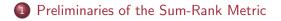


ulm university universität

Geometrical Properties of Balls in Sum-Rank Metric and their Applications

Outline



- 2 Spheres and Balls in Sum-Rank Metric
 - Volume of Spheres and Balls
 - Bounds on the Volume of a Ball
 - Intersection of two Balls
 - Volume of the Intersection of two Balls
 - Volume of the Intersection of two Balls: two special cases
- Bounds on Codes in Sum-Rank Metric
- 4 Covering Properties

5 References

Preliminaries of the Sum-Rank Metric

Codes in Sum-Rank-Metric

- \mathbb{F}_{q^m} Extension Field of \mathbb{F}_q
- $\bullet~\mbox{Codelength}~n=\eta\cdot\ell$ splitted into ℓ blocks, each of size η
- Linear Code $\mathcal{C} \subset \mathbb{F}_{q^m}^n$ subspace of dimension k

$$oldsymbol{c} = [\underbrace{oldsymbol{c}_1}_{\in \mathbb{F}_{q^m}^n} | oldsymbol{c}_2 | \dots | oldsymbol{c}_\ell] \in \mathbb{F}_{q^m}^n$$
 $oldsymbol{C} = [\underbrace{oldsymbol{C}_1}_{\in \mathbb{F}_{q}^{m imes \eta}} | oldsymbol{C}_2 | \dots | oldsymbol{C}_\ell] \in \mathbb{F}_{q}^{m imes n}$
 ℓ -sum-rank weight/distance:

$$\operatorname{wt}_{SR,\ell}(\boldsymbol{c}) \coloneqq \sum_{i=1}^{\ell} \operatorname{rk}_{\mathbb{F}_q}(\boldsymbol{C}_i) \leq \ell \cdot \underbrace{\mu}_{:=\min\{m,\eta\}}$$

$$\mathrm{d}_{SR,\ell}(\boldsymbol{c},\boldsymbol{c}')\coloneqq\mathrm{wt}_{SR,\ell}(\boldsymbol{c}-\boldsymbol{c}')$$

Preliminaries of the Sum-Rank Metric

Relation between the different metrics

Relation between sum-rank weight and Hamming weight

For $x \in \mathbb{F}_{q^m}$ it holds that $\operatorname{wt}_{SR,\ell}(x) \leq \operatorname{wt}_{SR,n}(x)$.

Proof:
$$\boldsymbol{x} = [\boldsymbol{x}_1| \dots |\boldsymbol{x}_\ell] \in \mathbb{F}_{q^m}^n$$
 with
 $\operatorname{wt}_{SR,n}(\boldsymbol{x}) = n - t = \eta - t_1 + \dots + \eta - t_\ell$ where $\sum_{i=1}^{\ell} t_i = t$ and
each \boldsymbol{x}_i has t_i zero entries. For the sum-rank weight one gets
 $\operatorname{wt}_{SR,\ell}(\boldsymbol{x}) = \sum_{i=1}^{\ell} \operatorname{rk}_q(\boldsymbol{x}_i) \leq \sum_{i=1}^{\ell} \min\{m, \eta - t_i\} \leq \sum_{i=1}^{\ell} (\eta - t_i) = n - t = \operatorname{wt}_{SR,n}(\boldsymbol{x}).$

Preliminaries of the Sum-Rank Metric

Relation between the different metrics

Relation between sum-rank weight and rank weight

For $x \in \mathbb{F}_{q^m}$ it holds that $\operatorname{wt}_{SR,1}(x) \leq \operatorname{wt}_{SR,\ell}(x)$.

Proof: Assume w.l.o.g. $n \leq m$ and let $\operatorname{wt}_{SR,\ell}(\boldsymbol{x}) = t = t_1 + \ldots + t_\ell$ (i.e., each \boldsymbol{x}_i has $t_i \mathbb{F}_q$ -linearly independent columns for $i \in \{1, \ldots, \ell\}$) $\Rightarrow \boldsymbol{x}$ has at most t \mathbb{F}_q -linearly independent columns in the union of all blocks, which corresponds to the rank weight of \boldsymbol{x} .

Let $\tau \in \mathbb{Z}_{\geq 0}$ with $0 \leq \tau \leq \ell \cdot \mu$ and $\boldsymbol{x} \in \mathbb{F}_{q^m}^n$. The sum-rank-metric sphere with radius τ and center \boldsymbol{x} is defined as

$$\mathcal{S}_{\ell}(\boldsymbol{x}, \tau) \coloneqq \{ \boldsymbol{y} \in \mathbb{F}_{q^m}^n \mid \mathrm{d}_{SR,\ell}(\boldsymbol{x}, \boldsymbol{y}) = \tau \}.$$

Analogously, we define the ball of sum-rank radius τ with center \pmb{x} by

$$\mathcal{B}_{\ell}(\boldsymbol{x},\tau) \coloneqq \bigcup_{i=0}^{\tau} \mathcal{S}_{\ell}(\boldsymbol{x},i).$$

We also define the following cardinalities:

$$\operatorname{Vol}_{\mathcal{S}_{\ell}}(\tau) \coloneqq |\{ \boldsymbol{y} \in \mathbb{F}_{q^m}^n \mid \operatorname{wt}_{SR,\ell}(\boldsymbol{y}) = \tau \}|,$$

$$\operatorname{Vol}_{\mathcal{B}_{\ell}}(\tau) \coloneqq \sum_{i=0}^{\tau} \operatorname{Vol}_{\mathcal{S}_{\ell}}(i).$$

Volume of a Single Ball in the Sum-Rank Metric

The number of $m\times n$ matrices over \mathbb{F}_q for a given rank $t\leq \min\{m,n\}$ is

$$\mathrm{NM}_q(n,m,t) \coloneqq \begin{bmatrix} n \\ t \end{bmatrix}_q \cdot \prod_{i=0}^{t-1} (q^m - q^i)$$

(see e.g., [MMO04]), where $\begin{bmatrix} n \\ t \end{bmatrix}_q \coloneqq \prod_{i=1}^t \frac{q^{n-t+i}-1}{q^{i-1}}$ denotes the q-Gaussian binomial coefficient, which is defined by the number of t-dimensional subspaces of \mathbb{F}_q^n .

Volume of a Single Ball in the Sum-Rank Metric

The set of ordered partitions with bounded number of bounded summands is

$$\tau_{t,\ell,\mu} \coloneqq \left\{ \boldsymbol{t} = [t_1, \dots, t_\ell] \mid \sum_{i=1}^\ell t_i = t \land t_i \le \mu, \forall i \right\} .$$

Its cardinality corresponds to the number of possibilities how to partition the sum-rank weight t of a vector into ℓ blocks of at most rank μ . By common combinatorial methods, we obtain (see also [Rat08, Lemma 1.1])

$$|\tau_{t,\ell,\mu}| = \sum_{i=0}^{\ell} (-1)^i {\ell \choose i} {t+\ell - (\mu+1)i \choose \ell-1} \le {t+\ell-1 \choose \ell-1}.$$

Ulm University Institute of

Institute of Communications Engineering

Spheres and Balls in Sum-Rank-Metric

Volume of a Single Ball in the Sum-Rank Metric

Volume of Spheres and Balls in Sum-Rank-Metric

$$\operatorname{Vol}_{\mathcal{S}_{\ell}}(t) = \sum_{\substack{\boldsymbol{t} = [t_1, \dots, t_{\ell}] \\ \in \tau_{t, \ell, \mu}}} \prod_{i=1}^{\ell} \operatorname{NM}_q(\eta, m, t_i)$$

$$\operatorname{Vol}_{\mathcal{B}_{\ell}}(t) = \sum_{j=0}^{t} \sum_{\substack{\boldsymbol{t} = [t_1, \dots, t_{\ell}] \\ \in \tau_{j, \ell, \mu}}} \prod_{i=1}^{\ell} \operatorname{NM}_q(\eta, m, t_i)$$

 $\operatorname{Vol}_{\mathcal{S}_{\ell}}(t)$ can be computed with complexity $\tilde{\mathcal{O}}(\ell^2 t^3 + \ell d^t(m + \eta) \log(q))$ using the efficient algorithm for computing $\operatorname{Vol}_{\mathcal{S}_{\ell}}$ in [PRR22, Theorem 6 and Algorithm 1].

Bounds on the Volume of a Single Ball in the Sum-Rank Metric

Upper Bound

$$\operatorname{Vol}_{\mathcal{S}_{\ell}}(\rho) \leq \binom{\ell+\rho-1}{\ell-1} \gamma_q^{\ell} q^{\rho(m+\eta-\frac{\rho}{\ell})} \quad [\mathsf{PRR20}, \text{ Theorem 5}].$$

Since $\operatorname{Vol}_{\mathcal{B}_{\ell}}(\rho) = \sum_{\rho'=0}^{\rho} \operatorname{Vol}_{\mathcal{S}_{\ell}}(\rho') \leq \rho \operatorname{Vol}_{\mathcal{S}_{\ell}}(\rho)$ for $\rho > 1$, this gives an upper bound on $\operatorname{Vol}_{\mathcal{B}_{\ell}}(\rho)$.

Lower Bound [OPB21, Lemma 2]

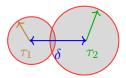
$$\operatorname{Vol}_{\mathcal{B}_{\ell}}(t) \ge \operatorname{Vol}_{\mathcal{S}_{\ell}}(t) \ge q^{(m+\eta-\frac{t}{\ell})t-\frac{\ell}{4}} \cdot \gamma_q^{-\ell}.$$

Intersection of two balls

We can define the volume of the intersection of two balls of radii $|\mathcal{B}_{\ell}(\boldsymbol{x}_1, \tau_1) \cap \mathcal{B}_{\ell}(\boldsymbol{x}_2, \tau_2)|$ independently of their centers but only dependent on their radii τ_1 , τ_2 and the distance $\delta \coloneqq d_{SR,\ell}(\boldsymbol{x}_1, \boldsymbol{x}_2)$ between their respective centers as follows:

$$\operatorname{Vol}_{\mathcal{I}_{\ell}}(\tau_{1},\tau_{2},\boldsymbol{\delta}) \coloneqq |\{\boldsymbol{y} \in \mathbb{F}_{q^{m}}^{n} | \operatorname{wt}_{SR,\ell}(\boldsymbol{y}) \leq \tau_{1} \wedge \operatorname{d}_{SR,\ell}(\boldsymbol{y},\boldsymbol{d}) \leq \tau_{2}\}|,$$

where $d \in \mathbb{F}_{q^m}^n$ arbitrary but fix with $\operatorname{wt}_{SR,\ell}(d) = \delta$. Obviously if $\delta > \tau_1 + \tau_2$, then $\operatorname{Vol}_{\mathcal{I}_{\ell}}(\tau_1, \tau_2, \delta) = 0$.



Institute of Communications Engineering

Spheres and Balls in Sum-Rank Metric

Volume of the Intersection of two Balls in rank metric

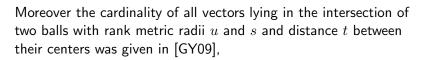
In [GY09] the number of vectors lying in the intersection of two spheres in the rank metric of radii u and s and distance t between their centers was derived, that is

$$\begin{aligned} \mathcal{J}(u, s, t, n, m) \\ \coloneqq \frac{\sum_{i=0}^{n} \mathrm{NM}_{q}(n, m, i) \mathcal{K}_{u}(i, n, m) \mathcal{K}_{s}(i, n, m) \mathcal{K}_{t}(i, n, m)}{q^{mn} \mathrm{NM}_{q}(n, m, t)}, \end{aligned}$$

where $\mathcal{K}_i(i, n, m)$ is a q-Krawtchouk polynomial (see [Del76]) and defined as

$$\mathcal{K}_j(i,n,m) \coloneqq \sum_{l=0}^j (-1)^{j-l} q^{lm + \binom{j-l}{2}} \begin{bmatrix} n-l\\ n-j \end{bmatrix}_q \begin{bmatrix} n-i\\ l \end{bmatrix}_q.$$

Volume of the Intersection of two Balls in rank metric



$$\mathcal{I}(u,s,t,n,m)\coloneqq \sum_{i=0}^u \sum_{j=0}^s \mathcal{J}(i,j,t,n,m).$$

Volume of the Intersection of two Balls in sum-rank metric

[OLWZ23, Theorem 1]

Let u, s, t be positive integers such that $u + s \ge t$. The number of vectors $v \in \mathbb{F}_{q^m}^n$ lying in the intersection of two balls with sum-rank radii u and s and sum-rank distance t between their centers is

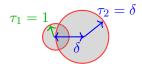
$$\operatorname{Vol}_{\mathcal{I}_{\ell}}(u, s, t) = \sum_{\substack{\boldsymbol{u} = [u_1, \dots, u_{\ell}] \\ \in \tau_{u,\ell,\mu}}} \sum_{\substack{\boldsymbol{s} = [s_1, \dots, s_{\ell}] \\ \in \tau_{s,\ell,\mu}}} \sum_{\substack{\boldsymbol{t} = [t_1, \dots, t_{\ell}] \\ \in \tau_{t,\ell,\mu}}} \prod_{i=1}^{\ell} \mathcal{I}(u_i, s_i, t_i, \eta, m).$$

Volume of the Intersection of two Balls: Special case 1

[OLWZ23, Theorem 2]

Let
$$oldsymbol{x},oldsymbol{y}\in\mathbb{F}_{q^m}^n$$
 such that $\mathrm{d}_{SR,\ell}(oldsymbol{x},oldsymbol{y})=\delta.$ Then

$$\begin{aligned} \operatorname{Vol}_{\mathcal{I}_{\ell}}(,\delta,1,\delta) &= |\mathcal{B}_{\ell}(\boldsymbol{x},,\delta) \cap \mathcal{B}_{\ell}(\boldsymbol{y},1)| \\ &= 1 + \frac{(q^m - 1)(q^n - 1)}{q - 1} \\ &- \sum_{\substack{\boldsymbol{\delta} = [\delta_1, \dots, \delta_{\ell}] \\ \in \tau_{\delta,\ell,\mu}}} \sum_{i=1}^{\ell} \frac{(q^\eta - q^{\delta_i}) \cdot (q^m - q^{\delta_i})}{q - 1} . \end{aligned}$$



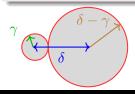
Volume of the Intersection of two Balls: Special case 2

[OLWZ23, Theorem 1]

Let
$$oldsymbol{x},oldsymbol{y}\in\mathbb{F}_{q^m}^n$$
 such that $\mathrm{d}_{SR,\ell}(oldsymbol{x},oldsymbol{y})=\delta$ then

$$\operatorname{Vol}_{\mathcal{I}_{\ell}}(\gamma, \delta - \gamma, \delta) = |\mathcal{B}_{\ell}(\boldsymbol{x}, \gamma) \cap \mathcal{B}_{\ell}(\boldsymbol{y}, \delta - \gamma)$$
$$= \sum_{\substack{\boldsymbol{\delta} = [\delta_{1}, \dots, \delta_{\ell}] \\ \in \tau_{\delta, \ell, \mu}}} \sum_{\substack{\boldsymbol{\gamma} = [\gamma_{1}, \dots, \gamma_{\ell}] \\ \in \tau_{\gamma, \ell, \delta}}} \sum_{i=1}^{\ell} q^{\gamma_{i} \cdot (\delta_{i} - \gamma_{i})} \cdot \begin{bmatrix} \delta_{i} \\ \gamma_{i} \end{bmatrix}_{q}$$

for $0 \leq \gamma \leq \delta$.



Sphere-Packing Bound

Sphere-Packing Bound[BGLR20, Theorem III.6]

For a linear [n,k,d] sum-rank metric code $\mathcal{C}\textsc{,}$ it holds that

$$q^{mk} \cdot \operatorname{Vol}_{\mathcal{B}_{\ell}}\left(\left\lfloor \frac{d-1}{2} \right\rfloor\right) \leq q^{mn}.$$

Both sides of the bounds can be computed in complexity $\tilde{O}(\ell^2 d^3 + \ell d^4(m + \eta) \log(q))$ using the efficient algorithm for computing $\operatorname{Vol}_{\mathcal{S}_\ell}$ in [PRR20, Theorem 5 and Algorithm 1].

simplified Sphere-Packing Bound[OPB21, Theorem 4]

For a linear [n,k,d] sum-rank metric code \mathcal{C} , the parameters fulfill

$$q^{mk} \cdot q^{(m+\eta-\frac{1}{\ell} \lfloor \frac{d-1}{2} \rfloor) \lfloor \frac{d-1}{2} \rfloor - \frac{\ell}{4}} \cdot \gamma_q^{-\ell} \leq q^{mn}.$$

Sphere-Packing Bound

asymptotic Sphere-Packing Bound[OPB21, Theorem 5]

Let C be a linear [n, k, d] sum-rank metric code and $\delta := \frac{d}{n}$ the relative minimum distance. Then the code rate $\mathcal{R} = \frac{k}{n}$ is upper bounded by

$$\mathcal{R} < \delta^2 \frac{\eta}{4m} - \delta \left(\frac{1}{2} + \frac{\eta}{m} \left(\frac{1}{2} + \frac{1}{n} \right) \right) + \frac{1}{n} \left(1 + \frac{\eta}{m} + \frac{\eta}{nm} \right) + \frac{1}{\eta m} \left(\frac{1}{4} + \log_q(\gamma_q) \right) + 1.$$

Let $\xi > 0$ be fixed.

• For
$$m = \eta \xi \to \infty$$
 we get
 $\mathcal{R} \sim \delta^2 \frac{1}{4\xi} - \frac{\delta}{2} \left(1 + \frac{1}{\xi} \right) + 1.$

• For
$$\ell \to \infty$$
 one get
 $\mathcal{R} \sim \delta^2 \frac{\eta}{4m} - \frac{\delta}{2} \left(1 + \frac{\eta}{m} \right) + \frac{1}{\eta m} \left(\frac{1}{4} + \log_q(\gamma_q) \right) + 1.$

Gilbert-Varshamov Bound

Gilbert-Varshamov Bound[BGLR20, Theorem III.11]]

Let \mathbb{F}_{q^m} be a finite field, $\ell,n,k,d \leq \mu \ell$ be positive integers that satisfy

 $q^{m(k-1)} \cdot \operatorname{Vol}_{\mathcal{B}_{\ell}}(d-1) < q^{mn}.$

Then, there is a linear code of length n, dimension k, and minimum ℓ -sum-rank distance at least d.

simplified Gilbert-Varshamov Bound [OPB21, Theorem 6]

Let \mathbb{F}_{q^m} be a finite field, ℓ, n, k, d be positive integers with $2 < d \leq \mu \ell$ that satisfy

$$q^{m(k-1)} \cdot (d-1) \binom{\ell+d-2}{\ell-1} \gamma_q^{\ell} q^{(d-1)(m+\eta-\frac{d-1}{\ell})} < q^{mn}.$$

Then, there is a linear code of length n, dimension k, and minimum ℓ -sum-rank distance at least d.

Gilbert-Varshamov Bound

asymptotic Gilbert-Varshamov Bound [OPB21, Theorem 7]

For a finite field \mathbb{F}_{q^m} and positive integers $\ell,n,\mathcal{R}n,d$ with $\delta\coloneqq\frac{d}{n}$ and $2< d\leq \mu\ell$ satisfying

$$\mathcal{R} \leq \delta^2 \frac{\eta}{m} - \delta \left(1 + \frac{\eta}{m} + \frac{2\eta}{nm} \right) + 1 + \frac{1}{n} + \frac{\eta}{nm} + \frac{\eta}{n^2m}$$
$$- \frac{\sum_{i=1}^{\delta n-1} \log_q \left(1 + \frac{\ell-1}{i} \right) + \log_q (\delta n - 1)}{mn} - \frac{\log_q (\gamma_q)}{\eta m}$$

there exists a linear ℓ -sum-rank metric code of rate \mathcal{R} and relative minimum sum-rank distance at least δ . Let ξ be a constant. For $m = \eta \xi \to \infty$ and $m \in \omega(\log_q(\ell))$ we have

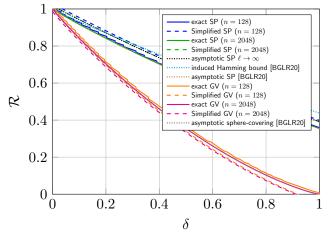
$$\mathcal{R} \sim \delta^2 \frac{1}{\xi} - \delta \left(1 + \frac{1}{\xi}\right) + 1.$$

Ulm University

Institute of Communications Engineering

Bounds on Codes in Sum-Rank-Metric

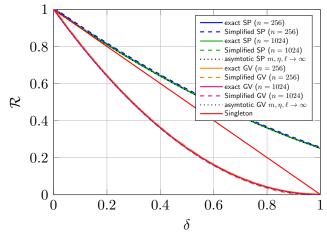
Numerical Comparisons: Bounded Blocksize



Comparison of different bounds for fixed value $q = 2 \eta = 8 m = 16$ for different values of $n (\ell = \frac{n}{n})$

Simplified and Asymptotic Bounds

Numerical Comparisons: Growing Blocksize

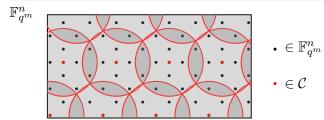


Comparison of different bounds for fixed value of q=16 and different values of n with $\eta=\ell=m$

Covering radius

Definition

Let \mathcal{C} be a linear [n, k, d] sum-rank metric code over \mathbb{F}_{q^m} . The covering radius of \mathcal{C} is the smallest integer $\rho_{SR,\ell}$ such that every vector $\boldsymbol{x} \in \mathbb{F}_{q^m}^n$ has at most sum-rank distance $\rho_{SR,\ell}$ to some codeword $\boldsymbol{c} \in \mathcal{C}$ i.e., $\rho_{SR,\ell} = \max_{\boldsymbol{x} \in \mathbb{F}_{q^m}^n} \{ \mathrm{d}_{SR,\ell}(\boldsymbol{x}, \mathcal{C}) \}.$

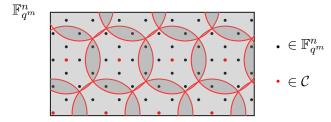


Covering Problem for the sum-rank metric

Ee denote the minimum cardinality of a code $\mathcal{C} \subset \mathbb{F}_{q^m}^n$ with sum-rank covering radius ρ by $\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n, \rho)$.

Problem

Find the minimum number of sum-rank balls $\mathcal{B}_{\ell}(\boldsymbol{x},\rho)$ of radius ρ (with $\boldsymbol{x} \in \mathbb{F}_{q^m}^n$) that cover the space $\mathbb{F}_{q^m}^n$ entirely. This problem is equivalent to determining the minimum cardinality $\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho)$ of a code $\mathcal{C} \subset \mathbb{F}_{q^m}^n$ with sum-rank covering radius ρ .



Covering Problem: Extreme Cases

There are two extreme cases for the covering radius:

Covering radii in different metrics

Relation of covering radii in differnt metrics [OLWZ22, Lemma 1]

Let $\mathcal{C} \subset \mathbb{F}_{q^m}^n$ then it holds for its corresponding covering radii $\rho_{SR,1}$, $\rho_{SR,\ell}$ and $\rho_{SR,n}$ in the rank, the sum-rank and the Hamming metric that

$$\rho_{SR,1} \le \rho_{SR,\ell} \le \rho_{SR,n}.$$

Proof.

Since $\operatorname{wt}_{SR,1}(\boldsymbol{x}) \leq \operatorname{wt}_{SR,\ell}(\boldsymbol{x}) \leq \operatorname{wt}_{SR,n}(\boldsymbol{x})$ for a fix $\boldsymbol{x} \in \mathbb{F}_{q^m}$ it follows that $\operatorname{d}_{SR,1}(\boldsymbol{x},\mathcal{C}) \leq \operatorname{d}_{SR,\ell}(\boldsymbol{x},\mathcal{C}) \leq \operatorname{d}_{SR,n}(\boldsymbol{x},\mathcal{C})$ and hence $\max_{\boldsymbol{x} \in \mathbb{F}_{q^m}^n} \{\operatorname{d}_{SR,1}(\boldsymbol{x},\mathcal{C})\} \leq \max_{\boldsymbol{x} \in \mathbb{F}_{q^m}^n} \{\operatorname{d}_{SR,\ell}(\boldsymbol{x},\mathcal{C})\} \leq \max_{\boldsymbol{x} \in \mathbb{F}_{q^m}^n} \{\operatorname{d}_{SR,\ell}(\boldsymbol{x},\mathcal{C})\}$.

Comparison of the different metrics

Relation of $\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho)$ in different metrics [OLWZ22, Theorem 2]

For $0 < \rho < \mu \cdot \ell$, it holds $\mathcal{K}_{SR,1}(\mathbb{F}^n_{q^m}, \rho) \leq \mathcal{K}_{SR,\ell}(\mathbb{F}^n_{q^m}, \rho) \leq \mathcal{K}_{SR,n}(\mathbb{F}^n_{q^m}, \rho).$ Ulm University

Institute of Communications Engineering

Lower Bounds for the Sphere Covering Problem

Sphere Covering Bound

Sphere Covering Bound

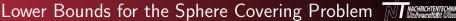
For the minimum cardinality of a code $\mathcal{C} \subset \mathbb{F}_{q^m}^n$ with sum-rank covering radius $0 < \rho < \mu \cdot \ell$ the following inequality holds:

$$\frac{q^{mn}}{\operatorname{Vol}_{\mathcal{B}_{\ell}}(\rho)} \leq \mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho).$$

Simplified Sphere Covering Bound [OLWZ22, Theorem 4]

For $0 < \rho < \mu \cdot \ell$ the following inequality holds:

$$\frac{q^{mn-\rho(m+\eta-\frac{\rho}{\ell})}}{\rho \cdot \binom{\ell+\rho-1}{\ell-1}\gamma_q^{\ell}} \leq \mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho)$$



Theorem [OLWZ22, Theorem 6]

Let $0 < \rho < \mu \cdot \ell$ and $0 < k \le \lfloor \log_{q^m}(\mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n, \rho)) \rfloor$ then

$$\begin{aligned} \mathcal{K}_{SR,\ell}(\mathbb{F}_{q^m}^n,\rho) &\geq \frac{1}{\operatorname{Vol}_{\mathcal{B}_{\ell}}(\rho) - \operatorname{Vol}_{\mathcal{I}_{\ell}}(\rho,\rho,\mu\ell - \frac{\mu}{\eta}k)} \\ &\cdot \left(q^{mn} - q^{km}\operatorname{Vol}_{\mathcal{I}_{\ell}}(\rho,\rho,\mu\ell - \frac{\mu}{\eta}k) + \operatorname{Vol}_{\mathcal{I}_{\ell}}(\rho,\rho,\mu\ell - \frac{\mu}{\eta}k + 1) \\ &\cdot \sum_{k'=\max\{1,n-2\frac{n}{\mu}\rho+1\}}^k (q^{k'm} - q^{(k'-1)m}) \right). \end{aligned}$$

References

[BGLR20]	Eimear Byrne, Heide Gluesing-Luerssen, and Alberto Ravagnani.
	Fundamental properties of sum-rank metric codes, 2020.

- [Del76] Philippe Delsarte. Properties and applications of the recurrence f(i+1,k+1,n+1)=q^rk+1f(i,k+1,n)-q^rkf(i,k,n). SIAM Journal on Applied Mathematics, 31(2):262-270, 1976.
- [GY09] Maximilien Gadouleau and Zhiyuan Yan. Bounds on covering codes with the rank metric. IEEE Communications Letters, 13(9):691–693, 2009.
- [MMO04] Theresa Migler, Kent E Morrison, and Mitchell Ogle. Weight and rank of matrices over finite fields. arXiv preprint math/0403314, 2004.
- [OLWZ22] Cornelia Ott, Hedongliang Liu, and Antonia Wachter-Zeh. Covering properties of sum-rank metric codes. pages 1–7, 2022.
- [OLWZ23] Cornelia Ott, Hedongliang Liu, and Antonia Wachter-Zeh. Geometrical properties properties of balls in sum-rank metric. 2023.
- [OPB21] Cornelia Ott, Sven Puchinger, and Martin Bossert. Bounds and genericity of sum-rank-metric codes. pages 119–124, 2021.
- [PRR20] Sven Puchinger, Julian Renner, and Johan Rosenkilde. Generic Decoding in the Sum-Rank Metric. arXiv preprint arXiv:2001.04812, 2020.
- [PRR22] Sven Puchinger, Julian Renner, and Johan Rosenkilde. Generic Decoding in the Sum-Rank Metric. IEEE Transactions on Information Theory, 2022.
- [Rat08] Joel Ratsaby. Estimate of the number of restricted integer-partitions. Applicable Analysis and Discrete Mathematics, pages 222–233, 2008.