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Motivation A NACHRICHTENTECHNIK

We know Reed–Solomon Codes over

Fq C
Elements are represented with
a fixed number of bits

Operations cost a constant
number of bit operations

Floating point operations are
used

Problem: Rounding errors
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Reed–Solomon Codes over arbitrary fields with exact calculations during
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GRS Codes over arbitrary Fields A NACHRICHTENTECHNIK

Definition: Generalization of Definition 5.1.1 in [Rot06]

Let K be a field and k, n ∈ N such that k ≤ n. Choose
α1, . . . , αn ∈ K\{0} to be distinct and v1, . . . , vn ∈ K \ {0}. We
define the generalized Reed–Solomon Code CGRS ⊆ Kn with parity
check matrix

HVandermonde =


1 1 . . . 1
α1 α2 . . . αn
...

... . . .
...

αn−k−1
1 αn−k−1

2 . . . αn−k−1
n



v1
v2

. . .

vn

 .
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GRS Codes over arbitrary Fields A NACHRICHTENTECHNIK

Generator Matrix

A generator matrix is of the form

GVandermonde =


1 1 . . . 1
α1 α2 . . . αn
...

... . . .
...

αk−1
1 αk−1

2 . . . αk−1
n



v′1

v′2
. . .

v′n

 ,

where the v′i ∈ K \ {0}, given by the following linear system of
equations:

n∑
i=1

αr
i viv

′
i = 0 ∀ r = 0, . . . , n− 2 .
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Coefficient Growth A NACHRICHTENTECHNIK

over Fields of Characteristic Zero

If the underlying field is of characteristic zero the coefficients
during Encoding and Decoding will grow.

Example: Euclidean Algorithm

f0, f1 ∈ F1789[x] g0, g1 ∈ Q[t]

f0(x) = x10 − 3

f1(x) = 3x9 − 2

g0(t) = t10 − 3

g1(t) = 3t9 − 2

Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert ISIT 2019, Paris 5
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Coefficient Growth A NACHRICHTENTECHNIK

over Fields of Characteristic Zero

Example: Euclidean Algorithm - Step 1

(x10 − 3)/(3x9 − 2)

= 1193x

Remainder: 597x+ 1786

(t10 − 3)/(3t9 − 2)

=
1

3
t

Remainder:
2

3
t− 3
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Coefficient Growth A NACHRICHTENTECHNIK

over Fields of Characteristic Zero

Example: Euclidean Algorithm - Step 2

(3x9 − 2)/(597x+ 1786)

= 899x8 + 1362x7 + 762x6

+ 1640x5 + 224x4 + 1008x3

+ 958x2 + 733x+ 615

Remainder: 54

(3t9 − 2)/(
2

3
t− 3)

=
9

2
t8 +

81

4
t7 +

729

8
t6 +

6561

16
t5

+
59049

32
t4 +

531441

64
t3

+
4782969

128
t2 +

43046721

256
t

+
387420489

512

Remainder:
1162260443

512
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Coefficient Growth A NACHRICHTENTECHNIK

over Fields of Characteristic Zero

Example: Euclidean Algorithm - Step 3

(597x+ 1786)/54

= 508x+ 1292

Remainder: 0

(
2

3
t− 3)/

1162260443

512

=
1024

3486781329
t− 1536

1162260443
Remainder: 0

Question:

Is it possible to derive bounds for the growth of the coefficients
during Encoding and Decoding?

→ Solution with the help of already known results from computer
algebra.

Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert ISIT 2019, Paris 8
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The bit width - a Measure of Coefficient GrowthA NACHRICHTENTECHNIK

We define the bit width λ(a): (Generalization of [vzGG13] p. 142)

a ∈ Z:

λ(a) :=

{
blog2(|a|)c+ 1, if a 6= 0

0, if a = 0

a = b
c ∈ Q with b, c ∈ Z, c 6= 0, and gcd(b, c) = 1:

λ(a) := max{λ(b), λ(c)}.

a(x) =
∑r

i=0
ai
b · x

i ∈ Q[x] with ai ∈ Z and b ∈ N \ {0} such
that gcd(a0, . . . , ar, b) = 1:

λ(a(x)) := max{λ(a0), . . . , λ(ar), λ(b)}.

NEW: A = (aij) ∈ Qk×r:

λ(A) = max{λ(aij) : i = 1, . . . , k and j = 1, . . . , r}.
Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert ISIT 2019, Paris 9
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The bit width - a Measure of Coefficient GrowthA NACHRICHTENTECHNIK

Examples

(i) λ(127) = blog2(|127|)c+ 1 = 7

(ii) λ( 3
64) = max{ λ(3)︸︷︷︸

blog2(|3|)c+1

, λ(64)︸ ︷︷ ︸
blog2(|64|)c+1

} = max{1, 7} = 7

(iii) λ(2x3 + 2
5x

2 + 1
8) = λ(80x

3+16x2+5
40 )

= max{λ(80), λ(16), λ(5), λ(40)}
= λ(80) = blog2(|80|)c+ 1 = 7

Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert ISIT 2019, Paris 10
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Coefficient Growth in Encoding A NACHRICHTENTECHNIK

over the Rational Numbers

Bound for the bit width of the codeword

Let c be an RS codeword generated by encoding u ∈ Qk with
generator matrix G ∈ Qk×n. Then

λ(c) ≤ k(λ(u) + λ(G) + 1).

Generator Matrix in systematic form [RS85, Theorem 1]

CGRS has a systematic generator matrix of the form

Gsys = (Ik×k | A), where A =
(

cidj
ai−bj

)
is a Cauchy matrix with

ai, bj , ci, dj dependent on αi and
v′i ∀i = 1, . . . , k, j = 1, . . . , n− k.

→ λ(G) small

Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert ISIT 2019, Paris 11
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Coefficient Growth in Encoding A NACHRICHTENTECHNIK

over the Rational Numbers

Comparison of systematic and non-systematic Encoding

For a special choice of v′ we get λ(Gsys) < λ(GVandermonde)
Upper Bounds for the bit width of the Generatormatix

λ(GVandermonde) λ(Gsys)

general (k − 1)λ(α) + λ(v′) 2(2k − 1)λ(α) + 2λ(v′)
+2k − 1

cidj = 1 (k − 1)(3λ(α) + 1) 2λ(α) + 1

Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert ISIT 2019, Paris 12



Ulm University Institute of Communications Engineering

Coefficient Growth in Encoding A NACHRICHTENTECHNIK

over the Rational Numbers
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of
c

α = α1, GV, v′i = 1
α = α1, Gsys, cidj = 1

α = α2, GV, v′i = 1
α = α2, Gsys, cidj = 1

α1 := (1, 2, . . . , n)

α2 := (−1, 1,− 1
2
,

1
2
,−2, 2, 1

3
,− 1

3
,

2
3
, . . . )

We chose 1000
information words of
bit width 100.

Rate: k = bn/3c.

λ(GVandermonde) λ(Gsys)

general (k − 1)λ(α) + λ(v′) 2(2k − 1)λ(α) + 2λ(v′)
+2k − 1

cidj = 1 (k − 1)(3λ(α) + 1) 2λ(α) + 1
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Coefficient Growth in Decoding A NACHRICHTENTECHNIK

over the Rational Numbers (Generalization of [Rot06] Chapter 6)

Algorithm 1: Decoding Algorithm for GRS Codes over Q

Input: Received Word r = c+ e, where c ∈ CGRS and wtH(e) ≤ bn−k2 c.
Output: Codeword c

1 s← rH>Vandermonde

2 S(x)←
∑d−2
i=0 six

i

3 ξ ← lcm(den(s0), . . . ,den(sd−2))

4 (rh, sh, th)← EEA(ξ · xd−1, ξ · S(x), d−1
2 ) // implementation of

[vzGG13, Algorithm 6.57]

5 c← 0th coefficient of th
6 (Λ(x),Ω(x))← c−1 · (th, rhξ )

7 Λ′(x)←
∑
i>0 iΛix

i−1

8 ei ← −αi

vi

Ω(α−1
i )

Λ′(α−1
i )

for i = 1, . . . , n

9 return c = r − e

Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert ISIT 2019, Paris 14



Ulm University Institute of Communications Engineering

Coefficient Growth in Decoding A NACHRICHTENTECHNIK

over the Rational Numbers

Bit width of the Syndrome

Let r = c+ e be a received word, s = rH>Vandermonde the
syndrome and τ = wtH(e). For the bit width of s we get the
following bound:

λ(s) ≤ τ(λ(e) + λ(HVandermonde) + 1).

Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert ISIT 2019, Paris 15
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Coefficient Growth in Decoding A NACHRICHTENTECHNIK

over the Rational Numbers

Complexity of the Algorithm

The complexity in bit operations is

O∼
(
d7
[
λ(e) + λ(HGRS)

]2
+ n4[λ(c) + λ(e) + λ(HGRS)]

)
.

If the error e has bit width at most t, codeword c at most t′

and α is chosen choosen such that λ(α) ∈ O(log(n)) (e.g.,
α1 or α2) then Algorithm 1 can be implemented in

O∼
(
max{n7t2, n9, n4t′}

)
bit operations.

Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert ISIT 2019, Paris 16
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Coefficient Growth in Decoding A NACHRICHTENTECHNIK

Comparison of the maximum bit width λmax for Decoding using different Variants of the
EEA
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Algorithm 1
implementation with usual EEA

We chose λ(e) = 40, d = 11
For each point 100 simulations were carried out
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Coefficient Growth in Decoding A NACHRICHTENTECHNIK

Comparison of the maximum bit width λmax for Decoding using different Variants of the
EEA
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Conclusion A NACHRICHTENTECHNIK

Properties of Reed–Solomon Codes over Fq also hold over
arbitrary fields

Over Q there exist bounds for the coefficient growth during
encoding

Over Q decoding up to half-the-minimum distance is possible
in a polynomial number of bit operations

Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert ISIT 2019, Paris 19
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Future Work A NACHRICHTENTECHNIK

Extension of the results to more classes of number fields, for
instance Q[i].

Consider other decoding algorithms, e.g. Berlekamp-Welch,
Berlekamp-Massey or list decoding approaches

Reduction of the computation modulo a prime by
decomposing the number field into prime ideals such as in
[ALR17]

Determine the bit complexity of Decoding algorithms for
Gabidulin codes over characteristic zero with the same
methods.

Carmen Sippel, Cornelia Ott, Sven Puchinger, Martin Bossert ISIT 2019, Paris 20
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