

Error Correction for Physical Unclonable Functions Using Generalized Concatenated Codes

Sven Müelich*, Sven Puchinger*, Martin Bossert*, Matthias Hiller[⋄], Georg Sigl[⋄]

*Institute of Communications Engineering, Ulm University, Germany

Institute for Security in Information Technology, TU Munich, Germany

ACCT Svetlogorsk, September 7-13, 2014

Outline

- Motivation
- Physical Unclonable Functions (PUFs)
- 3 Example Code Construction
- 4 Conclusion

Motivation

Challenges when implementing a cryptosystem:

- Secure key generation
 - Random, unique and unpredictable keys
 - Satisfying these properties is hard to achieve
- Secure key storage
 - Key bits in a non-volatile memory
 - Adversaries can gain physical access to (protected) memories

Physical Unclonable Functions (PUFs) can be used to realize secure key generation and secure key storage

Physical Unclonable Functions (PUFs)

What is a PUF?

- Physical entity with challenge-response behavior
- Properties:
 - Uniqueness
 - Reproducibility

Physical Unclonable Functions (PUFs)

Example: SRAM PUFs

- device with memory cells
- random initialization when powering on
- randomness static over lifetime
- Challenge: Subset of memory cells
- Response: Values in selected memory cells

Physical Unclonable Functions (PUFs)

Why coding theory?

 Responses are not perfectly reproducible and hence cannot be used as key directly

Example Code construction

Challenge: Find good codes for Secure Sketches

Constraints:

- Time and area consumption
- Binary codes
- Dimension ≥ key length
- Codelength as small as possible

Example Code construction

Existing scheme given in [Maes2012]¹:

- Binary Symmetric Channel with p = 0.14
- Generate 128 bit key with block error probability $P_{\rm err}=10^{-9}$
- \bullet Concatenation of (318, 174, 35) BCH code and (7, 1, 7) code

What is our goal?

- Generate 128 bit key with block error probability $P_{\rm err} < 10^{-9}$
- Improve existing scheme in
 - Codelength
 - Block error probability
 - Simple implementation

¹R. Maes, A. Herrewege, I. Verbauwhede, "PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator", CHES, 2012

Partitioning:

Encoding:

Decoding:

Used decoding methods:

- Generalized Concatenated Codes (GC Codes)
- RM Error Erasure Decoding
- Generalized Minimum Distance (GMD) Decoding

Conclusion

How good is our code construction?

Code	P_{err}	Length	Largest Field
[Maes2012]	$\approx 10^{-9}$	2226	\mathbb{F}_{2^8} (BCH)
New	$\approx 5.37 \cdot 10^{-10}$	2048	\mathbb{F}_2

Thank you for your attention.