

Prof. Dr.-Ing. Martin Bossert M.Sc. Cornelia Ott / M.Sc. Jiongyue Xing Exercise sheet 5

Task 5.1 (MAP- and ML-Decoding)

Consider a binary source with probabilities f(0) = 0.75 and f(1) = 0.25 and no source coding. The source symbols are given as blocks of length 3 *bit* which are encoded using a triple bit parity check code C(6,3,2). The generator matrix G of the code C is given as

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

After transmission over a BSC with error probability p the word y = (111011) is received.

a) Give the maximal number of detectable and correctable errors of the code \mathcal{C} .

- b) Decode the word y in the code \mathcal{C} by minimizing the Hamming-distance.
- c) Decode the word y in the code C using ML-decoding, with respect to p.

Assume the encoded sequence was part of the subset $M = \{(000), (100), (110), (111)\}$. Let $C_M = \{c = i \cdot G \mid i \in M\}$ be the corresponding subset of the code C and let p = 1/3.

d) Decode the word y in \mathcal{C}_M using MAP-Decoding.

Task 5.2 (Reed-Muller Codes and Incremental Redundancy)

Let \mathcal{C} be the Reed-Muller Code $\mathcal{R}(1,3)$. Let $i = (i_1 \ i_2 \ i_3 \ i_4)$ be the information bits.

c

a) Give a generator matrix of the code \mathcal{C} such that

$$\begin{aligned} (i_1 \ i_2 \ i_3) &\to u \\ i_4 &\to v \\ &= (u|u+v) \,. \end{aligned}$$

- b) Transform your matrix into a generator matrix for a punctured code at positions $\{2, 6\}$.
- c) Consider a punctured code at positions $\{5,6,7,8\}.$ Give the name and parameters of this code.

Consider a transmission scheme using the punctured code C_p from b). Let the received word be $y_1 = (101011)$ and the incremental redundancy be $y_2 = (01)$.

- d) Compare the number of errors that code C can correct to the number of errors that code C_p can detect.
- e) Decode y_1 in \mathcal{C}_p with the help of y_2 (if needed).