

Solution to Task 5.1 (MAP- and ML-Decoding)

- a) The number of detectable errors is d 1 = 1, the number of correctable errors is $\lfloor \frac{d-1}{2} \rfloor = 0$. This means a bounded minimum distance decoder (BMD) can not correct any errors.
- b) The Hamming-distances of y = (111011) to the codewords $c \in C$ are given by the following table.

c	c-y	wt(c-y)
000000	111011	5
001111	110100	3
010111	101100	3
100111	011100	3
110000	001011	3
101000	010011	3
011000	100011	3
111111	000100	1

Hence the decoding decision is

$$\hat{c} = \arg\min_{c} \left\{ wt(c-y) \right\} = (111111).$$

c) The conditional probabilities $f_{Y|C}(y|c)$ for $c \in C$ are given in the following table.

С	c-y	$f_{Y C}(y c)$
000000	111011	$p^5 \cdot (1-p)$
001111	110100	$p^3 \cdot (1-p)^3$
010111	101100	$p^3 \cdot (1-p)^3$
100111	011100	$p^3 \cdot (1-p)^3$
110000	001011	$p^3 \cdot (1-p)^3$
101000	010011	$p^3 \cdot (1-p)^3$
011000	100011	$p^3 \cdot (1-p)^3$
111111	000100	$p \cdot (1-p)^5$

Case 1: For $0 \le p < \frac{1}{2}$ we have

$$p^5 \cdot (1-p) < p^3 \cdot (1-p)^3 < p \cdot (1-p)^5$$

and thus the decoder is equal to the decoder given in part b).

$$\hat{c} = \arg\max_{c} \left\{ f_{Y|C}(y|c) \right\} = \arg\min_{c} \left\{ wt(c-y) \right\} = (111111).$$

Institute of Communications Engineering, SS 2019

Case 2: For $\frac{1}{2} we have$

 $p \cdot (1-p)^5 < p^3 \cdot (1-p)^3 < p^5 \cdot (1-p)$

and thus the decoder is equal to the inverse of decoder given in part b). The decision is

$$\hat{c} = \arg\max_{c} \left\{ f_{Y|C}(y|c) \right\} = \arg\max_{c} \left\{ wt(c-y) \right\} = (000000)$$

d) The values $f_{Y|C}(y|c) \cdot f_C(c)$ for $c \in \mathcal{C}_M$ and $p = \frac{1}{3}$ are given in the following table.

i	c	c-y	$\int f_{Y C}(y c)$	$f_C(c)$	$f_{Y C}(y c) \cdot f_C(c)$
000	000000	111011	$\frac{1}{3}^{5} \cdot \frac{2}{3}$	0.75^{3}	0.0012
100	100111	011100	$\frac{1}{3}^{3} \cdot \frac{2}{3}^{3}$	$0.75^2 \cdot 0.25$	0.0015
110	110000	001011	$\frac{1}{3}^{3} \cdot \frac{2}{3}^{3}$	$0.75\cdot 0.25^2$	0.0005
111	111111	000100	$\frac{1}{3} \cdot \frac{2}{3}^5$	0.25^{3}	0.0007

The decision is

$$\hat{c} = \arg\max_{c} \left\{ f_{Y|C}(y|c) \cdot f_{C}(c) \right\} = (100111)$$

which is not equivalent to the decision of a ML- or a Hamming-metric decoder.

Solution to Task 5.2 (Reed-Muller Codes and Incremental Redundancy)

a) The generator matrix G of C(8, 4, 4) consist of the generator matrices G_u of $\mathcal{R}(1, 2)$, a single parity check code (4, 3, 2), and G_v of $\mathcal{R}(0, 2)$, a repetition code (4, 1, 4), that are given as

$$G_u = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}, \qquad G_v = (1\ 1\ 1\ 1\ 1).$$

Hence

$$G = \begin{pmatrix} G_u & G_u \\ 0 & G_v \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}.$$

b) We remove the 2^{nd} and 6^{th} column of G.

$$G_p = \begin{pmatrix} 1 & 0 & 1 & | & 1 & 0 & 1 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \\ 0 & 1 & 1 & | & 0 & 1 & 1 \\ \hline 0 & 0 & 0 & | & 1 & 1 & 1 \end{pmatrix}$$

- c) By puncturing the second half of the code C we are left with $\mathcal{R}(1,2)$ a single parity check code with parameters (4,3,2). (note: the dimension is reduced as i_4 is redundant)
- d) The Code C(8, 4, 4) can correct $\lfloor \frac{d-1}{2} \rfloor = 1$ error. The Code $C_p(6, 4, d_p)$ has minumum distance

$$d - 2 \le d_p \le d$$
$$2 \le d_p \le 4$$

as two bits were punctured and C has minimum distance d = 4. Thus it can detect at least 1 error. In practice the number of detectable errors should always be at least the number of correctable errors.

e) The received word is $y_1 = (101|011)$. Adding the two halves of y_1 gives

$$(101) + (011) = (110)$$

which is not a valid codeword of a punctured repetition code (3, 1, 3). Hence additional redundancy $y_2 = (01)$ is requested that gives

y = (1|0|010|1|11) = (1001|0111).

Adding the two halves of y gives

(1001) + (0111) = (1110)

which can be decoded in the repetition code (4, 1, 4) to v = (1111). Adding v to the latter half of y yields

 $u_1 = (1001), \qquad u_2 = (0111) + (1111) = 1000.$

As u_1 is a valid codeword in the single parity check code (4, 3, 2) the decoding result is

$$u = u_1 = (1001)$$

 $\Rightarrow c = (u|u+v) = (1001|0110)$
 $e = y - c = (0000|0001).$