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• The exam duration is 90 minutes.

• No aids are permitted.

• All four problems will be evaluated.

• In total, 90 points can be reached.

• The solutions of different problems must be written on separate sheets.

• If not stated otherwise, all solutions must be justified.
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Problem 1: (Information Theory Basics)

a) Let X, Y,X1, X2 be discrete random variables, such that X1, X2 are statistically indepen-
dent. Decide whether the following statements are true or false. Justify for your answer.

1. H(XY ) = H(X) +H(Y )

2. I(X1X2;Y ) = I(X1;Y ) + I(X2;Y )− I(X1;X2)

3. I(X, Y ) ≥ max{H(X|Y ), H(Y |X)}

Solution:

1. False, for example: choose X = Y with H(X) 6= 0
⇒ H(XX) = H(X) 6= 2 ·H(X)

2. True:

I(X1;Y ) + I(X2;Y )− I(X1;X2)

=
(
H(X1)−H(X1|Y )

)
+
(
H(X2)−H(X2|Y )

)
−
(
H(X1) +H(X2)−H(X1X2)

)

= H(X1X2)−
(
H(X1|Y ) +H(X2|Y )

)

︸ ︷︷ ︸
=H(X1X2|Y ) (X1, X2 ind.)

= I(X1X2;Y )

3. False, for example: choose X, Y statistically independent, H(X) 6= 0
⇒ I(X, Y ) = 0 < H(X) = H(X|Y ) ≤ max{H(X|Y ), H(Y |X)}

b) Let X, Y be discrete random variables. Complete the following proof. Make clear which
formulas and properties you are using.

H(X|Y )−H(X) =
k∑

i=1

l∑

j=1

fXY (xi, yj) log2

(
fX(xi)fY (yj)

fXY (xi, yj)

)

...
≤ 0
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Solution:

H(X|Y )−H(X) = −
K∑

i=1

L∑

j=1

fXY (xi, yj) log2 fX|Y (xi | yj) +
K∑

i=1

fX(xi) log2 fX(xi)

= −
K∑

i=1

L∑

j=1

fXY (xi, yj) log2

fXY (xi, yj)

fY (yj)
+

K∑

i=1

log2 fX(xi)
L∑

j=1

fXY (xi, yj)

=
K∑

i=1

L∑

j=1

fXY (xi, yj)

(
− log2

fXY (xi, yj)

fY (yj)
+ log2 fX(xi)

)

=
K∑

i=1

L∑

j=1

fXY (xi, yj) log2

fX(xi)fY (yj)

fXY (xi, yj)

≤
K∑

i=1

L∑

j=1

fXY (xi, yj)

(
fX(xi)fY (yj)

fXY (xi, yj)
− 1

)
log2 e

=

(
K∑

i=1

L∑

j=1

fX(xi)fY (yj)−
K∑

i=1

L∑

j=1

fXY (xi, yj)

)
log2 e

= (1− 1) log2 e = 0.

�

c) Let X, Y : Ω→ {1, . . . , 6} be random variables describing two independent die rolls. Sort
the following random variables according to their uncertainty.

(X, Y );X + Y ;X + 10 · Y ; (X + Y )mod 2

Solution:

• (X, Y ) contains the full information about X and Y .
• X + 10 · Y contains the information about Y in the first digit and the information

about X in the second digit.
• X + Y contains only partial information about X and Y , e.g. X + Y = 3 could be

(1, 2) or (2, 1).
• (X + Y )mod 2 obviously contains the least information about X and Y .

Thus we get

H(X, Y ) = H(X + 10 · Y ) > H(X + Y ) > H
(
(X + Y )mod 2

)
.

d) Consider an urn filled with four balls with label 0, two balls with label 1 and two balls
with label 2. Calculate I(X;Y ) for the following random variables.

X : Ω→ {0, 1, 2}
Y : Ω→ {6= 0, 0}

Solution:

I(X;Y ) = H(X) +H(Y )−H(X, Y )︸ ︷︷ ︸
=H(X)

= H(Y ) = h(0.5) = 1
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e) LetM be the set of all possible messages and C the set of all ciphers.
Consider a symmetric cryptosystem consisting of an encryption E and a decryption D using
the same key k ∈ K, satisfying

D(E(m, k), k) = m ∀m ∈M, k ∈ K.

Which of the following statements is only true for this system if it is perfectly secure?

1. H(M,K) = H(K, C).
2. The encryption E :M×K → C is injective in its first argument.

3. p(m) = p(m|c) ∀m ∈M, c ∈ C.

Solution:

1. H(M,K) = H(M,K, C) = H(K, C) is always true, because the encryption E calculates
c ∈ C from m ∈ M and k ∈ K and the decryption D calculates m ∈ M from c ∈ C
and k ∈ K.

2. The encryption E is always injective in its first argument, otherwise no decryption
would be possible as E would not be invertible for a fixed k.

3. This equals H(M) = H(M|C) and implies I(M; C) = H(M) − H(M|C) = 0 and is
thus only true if the system is perfectly secure.
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Problem 2: (Source Coding)

a) Given is the code {0, 010, 0101}. Can this code be decoded uniquely? If yes, give a
decoding algorithm. If no, give a sequence which cannot be decoded uniquely.

Solution: Yes, it can be decoded uniquely. Decoding could work as follows. Read from
left ro right. If the current and the next symbol are both 0 (case (i)), decode the current
symbol to 0. Otherwise, look if the third-next symbol is a 0 (case (ii)) or 1 (case (iii))
and decode the current and its subsequent 2 or 3 symbols to 010 or 0101 respectively. The
latter decision works since the codeword 010 must be followed by a 0 (no sequence starts
with a 1). E.g.,

00100010100101

case (i): 0|0100010100101

case (ii): 0|010|0010100101

case (i): 0|010|0|010100101

case (iii): 0|010|0|0101|00101

case (i): 0|010|0|0101|0|0101

case (iii): 0|010|0|0101|0|0101|

b) The code {10,11,00,101,1010,1011} cannot be decoded uniquely. Does a code with code-
words of exactly these lengths exist, which can be uniquely decoded?

Solution: We look at the Kraft inequality
∑

i

2−wi = 3 · 2−2 + 1 · 2−3 + 2 · 2−4 = 1 ≤ 1.

Thus, a prefix-free—and therefore uniquely decodable—code with these lengths exists.

c) A suffix-free code is a code in which no codeword is suffix of any other codeword.

1. Explain why suffix-free codes are always uniquely decodable.

2. Explain a disadvantage of suffix-free codes in comparison to prefix-free codes.

3. Is every uniquely decodable code either prefix- or suffix-free? If yes, give a reason for
this statement. If no, give a counterexample.

Solution:

1. If we read a sequence and the codewords from right to left, the code is prefix-free and
we can therefore decode uniquely.

2. We have to receive the entire sequence first before we can decode (not instantaneously
decodable).

3. No, see the example in Exercise a). 0 is both a prefix and suffix of 010, but the code
is uniquely decodable.

d) Given is the following source with alphabet {a, b, c, d} and probabilities:

July 30, 2018



Applied Information Theory 5

a b c d
1
3

1
3

2
9

1
9

1. Calculate the entropy of the source and explain the meaning of your result.
2. Construct a prefix-free code for the given source, using the Huffman algorithm.
3. What is the expected codeword length of this code?
4. What is the main advantage of Huffman in comparison to the Shannon-Fano algorithm?

Solution:

1. The entropy can be calculated as follows.

H(X) = −
∑

i

pi log2(pi) = 2 · 1
3

log2(3) + 2
9

log2(9
2
) + 1

9
log2(9) ≈ 1.8911.

This means that we need at least 1.8911 bits on average to encode a source symbol.
2. One possibility is (∃ more):

1

1
3

1
90

2
91

0

2
3

1
30

1
31

1

3. From to the pathlength lemma, we get:
∑

i

Pi = 1 + 1
3

+ 2
3

= 2.

4. The Huffman algorithm always returns an optimal code tree.

e) Prove that the q-ary Shannon–Fano algorithm fulfills

E[W ] <
H(X)

log2(q)
+ 1,

where E[W ] is the expected codeword length and H(X) is the uncertainty of the source.
Solution:

Proof: In the q-ary Shannon–Fano algorithm, we choose the codeword lengths as

wi = d− logq(pi)e,

where pi is the probability of the ith source symbol. Using dxe < x+ 1 ∀x ∈ R, we obtain

E[W ] =
∑

i

piwi =
∑

i

pid− logq(pi)e <
∑

i

pi(− logq(pi) + 1)

= −
∑

i

pi logq(pi) +
∑

i

pi

= −
∑

i

pi
log2(pi)

log2(q)
+ 1 =

H(X)

log2(q)
+ 1.

�
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Problem 3: (Channel Coding)

a) Consider 4 independent, parallel, time-discrete and additive Gaussian channels. The noise
variances are given by N1 = 1, N2 = 2, N3 = 4, N4 = 7.

1. Find the values of the signal powers S1, . . . , S4 which maximize the sum capacity of
the channel

C =
4∑

i=1

1

2
log2

(
1 +

Si
Ni

)

under the sum power constraint
4∑

i=1

Si ≤ 8.

2. For which distribution of the input signals is this capacity achieved? Briefly justify
whether or not this is a distribution which can be used in a realistic transmission
system.

Solution:

1. We use waterfilling to find the solution. Using the algorithm and notation of Exer-
cise 7.1, we obtain

i Efree(i)
0 8
1 8− 1 · (2− 1) = 7
2 7− 2 · (4− 2) = 3
3 3− 3 · (7− 4) = −6 < 0 (break!)

Thus, B = N3 + Efree(2)
3

= 4 + 1 = 5, and using Si = max{0, B −Ni}, we obtain

S1 = 4, S2 = 3, S3 = 1, S4 = 0.

Hint: Illustrate the result as in the exercises in order to validate your solution.

2. This capacity is achieved if the input signal i is Gaussian distributed with zero mean
and variance Si (i.e., ∼ N (0, Si)). In realistic transmission systems we often have a
discrete rather than an absolutely continuous input distribution, so the capacity would
not be achieved exactly.

b) Derive the capacity of the following channel. Justify each step.

0

1

0

1

∆

1− δ − ε

ε

δ

ε

1− δ − ε

δ
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Solution: The channel can be decomposed into two strongly symmetric channels:

• With probability q1 := δ, the channel outputs an erasure, which can be modelled as
the channel

0

1

∆

1

1

with capacity C1 = 0.

• With probability q2 = 1− δ, the channel is a binary symmetric channel of the form

0

1

0

1

1−δ−ε
1−δ

ε
1−δ
ε

1−δ

1−δ−ε
1−δ

with capacity C2 = 1− h( ε
1−δ )

Hence, the overall capacity becomes

C = q1C1 + q2C2 = (1− δ) · (1− h( ε
1−δ )).

c) Briefly explain the Tomlinson–Harashima precoding scheme with the help of a sketch.
Specify which signals are known at the transmitter/receiver.

Solution: The block diagram of the Tomlinson–Harashima precoding (THP) scheme looks
as follows:

Encoder Decoder

Z

+X YW W̃+

S

Here,

• W is the source signal (known at the transmitter, unknown at the receiver).

• S is an interference signal (known at the transmitter, unknown at the receiver).

• X is the transmit signal (known at the transmitter, unknown at the receiver).

• Z is the noise (unknown at the transmitter, unknown at the receiver).

• Y is the received signal (unknown at the transmitter, known at the receiver).

• W̃ is the decoded signal (unknown at the transmitter, known at the receiver).
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In THP, the encoder simply subtracts S from W and applies a modulo operation to the
result (i.e., X = mod(W −S)) in order to match the power constraint. The decoder applies
a modulo operation to the received signal Y .

Thus, the interference S is cancelled and the decoded signal W̃ does not depend on it. The
disadvantage is that due to the modulo operations, the noise is transformed by a non-linear
function, which results in a capacity loss.

d) Prove the Shannon limit for the AWGN channel, i.e. show that error-free transmission is
possible if and only if

Eb
N0

:=
S

N0R
> −1.6dB,

where R is the transmission rate, S is the signal power and N0 is the noise power spectral
density.

Solution: The capacity of a bandlimited AWGN channel with bandwidth W is given by

CAWGN(W ) = W log2

(
1 +

S

N0W

)
.

This is a monotonically increasing function in W , so we can upper bound it by

CAWGN,W ≤ C∞ := lim
W→∞

W log2

(
1 +

S

N0W

)
l’Hôpital

=
S

N0 ln 2
.

Due to the channel coding theorem, transmission is possible if and only if R < C∞ (i.e. if
R < CAWGN,W for some W ). We know that

R < C∞ =
S

N0 ln 2
⇔ Eb

N0

=
S

N0R
> ln 2 ≈ −1.6dB.

�
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Problem 4: (Multi-User Information Theory)

a) Given the following channel model:

BSC(p) BSC(δ)

User 1

User 2

What are the maximum achievable rates R1 and R2 to User 1 and 2 respectively?

Solution:

• R1 ≤ 1− h(p)

• R2 ≤ 1− h(ε), where ε = p(1− δ) + δ(1− p)

b) Given the following additive channel: such that X1 ∈ {0, 1} and X2 ∈ {0, 1},

+

X1

X2

Y

1. What is the maximum rates R1 and R2 if only one user is allowed to transmit?

2. Which possible values can be received when both User 1 and User 2 are transmitting
at the same time?

3. What are the maximum rates R̃1 and R̃2 in this case (assume transmitted symbols are
all equally probable)?

4. Explain how full cooperation between User1 and User2 can be done? what is the
maximum achievable sum of rates RΣ?

5. Sketch the region of achievable rates for a fully cooperative system with TDMA!

Solution:

1. R1 = R2 = 1.

2. Y ∈ {0, 1, 2}
3. For (X1,X2) ∈ {(1, 0), (0, 1)}, the receiver is not able to recover the transmitted sym-

bols. This can be modeled as an erasure channel for each user with an erasure proba-
bility p = 1

2
· 1

2
· 2 = 1

2
. Therefore:

R̃1 = R̃2 = 1− p =
1

2
.

4. With full cooperation, the confusion resulting from the symbols {(1, 0), (0, 1)} is avoided,
leaving only three possible symbols to be transmitted. Thus, RΣ = log2 3 = 1.585.
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5.

User 1

User 2

0 1 2
0

1

2

log2 3

log2 3

c) Let a M/M/3/5 system be given with an arrival rate λ = 4s−1.

1. Sketch the system.

2. What is highest service rate µ at which the system is not stable?

Let the average service time be X = 0.5s.

1. Give the Markov chain, where the states indicate the number of users in the system.

2. Calculate the loss probability PV .

Solution:

1. The System has 3 processing units and 2 waiting slots.

µ

µ

µλ

2. The utilization ρ must be smaller than 1 for the system to be stable, that means

λ

3 · µ
< 1

⇔ 4

3
s−1 =

λ

3
< µ.

Thus µ = 4
3
s−1 is the highest service rate at which the system is not stable.

July 30, 2018



Applied Information Theory 11

3. The maximal processing rate is 3µ, which can be achieved if at least 3 users are in the
system.

0 1 2 3 4 5

λ λ λ λ λ

µ 2µ 3µ 3µ 3µ

4. The loss probability is given through the steady state probability of state 5

PV = p5.

The steady state probabilities can be calculated using the following system of equations
(with ρ = λ

µ
).

p0 · λ = p1 · µ ⇒ p1 =
λ

µ
p0 = ρ · p0

p1 · λ = 2 · p2 · µ ⇒ p2 =
λ

2 · µ
p1 =

ρ2

2
p0

p2 · λ = 3 · p3 · µ ⇒ p3 =
λ

3 · µ
p2 =

ρ3

2 · 3
p0

p3 · λ = 3 · p4 · µ ⇒ p4 =
λ

3 · µ
p3 =

ρ4

2 · 32
p0

p4 · λ = 3 · p5 · µ ⇒ p5 =
λ

3 · µ
p4 =

ρ5

2 · 33
p0

1 = p0 + p1 + p2 + p3 + p4 + p5

⇒ p0 =

(
1 + ρ+

ρ2

2
+

ρ3

2 · 3
+

ρ4

2 · 32
+

ρ5

2 · 33

)−1

⇒ PV = p5 =
ρ5

2 · 33
p0

=
ρ5

2 · 33
·
(

1 + ρ+
ρ2

2
+

ρ3

2 · 3
+

ρ4

2 · 32
+

ρ5

2 · 33

)−1

With λ = 4s−1 and µ = X−1 = 2s−1 we have

ρ =
4

2
= 2.

Inserting this value yields

p0 =

(
1 + 2 +

22

2
+

23

2 · 3
+

24

2 · 32
+

25

2 · 33

)−1

=

(
1 + 2 + 2 +

4

3
+

8

9
+

16

27

)−1

=

(
5 · 27

27
+

4 · 9
27

+
8 · 3
27

+
16

27

)−1

=
27

211

PV =
25

2 · 33
· 27

211
=

16

211
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Useful Formulas:

Binary entropy

h(p) = −p log2(p)− (1− p) log2(1− p).

IT Inequality

logb(r) ≤ (r − 1) logb(e) ∀r > 0, b ∈ N.

Capacity of a BSC with crossover probability p

CBSC = 1− h(p).

Capacity of a BEC with erasure probability δ

CBEC = 1− δ.

Capacity of a time discrete Gaussian channel with noise power N and signal power S

CGauss =
1

2
log2

(
1 +

S

N

)
.

Capacity of a bandlimited Gaussian channel with bandwidth W , noise power N0W and signal
power S

CGauss,W = W log2

(
1 +

S

N0W

)
.
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