambda(a) \coloneqq \begin{cases} \lfloor \log_2(|a|) \rfloor + 1, & \text{if } a \neq 0 \\ 0, & \text{if } a = 0 \end{cases}$$

•
$$a = \frac{b}{c} \in \mathbb{Q}$$
 with $b, c \in \mathbb{Z}$, $c \neq 0$, and $gcd(b, c) = 1$:
 $\lambda(a) \coloneqq \max{\lambda(b), \lambda(c)}.$

Ulm University

• $a(x) = \sum_{i=0}^{r} \frac{a_i}{b} \cdot x^i \in \mathbb{Q}[x]$ with $a_i \in \mathbb{Z}$ and $b \in \mathbb{N} \setminus \{0\}$ such that $gcd(a_0, \dots, a_r, b) = 1$: $\lambda(a(x)) \coloneqq \max\{\lambda(a_0), \dots, \lambda(a_r), \lambda(b)\}.$

• NEW:
$$A = (a_{ij}) \in \mathbb{Q}^{k \times r}$$
:
 $\lambda(A) = \max\{\lambda(a_{ij}) : i = 1, \dots, k \text{ and } j = 1, \dots, r\}.$

Ulm University

Institute of Communications Engineering

The bit width - a Measure of Coefficient Growth

(i)
$$\lambda(127) = \lfloor \log_2(|127|) \rfloor + 1 = 7$$

(ii) $\lambda(\frac{3}{64}) = \max\{\underbrace{\lambda(3)}_{\lfloor \log_2(|3|) \rfloor + 1}, \underbrace{\lambda(64)}_{\lfloor \log_2(|64|) \rfloor + 1} \} = \max\{1, 7\} = 7$
(iii) $\lambda(2x^3 + \frac{2}{5}x^2 + \frac{1}{8}) = \lambda(\underbrace{\frac{80x^3 + 16x^2 + 5}{40}}_{=\max}) = \max\{\lambda(80), \lambda(16), \lambda(5), \lambda(40)\} = \lambda(80) = \lfloor \log_2(|80|) \rfloor + 1 = 7$

The bit width - a Measure of Coefficient Growth The Street G

(i)
$$\lambda(127) = \lfloor \log_2(|127|) \rfloor + 1 = 7$$

(ii) $\lambda(\frac{3}{64}) = \max\{\underbrace{\lambda(3)}_{\lfloor \log_2(|3|) \rfloor + 1}, \underbrace{\lambda(64)}_{\lfloor \log_2(|64|) \rfloor + 1}\} = \max\{1, 7\} = 7$
(iii) $\lambda(2x^3 + \frac{2}{5}x^2 + \frac{1}{8}) = \lambda(\underbrace{\frac{80x^3 + 16x^2 + 5}{40}}_{=\max}) = \max\{\lambda(80), \lambda(16), \lambda(5), \lambda(40)\} = \lambda(80) = \lfloor \log_2(|80|) \rfloor + 1 = 7$

The bit width - a Measure of Coefficient Growth

Institute of Communications Engineering

Ulm University

(i)
$$\lambda(127) = \lfloor \log_2(|127|) \rfloor + 1 = 7$$

(ii) $\lambda(\frac{3}{64}) = \max\{\underbrace{\lambda(3)}_{\lfloor \log_2(|3|) \rfloor + 1}, \underbrace{\lambda(64)}_{\lfloor \log_2(|64|) \rfloor + 1}\} = \max\{1, 7\} = 7$
(iii) $\lambda(2x^3 + \frac{2}{5}x^2 + \frac{1}{8}) = \lambda(\frac{80x^3 + 16x^2 + 5}{40})$
 $= \max\{\lambda(80), \lambda(16), \lambda(5), \lambda(40)\}$
 $= \lambda(80) = \lfloor \log_2(|80|) \rfloor + 1 = 7$

over the Rational Numbers

Bound for the bit width of the codeword

Let c be an RS codeword generated by encoding $u \in \mathbb{Q}^k$ with generator matrix $G \in \mathbb{Q}^{k imes n}$. Then

 $\lambda(\boldsymbol{c}) \leq k(\lambda(\boldsymbol{u}) + \lambda(\boldsymbol{G}) + 1).$

Generator Matrix in systematic form [RS85, Theorem 1]

$$\begin{array}{l} \mathcal{C}_{\mathrm{GRS}} \text{ has a systematic generator matrix of the form} \\ \boldsymbol{G}_{\mathsf{sys}} = (\boldsymbol{I}_{k \times k} \mid \boldsymbol{A}) \text{, where } \boldsymbol{A} = \left(\frac{c_i d_j}{a_i - b_j}\right) \text{ is a Cauchy matrix with} \\ a_i, b_j, c_i, d_j \text{ dependent on } \alpha_i \text{ and} \\ v'_i \quad \forall i = 1, \dots, k, \quad j = 1, \dots, n - k. \end{array}$$

over the Rational Numbers

Bound for the bit width of the codeword

Let c be an RS codeword generated by encoding $u \in \mathbb{Q}^k$ with generator matrix $G \in \mathbb{Q}^{k \times n}$. Then

 $\lambda(\boldsymbol{c}) \leq k(\lambda(\boldsymbol{u}) + \lambda(\boldsymbol{G}) + 1).$

Generator Matrix in systematic form [RS85, Theorem 1]

 $\begin{array}{l} \mathcal{C}_{\mathrm{GRS}} \text{ has a systematic generator matrix of the form} \\ \boldsymbol{G}_{\mathsf{sys}} = (\boldsymbol{I}_{k \times k} \mid \boldsymbol{A}) \text{, where } \boldsymbol{A} = \left(\frac{c_i d_j}{a_i - b_j}\right) \text{ is a Cauchy matrix with} \\ a_i, b_j, c_i, d_j \text{ dependent on } \alpha_i \text{ and} \\ v'_i \quad \forall i = 1, \dots, k, \quad j = 1, \dots, n-k. \end{array}$

over the Rational Numbers

Bound for the bit width of the codeword

Let c be an RS codeword generated by encoding $u \in \mathbb{Q}^k$ with generator matrix $G \in \mathbb{Q}^{k \times n}$. Then

$$\lambda(\boldsymbol{c}) \leq k(\lambda(\boldsymbol{u}) + \lambda(\boldsymbol{G}) + 1).$$

Generator Matrix in systematic form [RS85, Theorem 1]

$$\begin{array}{l} \mathcal{C}_{\mathrm{GRS}} \text{ has a systematic generator matrix of the form} \\ \boldsymbol{G}_{\mathsf{sys}} = (\boldsymbol{I}_{k \times k} \mid \boldsymbol{A}) \text{, where } \boldsymbol{A} = \left(\frac{c_i d_j}{a_i - b_j}\right) \text{ is a Cauchy matrix with} \\ a_i, b_j, c_i, d_j \text{ dependent on } \alpha_i \text{ and} \\ v'_i \quad \forall i = 1, \ldots, k, \quad j = 1, \ldots, n - k. \\ \rightarrow \lambda(\boldsymbol{G}) \text{ small} \end{array}$$

over the Rational Numbers

Bound for the bit width of the codeword

Let c be an RS codeword generated by encoding $u \in \mathbb{Q}^k$ with generator matrix $G \in \mathbb{Q}^{k \times n}$. Then

$$\lambda(\boldsymbol{c}) \leq k(\lambda(\boldsymbol{u}) + \lambda(\boldsymbol{G}) + 1).$$

Generator Matrix in systematic form [RS85, Theorem 1]

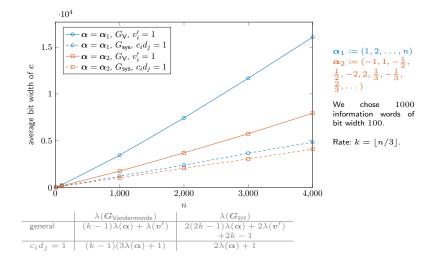
 $\begin{array}{l} \mathcal{C}_{\mathrm{GRS}} \text{ has a systematic generator matrix of the form} \\ \boldsymbol{G}_{\mathsf{sys}} = (\boldsymbol{I}_{k \times k} \mid \boldsymbol{A}) \text{, where } \boldsymbol{A} = \left(\frac{c_i d_j}{a_i - b_j}\right) \text{ is a Cauchy matrix with} \\ a_i, b_j, c_i, d_j \text{ dependent on } o_i \text{ and} \\ v'_i \quad \forall i = 1, \dots, k, \quad j = 1, \dots, n - k. \\ \rightarrow \lambda(\boldsymbol{G}) \text{ small} \end{array}$

over the Rational Numbers

Comparison of systematic and non-systematic Encoding

 $\label{eq:constraint} \begin{array}{c|c} \mbox{For a special choice of } {\bf v}' \mbox{ we get } \lambda({\bf G}_{\rm sys}) < \lambda({\bf G}_{\rm Vandermonde}) \\ \hline {\bf Upper Bounds for the bit width of the Generatormatix} \\ \hline { & \lambda({\bf G}_{\rm Vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm Vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm Vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm Vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm Vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm vandermonde}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm sys}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm sys}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm sys}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm sys}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm sys}) & \lambda({\bf G}_{\rm sys}) \\ \hline { & \lambda({\bf G}_{\rm sys}$

over the Rational Numbers



over the Rational Numbers (Generalization of [Rot06] Chapter 6)

Algorithm 1: Decoding Algorithm for GRS Codes over \mathbb{Q}

Input: Received Word r = c + e, where $c \in C_{\text{GRS}}$ and $\operatorname{wt}_{\mathrm{H}}(e) \leq \lfloor \frac{n-k}{2} \rfloor$. **Output:** Codeword *c* 1 $s \leftarrow r H_{Vandermonde}^{\top}$ 2 $S(x) \leftarrow \sum_{i=0}^{d-2} s_i x^i$ $\xi \leftarrow \operatorname{lcm}(\operatorname{den}(s_0), \ldots, \operatorname{den}(s_{d-2}))$ 4 $(r_h, s_h, t_h) \leftarrow \text{EEA}(\xi \cdot x^{d-1}, \xi \cdot S(x), \frac{d-1}{2}) // \text{ implementation of}$ [vzGG13, Algorithm 6.57] 5 $c \leftarrow 0^{\text{th}}$ coefficient of t_h 6 $(\Lambda(x), \Omega(x)) \leftarrow c^{-1} \cdot (t_h, \frac{r_h}{\xi})$ 7 $\Lambda'(x) \leftarrow \sum_{i>0} i\Lambda_i x^{i-1}$ s $e_i \leftarrow -\frac{\alpha_i}{v_i} \frac{\Omega(\alpha_i^{-1})}{\Lambda'(\alpha_i^{-1})}$ for $i = 1, \dots, n$ 9 return c = r - e

over the Rational Numbers

Bit width of the Syndrome

Let r = c + e be a received word, $s = r H_{Vandermonde}^{\top}$ the syndrome and $\tau = wt_H(e)$. For the bit width of s we get the following bound:

 $\lambda(\boldsymbol{s}) \leq \tau(\lambda(\boldsymbol{e}) + \lambda(\boldsymbol{H}_{\mathsf{Vandermonde}}) + 1).$

over the Rational Numbers

Complexity of the Algorithm

• The complexity in bit operations is

$$O^{\sim} \Big(d^7 \big[\lambda(\boldsymbol{e}) + \lambda(\boldsymbol{H}_{\text{GRS}}) \big]^2 + n^4 [\lambda(\boldsymbol{c}) + \lambda(\boldsymbol{e}) + \lambda(\boldsymbol{H}_{\text{GRS}})] \Big).$$

• If the error e has bit width at most t, codeword c at most t'and α is chosen choosen such that $\lambda(\alpha) \in O(\log(n))$ (e.g., α_1 or α_2) then Algorithm 1 can be implemented in

$$O^{\sim}(\max\{n^{7}t^{2}, n^{9}, n^{4}t'\})$$

bit operations.

over the Rational Numbers

Complexity of the Algorithm

• The complexity in bit operations is

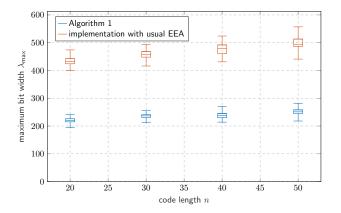
$$O^{\sim} \Big(d^7 \big[\lambda(\boldsymbol{e}) + \lambda(\boldsymbol{H}_{\mathrm{GRS}}) \big]^2 + n^4 [\lambda(\boldsymbol{c}) + \lambda(\boldsymbol{e}) + \lambda(\boldsymbol{H}_{\mathrm{GRS}})] \Big).$$

• If the error e has bit width at most t, codeword c at most t'and α is chosen choosen such that $\lambda(\alpha) \in O(\log(n))$ (e.g., α_1 or α_2) then Algorithm 1 can be implemented in

$$O^{\sim}(\max\{n^{7}t^{2}, n^{9}, n^{4}t'\})$$

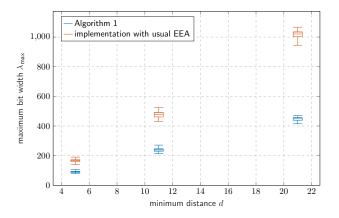
bit operations.

Comparison of the maximum bit width $\lambda_{\rm max}$ for Decoding using different Variants of the EEA



We chose $\lambda({\bm e})=40,\,d=11$ For each point 100 simulations were carried out

Comparison of the maximum bit width $\lambda_{\rm max}$ for Decoding using different Variants of the EEA



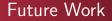
We chose $\lambda({\pmb e})=40$ and n=40 For each point 100 simulations were carried out

• Properties of Reed–Solomon Codes over \mathbb{F}_q also hold over arbitrary fields

- \bullet Over ${\mathbb Q}$ there exist bounds for the coefficient growth during encoding
- Over Q decoding up to half-the-minimum distance is possible in a polynomial number of bit operations

- Properties of Reed–Solomon Codes over \mathbb{F}_q also hold over arbitrary fields
- \bullet Over ${\mathbb Q}$ there exist bounds for the coefficient growth during encoding
- Over Q decoding up to half-the-minimum distance is possible in a polynomial number of bit operations

- Properties of Reed–Solomon Codes over \mathbb{F}_q also hold over arbitrary fields
- \bullet Over ${\mathbb Q}$ there exist bounds for the coefficient growth during encoding
- Over \mathbb{Q} decoding up to half-the-minimum distance is possible in a polynomial number of bit operations



- \bullet Extension of the results to more classes of number fields, for instance $\mathbb{Q}[i].$
- Consider other decoding algorithms, e.g. Berlekamp-Welch, Berlekamp-Massey or list decoding approaches
- Reduction of the computation modulo a prime by decomposing the number field into prime ideals such as in [ALR17]
- Determine the bit complexity of Decoding algorithms for Gabidulin codes over characteristic zero with the same methods.

Future Work

- \bullet Extension of the results to more classes of number fields, for instance $\mathbb{Q}[i].$
- Consider other decoding algorithms, e.g. Berlekamp-Welch, Berlekamp-Massey or list decoding approaches
- Reduction of the computation modulo a prime by decomposing the number field into prime ideals such as in [ALR17]
- Determine the bit complexity of Decoding algorithms for Gabidulin codes over characteristic zero with the same methods.

Future Work

- \bullet Extension of the results to more classes of number fields, for instance $\mathbb{Q}[i].$
- Consider other decoding algorithms, e.g. Berlekamp-Welch, Berlekamp-Massey or list decoding approaches
- Reduction of the computation modulo a prime by decomposing the number field into prime ideals such as in [ALR17]
- Determine the bit complexity of Decoding algorithms for Gabidulin codes over characteristic zero with the same methods.

Future Work

- \bullet Extension of the results to more classes of number fields, for instance $\mathbb{Q}[i].$
- Consider other decoding algorithms, e.g. Berlekamp-Welch, Berlekamp-Massey or list decoding approaches
- Reduction of the computation modulo a prime by decomposing the number field into prime ideals such as in [ALR17]
- Determine the bit complexity of Decoding algorithms for Gabidulin codes over characteristic zero with the same methods.

References

- [ALR17] Daniel Augot, Pierre Loidreau, and Gwezheneg Robert. Generalized Gabidulin Codes Over Fields of Any Characteristic. Des. Codes Cryptogr., pages 1–42, 2017.
- [Rot06] Ron M. Roth. Introduction to Coding Theory. Cambridge UP, 2006.
- [RS85] Ron M Roth and Gadiel Seroussi. On Generator Matrices of MDS Codes. IEEE Trans. Inf. Theory, 31(6):826–830, November 1985.
- [SOPB19] Carmen Sippel, Cornelia Ott, Sven Puchinger, and Martin Bossert. Reed-Solomon Codes over Fields of Characteristic Zero, 2019. Available at https://nt.uni-ulm.de/sippelottpuchrs2019extended.
- [vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge university press, 2013.