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1.1 This lecture is about...

...the basic principles and theory of data networks.

Evaluation of network performance is needed for

• Development of communication systems, i.e. system/protocol standardization

• Network planning

• Operation and maintenance of networks

Tools:

• Mathematical analysis

• Simulation

Note:

• A purely mathematical analysis of communication systems is usually not possible

due to the complexity of real-world systems (Alternative: Simulation).

• But understanding the fundamentals of network theory helps

◦ To analyze and understand dependencies in a system

◦ To set up meaningful simulations, and

◦ To interpret the simulation results

... about network protocols.

Protocols: Description, how multiple parties (peer entities) interact when they
are jointly working on a single job.
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1.2 Overview

• Hierarchical structure of network functionality- OSI (Open System interconnec-
tions) model

◦ Physical Layer

◦ Data Link Control Layer (wit Medium access control)

◦ Network, Transport, Session, Presentation, Application Layers

• Protocols for point-to-point connections and End-to-End connections

◦ Reliable data transmission, ARQ protocols

◦ Framing

• Multiple access control

◦ ALOHA protocols

◦ Splitting algorithms

◦ Token rings, Token passing, Polling

• Routing

◦ Basics from Graph theory

◦ Dijkstra’s algorithm

◦ Bellmann-Ford algorithm

• Queuing Theory

◦ Little’s theorem

◦ Exponential queuing systems

1.3 References

• D.Bertsekas and R.Gallager: Data Networks, Prentice-Hall,1992

• A.Tanenbaum: Computer Networks, Prentice-Hall, 1996

• M.Bossert and M.Breitbach: Digitale Netze, Teubner,1999

1.4 Introduction to Probability theory

1.5 Review of Markov chain theory
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Chapter 1

Introduction to probability theory

discrete space

continuous space
1

1
G

R

W

B

( finite or countable )

Ω is a sample space sample (point) ω ∈ Ω (is an elementary event)

Definition: any subset A ⊆ Ω is called an event.

Example: Events G, R, W, B

Special events:

• the elementary event A = {ω}
• the impossible event A = {} = φ

• the certain event A = Ω

9



1.1 Probability of event

Discrete space: Let Ω = {ω1, ω2, . . .}, and P (ωi) ≥ 0,
∑

i P (ωi) = 1

Definition: Probability P (A) of event A is sum of probabilities P (ωi) of samples ωi

that form A.

Example: Let Ω = {ω1, . . . , ω16} and P (ωi) = 1/16. Then P (G) = 4 · 1
16 = 1/4.

Continuous space Ω:

Problem: P (ω) = 0!

Example: Define P (G) = |G|
|Ω| =

1/4
1

= 1/4.
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1.2 Combining events

Product of events C = AB (A ∩B; A and B; A&B)

Event C takes place ⇔ A and B happens.

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �
� � � �A

B

C

C = AB = A ∩B; P (AB) = P (A ∩B).

If A ∩B = ∅ then events A, B are called mutually exclusive.

11



Sum of events C = A + B (A ∪B; A orB)

Event C happens ⇔ A or B happens.

A
C

B

C = A + B = A ∪B

P (A + B) = P (A) + P (B)− P (A ∩B)

P (A + B) ≤ P (A) + P (B) union bound;

equality only if P (A ∩B) = 0.
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The complement C = Ac (A)

Event C happens ⇔ A does not happen.

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �

A

C

Ω

Ac = Ω \A

P (Ac) = 1− P (A)

Inclusion A ⊂ B

B includes A if A→ B, i.e.,

if A happens then B happens too.

B

A

P (A) ≤ P (B)

If A ∩B = ∅:
A→ Bc A ⊆ Bc

or

B → Ac B ⊆ Ac

13



1.3 Kolmogorov’s axioms

Let A, B ⊆ Ω. Probability P (·) satisfies:
1. 0 ≤ P (A) ≤ 1

2. P (Ω) = 1

3. A ∩ B = ∅ ⇒ P (A ∪ B) = P (A) + P (B)

1.4 Conditional probabilities

Assume that A, B ⊆ Ω and we know that event A happens, then probability of B
is called conditional probability and is denoted by P (B|A).

Example:

A

B
P (B) = 5/16; P (A) = 12/16; |Ω|=16

P (B|A) = 4
12 = |A∩B|

|A| = P (AB)|Ω|
P (A)|Ω| = P (AB)

P (A)

Definition: P (B|A) = P (AB)
P (A)

All theorems about probabilities can be applied to conditional probabilities too.

Example: P (A ∪B|C) = P (A|C) + P (B|C)− P (AB|C)

14



We have: P (AC) = P (A|C)P (C)

Recurrently: P (ABC) = P (A|BC)P (B|C)P (C)

1.5 Decomposition

AΩ

C1 C2 C3

Let C1, . . . , Cn be mutually exclusive events and ∪Ci = Ω. Then A = AC1 ∪AC2 ∪
. . . ∪ ACn

Since ACi are also mutually exclusive:

P (A) =
∑

i

P (A|Ci)P (Ci)

1.6 Independency

Events A and B are independent if P (A|B) = P (A).

Recall P (A|B) = P (AB)
P (B) should be = P (A).

Definition: Events A and B are called independent if P (AB) = P (A)P (B).
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1.7 Random variable

Definition: A (real) random variable is a mapping X : Ω → R [, for which
∀r ∈ R {ω ∈ Ω : X(ω) ≤ r} is an event]

Example:

1

555

3 3 4

1 2

Ω
Ω = {ω1, . . . , ω9}, ω1 → 1, ω2 → 1, ω3 → 2, . . . , ω9 → 5

X 1 2 3 4 5

P (X) 2/9 1/9 2/9 1/9 3/9
probability distribution

If X(Ω) is discrete, the random variable X is called discrete.

Example:

1 2 3 4

Ω

X(Ω) = {1, 2, 3, 4}, Ω is continuous, X is discrete.

16



Definition: The function fx : X(Ω)→ R with

fX(x) = P (X = x)

is called the probability distribution function (for a discrete variable)

or probability mass function.

Definition: The function FX : R→ R with

FX(x) = P (X ≤ x)

is called the cumulative distribution function (CDF).

Definition: If ∃fX(x) ≥ 0 such that

FX(x) =

∫ x

−∞
fX(y)dy

then FX(x) is called probability density function (PDF).

17



Mean The expected value (mean, mathematical expectation) of the random
variable X is µX = E(X), where

E(X) =
∑

x

xP (X = x)

for discrete variable X.

E(X) =

∫ ∞

−∞
xf(x)dx

for continuous variable.

Property: E(aX + bY ) = aE(X) + bE(y), a, b ∈ R

Variance var(X) = E((X − µX)2) = σ2
X

Properties:

var(aX + b) = a2var(X)

var(X) = E(X2)− (E(X))2

If X, Y are independent, then

var(X + Y ) = var(X) + var(Y )
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1.8 Stochastic process

A discrete time stochastic (random) process can be considered as a series of

random variables

X1, X2, X3, . . . ,

where Xi : Ωi → R. Here I = {1, 2, 3, . . .} is a discrete index set.

Each point in the sample space

Ω = Ω1 × Ω2 × . . .

corresponds to a particular value for each of the random variables and is known as

a realization of the process.

The process is determined by the joint probability distribution of the random
variables.

Continuous stochastic process

In a continuous stochastic process the index set is continuous (usually space or
time), resulting in an uncountably infinite number of random variables

Xt, t ≥ 0.
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1.9 Bernoulli process and Bernoulli distribution

A Bernoulli process is a discrete-time stochastic process consisting of a finite or

infinite sequence of independent random variables X1, X2, . . . , with distribution:
P (X = 1) = p; P (X = 0) = 1− p.

Example: Unfair coin, we call X = 1 the successful event. Consider n throwings

of the coin, get Bernoulli process of length n.

Binomial distribution

Define a new discrete random variable I as the number of successes in n attempts.

The probability function for I is called Binomial distribution:

P (I = i) =

(
n
i

)
pi(1− p)n−i,

where

(
n
i

)
= n!

i!(n−i)! is binomial coefficients.

Mean value E(I) = np

Variance σ2
I = np(1− p)

20



Waiting time in a Bernoulli process

Define a new discrete random variable N as the number of throwings, the coin
until we get i successes.

The probability function is

P (N = n) =

(
n− 1

i− 1

)
pi(1− p)n−i,

Mean: E(N) = i
p

Variance: σ2
N = i1−p

p2

21



1.10 From Bernoulli to Poisson

Bernoulli: B(i) = P (I = i) =

(
n

i

)
pi(1− p)n−i

n→∞ p→ 0 np = λ = const, then

B(i) ≈ (np)i

i!
e−np =

λi

i!
e−λ

Poisson approximation for Bernoulli distribution, where λ = np is average number
of ”successes” during n trials.

Continuous time t:

λ - an average number of successes (arrivals) per unit time

Probability to have i arrivals during unit time:

P (i) =
λi

i!
e−λ

(Poisson distribution with parameter λ)

(n trials correspond to unit time, np = λ)

Probability to have i arrivals during time interval τ is

P (i) =
(λτ)i

i!
e−λτ

(Poisson distribution with parameter λτ)

(n trials correspond to the interval τ , τλ = np)
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1.11 Poisson process

A stochastic process A(t), t ≥ 0 taking nonnegative integer values is a Poisson process

with rate λ if
1. A(t) is the number of arrivals in the time interval (0,t].

2. The number of arrivals that occur in disjoint time intervals are independent.

3. The number of arrivals in any interval of length τ (denote this number by random
variable I) is Poisson distributed with parameter λτ :

P0(i; λτ) = P{A(t + τ)− A(t) = i} = P (I = i) = (λτ)i

i! e−λτ , i = 0, 1, · · ·

Properties

1. mean of I E(I) = λτ

2. variance of I σ2
I = λτ

3. Interarrival times (random variables Ji)

τi = ti+1 − ti are independent and exponentially distributed:

P (Ji ≤ s) = 1− e−λs

with probability density function

fJ(τ) = λe−λτ

mean E(τ) = 1/λ variance σ2
τ = 1/λ2

23



4.
P (I = 0) = 1− λτ + o(τ) e−λτ = 1− λτ + (λτ)2

2 − . . .

P (I = 1) = λτ + o(τ) λτe−λτ = λτ − (λτ)2 + . . .

P (I > 1) = o(τ) 1− P (I = 0)− P (I = 1)

5. Let A = A1 + . . . + Ak, where Ai are independent Poisson processes, then A is
a Poisson process with λ = λ1 + . . . + λk.

6. Waiting time for i arrivals (random variable J). The probability density function
for J is (Erlang-i distribution)

fJ(τ) = λ
(λτ)i−1

(i− 1)!
e−λτ

with mean E(J) = i/λ, variance σ2
J = i/λ2

For i = 1 we get an exponential distribution.

Agner Krarup Erlang (1878-1929)

Danish mathematician, invented queueing theory.
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1.12 Time-discrete Markov Chains

A Markov chain describes a process with memory: The outcome of an experiment
depends on the previous one.

S = {0, 1, 2, . . .} is a set of positive integers called states. S can either be finite

or infinite (depends on type of Markov chain).

Definition: Markov Chain

A discrete stochastical process {X(k) | k = 0, 1, 2, . . .} is a Markov Chain if

• X(k) ∈ S for all k = 0, 1, 2, . . .

• the probability Pij = P{X(k) = j | X(k − 1) = i} is independent from the
history of the process before time instant k − 1:

Pij = P{X(k) = j | X(k − 1) = i, X(k − 2) = ik−2, . . .} = P{X(k) = j |
X(k − 1) = i}

At time instant k− 1 the Markov chain is in state i, and at time k in state j. Pij is
the transition probability from state i to state j.

The sum over all transition probabilities leaving state i must equal 1:
∑

j∈S
Pij = 1 for all i ∈ S

The transition probabilities can be written into a transition matrix:

P =





P00 P01 P02 · · ·
P10 P11 P12 · · ·

. . .

Pi0 Pi1 Pi2 · · ·
...

...
... . . .
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Example: Markov chain with 4 states and the corresponding transition probability
matrix.

a cb d

P

P

P

P
P

P

P

P

P

ab

ba

ac

bb
bc

cb

cd

db

dc

P =





a : b : c : d :
a : 0 Pab Pac 0

b : Pba Pbb Pbc 0
c : 0 Pcb 0 Pcd

d : 0 Pdb Pdc 0





The probability of moving from state i to state j in m + n steps is described by the
Chapman-Kolmogorov equation:

Pm+n
ij = P{X(k + m + n) = j | X(k) = i} =

∑

l∈S
P

(m)
il P

(n)
lj

for n, m ≥ 0; i, j ∈ S
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A Markov chain is irreducible if each state can be reached from any other state,
otherwise it is reducible.

If a state i can be reentered only after d (d > 1) steps or a multiple of d steps, it is
called periodic. Markov chain is aperiodic if none of its states is periodic.

For a periodic state i with period d

P
(m)
ii =

{
> 0 if d | m
= 0 if d - m

A probability distribution {Pj | j ∈ S} is a stationary distribution if

pj =
∞∑

i=0

piPij, ∀j ∈ S

For p = (p0, p1, . . .):

p = pP

For irreducible and aperiodic Markov chains:

pj = lim
n→∞

P (Xn = j | X0 = i) ∀i, j ∈ S

and with probability 1:

pj = lim
k→∞

number of visits to state j up to time k

k

∀j ∈ S
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Theorem: In an irreducible, aperiodic Markov chain, there are two possibilities for
pj

1. pj = 0 ∀j; (@ stationary distribution)

2. pj > 0 ∀j; p is the unique stationary distribution.

Remark: If | S |<∞, case 1 never happens.

Example:

20 1

λ λ λ

µµµµ

+λ µ =1

If | S |=∞ and λ > µ then we have case 1.
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1.13 Global balance equations

pj

∑

i

Pji =
∑

i

piPij ∀j (G1)

Proof: follows from

pj =
∑

i

piPij and
∑

i

Pji = 1

Another form of (G1)

pj

∑

i6=j

Pji =
∑

i6=j

piPij ∀j (G2)

Remark:

piPij - frequency of transitions i→ j.

Equation (G2) means that frequency of transitions

j → equals to that of → j
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1.14 Generalized global balance equations

Let U ⊂ S, then

∑

j∈U
pj

∑

i!∈U
Pji =

∑

i!∈U
pi

∑

j∈U
Pij (G3)

U U

Proof: Follows from (G1) and

∑

i

=
∑

i∈U
+

∑

i!∈U
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1.15 Detailed balance equations

Birth-death systems:

0 2 3 n n+11

Pij = 0 if | i− j |> 1

Pi,i+1 > 0 and Pi+1,i > 0 ∀i ∈ S

This is necessary and sufficient condition for the chain to be irreducible.

Let U = {0, 1, . . . , n}. From (G3) we get

pnPn,n+1 = pn+1Pn+1,n ∀n ∈ S

Detailed balance equations:

pjPji = piPij ∀i, j ∈ S (DBE)

A solution p of (DEB) is the stationary distribution.

A common approach:

Try to solve (DBE) with
∑

j pj = 1

1. The system of equations if inconsistent (DB hypothesis is wrong)

2. The found solution is the stationary distribution
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1.16 Continuous-time Markov chain

is a process X(t), t ≥ 0, taking values from the set of states S = {0, 1, . . .}. Each

time it enters state i:
1. The time it spends in state i is exponentially distributed with parameter νi,

where νi is the rate (trans./sec) at which the process makes a transition from

state i.

2. When the process leaves state i, it will enter state j with probability Pij,∑
j Pij = 1. We call

qij = νiPij

the transition rate (trans./sec) from i to j.

Discrete - time Markov chain with transition probabilities Pij is called the
embedded chain.

We require that the embedded chain is irreducible.

We also require that the number of transitions in any finite interval of time is finite
with probability 1 (regular chains).
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The limit

pj = lim
t→∞

P{X(t) = j | X(0) = i}
exists, is independent of i. pj is steady-state occupancy probability of state j.

Denote Tj(t) the time spent in state j up to time t, then

pj = lim
t→∞

Tj(t)

t

There are two cases:
pj = 0 ∀j; or pj > 0 ∀j

Global balance equations

pj

∑

i

qji =
∑

i

piqij ∀j (GC)

If p satisfies (GC) then p is steady-state distribution.

piqij is the frequency of transitions (per sec) i→ j.

Detailed balance equations

pjqji = piqij i, j ∈ S (DBEC)

For birth-death systems qij = 0 for | i− j |> 1 and (DBEC) holds.

Again one can try to solve (DBEC) with
∑

j pj = 1.
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Chapter 2

Queueing Theory

Single server system:

Buffer Server
Input (arrival) process

µ

Multiple server system:

1

m

Waiting time Server time

Arrival process

XiWi

λ µ

µ

Applications:

• Supermarkets. Priority for quick customers.

• Traffic. Control of traffic lights.

• Economy. Design of plants.

• Digital networks. Design and operate the networks to achive maximum perfor-
mance..
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Typical questions in Queueing theory:

1. The average number of customers in the system.

2. The average delay per customer E(Wi + Xi).

What is known:

1. The customer arrival rate λ.

2. The customer service rate (when busy) mµ.
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2.1 Little’s Theorem

T (sec)

System

N customers
λ (cust./sec)

N(t) - number of customers in the system at time t.

Nt - time-average number of customers up to time t.

Nt =
1

t

∫ t

0

N(τ)dτ.

N - (steady-state) time average

N = lim
t→∞

Nt

α(t) number of customers who arrived in [0, t]

λt = 1
tαt time-average arrival rate in [0, t]

λ = limt→∞ λt (steady-state) arrival rate

Ti time spent in the system by customer i

Tt = 1
α(t)

∑α(t)
i=0 Ti - average time spent in system per customer in [0, t]

T = limt→∞ Tt - (steady-state) customer delay

Theorem [Little, 1961]
N = λT
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2.1.1 Idea of proof

Delay T2
Delay T1

t1 t2

Customer 1
Customer 2

0
1
2
3
4
5
6

8
7

t

τ

τ

α(τ)

β(τ)

N(  )τ

 N
um

be
r o

f A
rr

iv
al

s 

N
um

be
r o

f D
ep

ar
tu

re
s 

 α(
τ) β(

τ)

Assumptions:

• N(0) = 0

• The customers depart in the same order they arrive

β(t) the number of departures up to time t

N(t)= α(t)− β(t)

The shaded area =
∫ t

0 N(τ)dτ
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• If N(t) = 0 the shaded area =
∑α(t)

i=1 Ti

1

t

∫ t

0

N(τ)dτ =
1

t

α(t)∑

i=1

Ti =
α(t)

t
· 1

α(t)

α(t)∑

i=1

Ti

Nt = λtTt

limt→∞ gives the Little’s theorem.
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2.1.2 Probabilistic form of Little’s theorem

pn(t) - probability of n customers in the system at t

N(t) = Σ∞n=0npn(t) the average number in the system at time t

Assume we have (steady-state) limit

lim
t→∞

pn(t) = pn, n = 0, 1, . . .

N = Σ∞n=0npn and typically N = limt→∞N(t)

We consider ergodic processes only:

the time average N with probability 1 equals to the statistical average N

N = lim
t→∞

Nt = lim
t→∞

N(t) = N

Tk average delay of customer k

T = limk→∞ Tk (steady-state) delay

Little’s Theorem
N = λT

where

λ = lim
t→∞

1

t
(expected number of arrivals in [0, t])

40



2.1.3 Applications of Little’s theorem

Buffer

Waiting time W

Server

Server time X

λ λ λ

1. System: Buffer + Server

T = W + X average time in the system

N average number of packets in the system

N = λT

2. System: Server

ρ - the average number of packets under transmission

ρ = λX

Since 1 or 0 packets can be under in server transmission, ρ means server or
line’s utilization factor, part of time the line is busy.

3. System: Buffer

NQ - average number of packets in queue

NQ = λW

4. Compare ordinary restaurant and fast-food restaurant serving λ customers per
hour.

Tf � To ⇒ Nf = λTf � No = λTo
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Kendall notation:

Arrival process/ service process/ ]servers/ ]places in system

Arrival process and service process denote the statistical properties of time between

two successive input/service events;

• M : memoryless process, Poisson process

• D: deterministic: constant time (e.g. constant service time)

• Ek: Erlang-k distributed time

• MMPP : Markov-modulated Poisson process

• G: Process with general distribution function

Example Kendall notation: M/D/2/5

• M : Poisson arrival process

• D: constant service time

• 2: 2 servers

• 5: 5-2=3 buffer places

Example Markov-modulated Poisson process:

High loadLow loadHigh load

Rates of Poisson process

High load Low load

λ λLH
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2.2 M/M/1 Queueing system

Customers arrive according to a Poisson process with rate λ. Interarrival times

τn = tn+1 − tn

are independent and
P{τn ≤ x} = 1− e−λx

Probability distribution of the service time is exponential with mean E(Xi) = 1/µ
seconds. Service rate µ customers per second.

Customer service times sn are mutually independent and independent of all in-

terarrival times and
P{sn ≤ x} = 1− e−µx

2.2.1 Memoryless character of exponential distribution

P{τn > r + t|τn > t} = P{τn > r}
P{sn > r + t|sn > t} = P{sn > r}

Proof: P{τn > r + t|τn > t} = P{τn>r+t}
P{τn>t} = e−λ(r+t)

e−λt = e−λr = P{τn > r}

Little’s Theorem:

N = λT, N =
∞∑

n=0

npn, NQ = λW, T =
N

λ
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2.2.2 Markov chain formulation

From memoryless property → N(t) is a continuous-time Markov chain.

Consider discrete-time Markov chain at times 0, δ, 2δ, . . . , kδ, . . .

Nk = N(t = kδ) - number of customers

Pij = P{Nk+1 = j|Nk = i}
1. P00 = 1− λδ + o(δ)

2. Pii = 1− λδ − µδ + o(δ) i ≥ 1

3. Pi,i−1 = µδ + o(δ)

4. Pi,i+1 = λδ + o(δ)

5. Pij = o(δ) j 6= i, i + 1, i− 1

Proof:

1. Probability of 0 arrivals in Poisson process

2. Probability of 0 arrivals and 0 departures in δ interval is
[1− λδ + o(δ)][1− µδ + o(δ)]

3. Probability of 0 arrivals and 1 departure [1− λδ + o(δ)][µδ + o(δ)]

4. Probability of 1 arrival and 0 departures [λδ + o(δ)][1− µδ + o(δ)]

5. Probability of > 1 arrivals or > 1 departures in δ interval is o(δ).

0 1 n+1n

1−λδ

λδ

1−λδ−δµ 1−λδ−δµ

λδ λδ λδ

n−1
µδ µδ µδ µδ
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2.2.3 Stationary distribution pn

Detailed balance equations:

pnλδ + o(δ) = pn+1µδ + o(δ)

δ → 0; pnλδ = pn+1µδ

pn+1 = ρpn, n = 0, 1, . . . ,

where ρ = λ
µ .

pn = ρnp0, n = 0, 1, . . .

Normalization:

1 =
∞∑

n=0

pn =
∞∑

n=0

ρnp0 =
p0

1− ρ

p0 = 1− ρ, ρ < 1,

ρ = 1− p0 utilization factor

pn = ρn(1− ρ) stationary distribution

Average number of customers:

N =

∞∑

n=0

npn =

∞∑

n=0

nρn(1− ρ) = ρ(1− ρ)

∞∑

n=0

nρn−1

= ρ(1− ρ)
d

dρ
(

∞∑

n=0

ρn) = ρ(1− ρ)
d

dρ
(

1

1− ρ
)

= ρ(1− ρ)
1

(1− ρ)2
=

ρ

1− ρ
=

λ

µ− λ
= N

N

1 p= λ/µ
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The average delay:

T =
N

λ
=

ρ

λ(1− ρ)
=

1

µ− λ

The average waiting time in queue:

W = T −X =
1

µ− λ
− 1

µ
=

ρ

µ− λ

The average number of customers in queue:

NQ = λW =
ρ2

1− ρ

Increasing λ and µ by the same factor

Let λ← Kλ, µ← Kµ. Then

N = Kλ
Kµ−Kλ = λ

µ−λ stays the same.

T = 1
Kµ−Kλ = 1

K(µ−λ) decreased K times.

Time t

N
um

be
r o

f D
ep

ar
tu

re
s

N
um

be
r o

f a
rr

iv
al

s
N

um
be

r o
f a

rr
iv

al
s

N
um

be
r o

f D
ep

ar
tu

re
s

Time t

N(t)

(a)
N(t)

α(t)

α(t)

β

β (t)

(t)

46



2.3 M/M/m Queueing system

1

m

m−server case

λ µ

µ

Markov chain:

0 1 2 m−1 m m+1

µδ

λδ λδ

µδ

λδλδλδ

2µδ µδm m

λδ

mµδ(m−1)µδ

Detailed balance equations: δ → 0

pn =
1

n

λ

µ
pn−1 =

mρ

n
pn−1, n ≤ m

pn =
1

m

λ

µ
pn−1 = ρpn−1, n ≥ m

pm = p0
mmρm

m!

pn =





p0
(mρ)n

n! , n ≤ m

p0
mmρn

m!
, n ≥ m

where

ρ =
λ

mµ
< 1
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Normalization:

p0 = [
m−1∑

n=0

(mρ)n

n!
+

∞∑

n=m

(mρ)m

m!

1

ρm−n
]−1

and finally

p0 = [

m−1∑

n=0

(mρ)n

n!
+

(mρ)m

m!(1− ρ)
]−1
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2.3.1 Erlang C formula

P (Queueing) =
∞∑

n=m

pn =
∞∑

n=m

p0m
mρn

m!
=

p0(mρ)m

m!

∞∑

n=m

ρn−m =

p0(mρ)m

m!(1− ρ)
= PQ

In M/M/m model the customers remain in queue (alternative is M/M/m/m
system)

The expected number of customers waiting in queue

NQ =

∞∑

n=0

npn+m

From Erlang C formula

NQ =
∞∑

n=0

np0
mmρm+n

m!
=

p0(mρ)m

m!

∞∑

n=0

nρn =
p0(mρ)m

m!

ρ

(1− ρ)2
= PQ

ρ

1− ρ

or
NQ

PQ
=

ρ

1− ρ
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NQ

PQ
=

ρ

1− ρ
, ρ =

λ

mµ

This is average number of customers in queue conditioned that all servers are busy.

Compare with M/M/1 system, where

NQ

PQ
=

NQ

ρ
=

ρ

1− ρ
, ρ =

λ

µ
.

So, as long as queue is not empty, the queue size of M/M/m system is as for
M/M/1 system with service rate mµ.

The average waiting time W in a queue (from Little’s theorem)

W =
NQ

λ
=

ρPQ

λ(1− ρ)

The average delay per customer (ρ = λ
mµ)

T =
1

µ
+ W =

1

µ
+

ρPQ

λ(1− ρ)
=

1

µ
+

PQ

mµ− λ

The average number of customers in the system (from Little’s)

N = λT =
λ

µ
+

λPQ

mµ− λ
= mρ +

ρPQ

1− ρ
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2.3.2 Statistical multiplexing

For M/M/m system: T = 1
µ +

PQ

mµ−λ

m

1λ/ m

mλ/ µ

µ

Α

1

m

λ

µ

µ
B

λ
mµ

C

A

T =
1

µ
+

mPQ

mµ− λ

B

T̂ =
1

µ
+

P̂Q

mµ− λ

C

T̃ =
1

mµ
+

P̃Q

mµ − λ

1. ρ� 1 lightly loaded system

(PQ, P̂Q, P̃Q) ≈ 0

T ≈ 1
µ T̂ ≈ 1

µ T̃ ≈ 1
mµ

2. ρ ≈ 1 heavy loaded
(PQ, P̂Q, P̃Q) ≈ 1

T ≈ m
mµ−λ

T̂ ≈ 1
mµ−λ

T̃ ≈ 1
mµ−λ
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2.4 M/M/∞: The infinite-server case

Consider limit of M/M/m system, m→∞

Detailed balance equation:

λpn−1 = nµpn, n = 1, 2, . . .

pn =
λ

µn
pn−1 = p0(

λ

µ
)n 1

n!
, n = 0, 1, . . .

Normalization:

p0 = [
∞∑

n=0

(
λ

µ
)n 1

n!
]−1 = e−λ/µ

pn = (
λ

µ
)ne−λ/µ

n!
, n = 0, 1, . . .

In steady-state, the number in the system is Poisson distributed with parameter
λ
µ .

The average number (of customers) is the system

N =
λ

µ

The average delay (by Little’s Theorem)

T =
1

µ

(no queue in M/M/∞ system)
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2.5 M/M/m/m: The m-server loss system

1

m

λ

µ

µ

Telephony, circuit-switched networks; 1/µ is average duration of telephone conver-

sation.

Blocking: When all servers are busy, arriving customer is refused.

mm−20 1 m−1

λδ

µδ 2µδ

λδ λδ λδ

(m−1) µδmµδ

λpn−1 = nµpn, n = 1, 2, . . . , m

pn = p0(
λ

µ
)n 1

n!
, n = 0, 1, . . . , m

Normalization:

p0 = [

m∑

n=0

(
λ

µ
)n 1

n!
]−1

Blocking probability Erlang B formula:

pm =
(λ

µ
)m/m!

∑m
n=0(

λ
µ)n/n!

The average delay

T =
1

µ
(1− pm) + 0 · pm

The average number in the system

N = λT =
λ

µ
(1− pm)

53



2.6 M/G/1 system

λ
µ

• Customers arrive according to Poisson process with rate λ

• and are served in the order they arrive;

• Customer service time have a general distribution

• Xi is service duration of i− th arrival

• Xi are identically distributed, mutually independent, independent of the inter-
arrival time.

X = E(X) = 1
µ average service time,

X2 = E(X2) second moment
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2.7 Pollaczek-Khinchin (P-K) formula

Average waiting time in queue (Pollaczek-Khinchin):

W =
λX2

2(1− ρ)

where

ρ =
λ

µ
= λX

Average delay (queue + service):

T = X +
λX2

2(1− ρ)

Average number of customers it the queue:

NQ = λW =
λ2X2

2(1− ρ)

Average number in the system:

N = λT = ρ +
λ2X2

2(1− ρ)

ρ = λ/µ
M/G/1 M/M/1 M/D/1

X2 X2 = 2
µ2 X2 = 1

µ2

W = λX2

2(1−ρ) W = ρ
µ(1−ρ) W = ρ

2µ(1−ρ)

For given X, variance σ2
X = X2 − (X)2 is minimum ⇔ X2 is minimum

σ2
X is minimum for deterministic (D) case.

Hence, W, T, NQ, N for an M/D/1 system are lower bounds to the M/G/1 system

for the same λ and µ.
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2.7.1 Proof of Pollaczek-Khinchin formula

Wi waiting time in queue for i− th customer

Ri residual service time seen by the i− th customer

Xi service time of the i− th customer

Ni number of customers waiting in queue when i− th customer arrives

Wi = Ri +
i−1∑

j=i−Ni

Xj

E(Wi) = E(Ri) + XE(Ni)

(Since Ni, Xj are statistically independent)

take limi→∞

W = R +
1

µ
NQ

where R = limi→∞E(Ri) is mean residual time

By Little’s theorem:

NQ = λW, W = R + ρW, ρ =
λ

µ
, and W =

R

1− ρ
(∗)
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r(τ) residual service-time at time τ

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
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� � � � �

� � � �
� � � �
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� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

(τ)

X1

X1

X2

X2

τ

r

t

1

t

∫ t

0

r(τ)dτ =
1

t

M(t)∑

i=1

1

2
X2

i

M(t)-number of service completions within [0, t]

1

t

∫ t

0

r(τ)dτ =
1

2

M(t)

t

1

M(t)

M(t)∑

i=1

X2
i

lim
t→∞

: R =
1

2
λX2

and from (*)

W =
λX2

2(1− ρ)
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2.8 Priority Queueing

M/G/1 nonpreemptive priority

λ1

λn

,µnµ1,...

N
(1)
Q

N
(n)
Q

priority n

priority 1

N
(k)
Q average number in queue for priority k

Wk average queueing time for priority k

ρk = λk/µk system utilization

R mean residual service time

First priority class:

W1 = R +
1

µ1
N

(1)
Q

Little’s Theorem: for queue 1:

N
(1)
Q = λ1W1, W1 = R + ρ1W1, W1 =

R

1− ρ1
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Second priority class:

W2 = R +
1

µ1
N

(1)
Q +

1

µ2
N

(2)
Q +

1

µ1
λ1W2

The last item due to customers of higher priority that arrive while a customer
is waiting in a queue.

From Little’s Theory
N

(K)
Q = λkWK

we get

W2 = R + p1W1 + p2W2 + p1W2

and

W2 =
R + p1W1

1− p1 − p2

Using
W1 = R/(1− p1)

we get

W2 =
R

(1− p1)(1− p1 − p2)
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General case: priority class i:

Wi = R +

i∑

j=1

1

µj
N

(j)
Q +

i−1∑

j=1

1

µj
λjWi

From Little’s Theory:

Wi = R +
∑i

j=1 pjWj + Wi

∑i−1
j=1 pj

Wi−1 = R +
∑i−1

j=1 pjWj + Wi−1

∑i−2
j=1 pj





(∗)

Denote

σi
.
= 1−

i∑

j=1

pj = 1− p1 − . . .− pi

From (∗) get
Wiσi = Wi−1σi−2

or
Wi = Wi−1

σi−2

σi

We have

W2 =
R

σ1σ2
;

W3 = W2
σ1

σ3
=

R

σ1σ2

σ1

σ3
=

R

σ2σ3
;

. . .

Wk =
R

σk−1σk
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r

X12 X11 X21

τ

(τ)

r(τ) residual service-time at time τ

Xij service-time of i− th customer of priority j

Mj(t) number of service completions with in [0, t]

1

t

∫ t

0

r(τ)dτ =
1

t

n∑

j=1

Mj(t)∑

i=1

1

2
X2

ij =
1

2

n∑

j=1

Mj(t)

t

1

Mj(t)

Mj(t)∑

i=1

X2
ij

lim
t→∞

: R =
1

2

n∑

j=1

λjX2
j

Average waiting time in queue for priority k

Wk =
R

σk−1σk
=

∑n
j=1 λjX2

j

2(1− p1 − . . .− pk−1)(1− p1 − . . .− pk)

Average delay per customer:

Tk =
1

µk
+ Wk
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2.9 M/G/1 Preemptive resume priority

Service of a customer is interrupted when a higher-priority customer arrives and is
resumed from the point of interruption when all customers of higher priority have

been served.

The delay Tk for a customer of priority k consists of:

1. average service time 1/µk

2. time to service customers of priority 1 to k
(= waiting time in M/G/1 system without priorities)

Rk

1− p1 − . . .− pk

where Rk is the mean residual time

Rk =
1

2

k∑

i=1

λiX2
i

3. the average waiting time for new arriving customers of priority 1 to k − 1

k−1∑

i=1

1

µi
λiTk = Tk

k−1∑

i=1

pi

So,we get

Tk =
1

µk
+

Rk

(1− p1 − . . .− pk)
+ Tk

k−1∑

i=1

pi

or

Tk =
1

µk(1− p1 − . . .− pk−1)
+

∑k
i=1 λiX2

i

2(1− p1 − . . .− pk−1)(1− p1 − . . .− pk)
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2.10 G/G/1 system

• interarrival times and service times are all independent

The average waiting time in queue:

W ≤ λ(σ2
a + σ2

b)

2(1− ρ)
(∗)

σ2
a variance of the interarrival times

σ2
b variance of the service times

1/λ average interarrival time

1/µ average service time

ρ = λ/µ utilization factor

Compare with P −K:

W =
λX2

2(1− ρ)
(∗∗)

Improved (*)

W ≤ λ(σ2
a + σ2

b )

2(1− ρ)
− λ(1− ρ)σ2

a

2
(∗ ∗ ∗)

Example: Compare (*),(**),(***) for M/M/1 system
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2.11 Networks of transmission lines

1 2
λ

µ µ

A: 1 Poisson arrivals of rate λ pack/sec. Packets have the same length, processing

(transmission) time is = 1/µ sec. We have M/D/1 system with waiting time
given by P −K formula.

2 No waiting! Poisson assumptions are not valid. Reason: interarrival times 2

correlated with processing times 1. Indeed: interrarrival times 2 ≥ 1/µ

B: Now packet lengths are exponentially distributed and are independent of each
other as well as of the interarrival intervals at the first queue.

1 Is M/M/1 queueing system

2 can not be modeled as M/M/1 queueing system.
Reason: interarrival times are correlated with the packet lengths.

Long packets will wait less time at 2 than short packets. Compare with slow
track travelling with faster cars.
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2.12 The Kleinrock independence approximation

1

2

3

4

Kleinrock(1964): Merging several packet streams on a transmission line has an effect

similar to restore the independence of interarrival times and packet lengths.

As a result M/M/1 model can be applied.

65



2.13 Virtual circuit networks

i

j

X

X

X

s

s

s

2

3

1

λij = xs1
+ xs2

xs pack/sec arrival rate of stream s.

Total arrival rate at link (i, j) is

λij =
∑

s crossing link (i,j)

xs
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2.14 Datagram networks

j

Xs

s

1

X 2

f

ikf

ij

(s1) X(s1)

(s1 ) X(s1)

i

j

k

λij =
∑

s crossing link (i,j)

fij(s)xs

We use M/M/1 model for every link (i, j) (Kleinrock approximation)

Average number of packets in queue or service at (i, j) is

Nij =
λij

µij − λij

1/µij average packet transmission time on link (i, j)

Total number of packets:

N =
∑

(i,j)

λij

µij − λij

Average delay per packet neglecting processing and propagation delays (Little)

T =
N

σ
where σ =

∑
s xs total arrival rate in the system.

In many networks packets are distributed not exponentially. If queues are inde-

pendent use P −K.
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Example:

λ
λ/2

λ/2

A B
µ

µ

Poisson process with rate λ divided among two links with service (transmission) rate
µ.

1. Randomization Using a fair coin.

Each of 2 queues behaves like M/M/1 (arrivals independent of packet length)
and average delay per packet:

TR =
1

µ− λ/2
=

2

2µ− λ

(corresponds to Kleinrock approximation)

2. Metering Arriving packet is assigned to a queue having less number of bits. This

behaves like M/M/2 system with arrival rate λ and each link is a server.

Average delay

Tµ =
2

(2µ− λ)(1 + ρ)
(Example)

with ρ = λ
2µ

Metering is better than randomization, but destroys Poisson approximation. One
can use G/G/1 system.
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2.15 Burke’s Theorem

Consider M/M/1, M/M/m or M/M/∞ system with arrival rate λ. Suppose the
system starts in steady-state. Then

(a) the departure process is Poisson with rate λ.

(b) at time t, the number of customers in the system is independent of the sequence
of departure times prior to t.

Example: Two queues in tandom

Poisson Poisson Poissonλ λλQueue Q 1 Queue Q 2

µ 1 µ 2

The service times at queues are exponentially distributed (µ1, µ2) and

mutually independent (compare with transmission lines)

From Burke’s Theorem we can show that the two queues behave as if they are

independent M/M/1 queues in isolation.

Example:
P (n at Q1, m at Q2) = P (n at Q1)P (m at Q2)
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Chapter 3

HierarchicalStructureofNetworkFunctionality

Protocol: Description, how multiple parties (peer entities) interact when thay are

jointly working on a single job.

Problems:

• Communication protocols are mainly implemented in software. Protocol imple-
mentations are complex-like most other software

• Communication systems often use many protocols in parallel

• Many protocols have internal states. When several protocols interact the overall

statespace is equal to the Cartesian product of the individual protocol state-
space. Hence, the overall state-space may become extremely huge.

The key problem for network designers
in protocol description is complexity.
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Counter measure: divide and conquer approach

• Divide whole system into sub-systems, sub-systems into sub-sub-systems,...

• Define mutually independent protocol functions (see OSI model)

• Use protocol description languages

◦ UML unified modeling language

◦ SDL system description language (functional description)

◦ ASN.1 abstract syntax notation 1 (data structures)
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3.1 OSI Model (Open Systems Interconnections)

Design principles:

• Well-defined functions in each layer.

• Each function is completely handled in a single layer.

• Restricted inter-layer communication to avoid sides-effects (service primitives)

• Symmetry: Transmitter and receiver side of a function are always located in the
same layer.

The OSI model is standardized by ISO (International Standards Organization). It
is based on ideas similar to TCP/IP. In practice, the TCP/IP protocol suite is more

important than the OSI model. Nevertheless, the OSI reference model and the
underlying design methodology is frequently used in standardization and network

design.

Hierarchical structure of the OSI model:
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Application
Layer

Layer

Layer

Layer

Layer

Layer

Layer

Layer

Layer

Layer

Layer
Application

Presentation

Session

Transport

Network
Layer

Layer
Datalink

Physical
Layer

Layer Layer

Layer Layer

Presentation

Session

Transport

Network

Datalink Datalink Datalink

Physical Physical Physical

Network Layer
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Example 1:

Letter sorting process

Unload th eletter

American inventor
has a patent

Formulation of the 
description

Writing a letter

Put in envelope,
address and mail

Letter sorting
process

Packaging the letter
in a letter bag

Loading the letter
bag on a plane

Empty to letter bag in a letter bag
Packaging the letter

Loading the letter
bag onto a truckbag from the plane

Unload the letter
bag from the truck

Empty to letter bag

Letter sorting
process

Letter delivery and
opening

Reading of the letter

Translation from
English into German

German engineer
understands patent
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Example 2:

James Bond meets Number One on the 7th floor of the spy headquarters building.

Number One gives Bond a secret message that must get through to the US Embassy
across town.

Bond proceeds to the 6th floor where the message is translated into an interme-

diary language, encrypted and miniaturized.
Bond takes the elevator to the 5th floor where Security checks the message to be
sure it is all there and puts some checkpoints in the message so his counterpart at

the US end can be sure he’s got the whole message.

On the 4th floor, the message is analyzed to see if it can be combined with some
other small messages that need to got the US end. Also if the message was very

large it might be broken into several small packages so other spies can take it and
have it reassembled on the other end.

The 3rd floor personnel check the address on the message and determine who the
addressee is and advising Bond of the fastest route to the Embassy.

On the 2nd floor the message is put into a special courier pouch (packet). It contains

the message, the sender and dstination ID. It also warns the recipient if other pieces
are still coming.

Bond proceeds to the 1st floor where Q has prepared the Aston Martin for the
trip to the Embassy.

Bond departs for the US Embassy with the secret packet in hand. On the other

end the process is reversed. Bond roceeds from floor to floor where the message is
decoded.

The US Ambassador is very grateful the message got through safely.
”Bond, please tell Number One I‘ll be glad to meet him for dinner

tonight.”
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3.1.1 Physical Layer

Main goal:

• Mapping of information onto a signal, i.e., change the state of a physical object
according to the information.

• Transport the physical object.

• Recover information from the state of the received physical object.

Information Information

Channel decoding

Channel coding
information

Timing
Clock recovery Demodulation

Signal recoveryPhysical objectModulation

Second goal: physical channel multiplexing, i.e. a single physical medium is used

by several independent links in parallel (divide a channel into several independent
sub-channels).

Example: Frequency multiplex of TV channels.
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3.1.2 Data Link Control Layer

The DLC has two sub-layers:

3.1.2a Medium access control

Medium access protocols avoid that several users disturb each other‘s data trans-
mission and assign transmission capacity in a fair way.

• Multiplex: separate sub-channels, independent usage

• Multiple access: single channel, shared usage

• Examples: Ethernet, Token Ring, ALOHA

3.1.2b Logical link control

Main goal: Provide reliable point-to-point link (no bit-errors)
Other goals: Link related ciphering and message integrity protection
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Logical channel: Super imposed to physical channel, considers only information
and no signal or physical objects.

Non-real time data transmission:

• Split data stream into frames (frame synchronization required)

• Add checksum (parity check bits, CRC)

• Verify correctness of checksum on receiver side

• Request transmitter to repeat frames with incorrect checksum (ARQ)

• Very low residual bit-error rate

• Memory required in transmitter and in some cases also in the receiver

• Delay and reduced throughput, when frames have to be repeated

Transparent data transmission (real time services like voice or video):

• No delay permitted

• Error-detection by checksum

• Error-concealment: muting in speech transmission, repetition of previous, al-

ready correctly received image in video transmission

79



3.1.3 Network Layer

Main goal:

• Routing: Find a way from sender to receiver which satisfies the requested
Quality of Service (QoS), i.e. data rate, error-rate, packet loss, delay, ...

• Switching: Forwarding of traffic according to a route determined before by

the routing procedure. (Note: Switching differs for connection-oriented and
connection-less services)

• Flow control: Protect network links from overload; otherwise risk of deadlock

or break down of parts or even complete network. (methods: clever routing,
queuing of incoming traffic, discarding/blocking low-priority traffic)

For mobile radio networks: Extended routing and flow control mechanisms

Mobility management:

• Handles changing user location

• Central location data base: HLR

• Actual location data base: VLR

• Pageing: notify user in unknown location of incoming call

Radio resource management:

• Optimize usage of radio resources

• Admission control -long term

• Load control -intermediate

• Congestion control -short term

80



3.1.4 Transport Layer

Main goal:
• Provide a reliable end-to-end data transport

• ARQ protocols like in LLC layer to request retransmission of erroneous or miss-

ing packets

Second goal:

• Provide high-speed end-to end connection by distributing traffic onto-multiple
network connections (downward multiplexing: multiple connections used by one
user, in contrast to upward multiplexing: one connection shared among multiple

users)

3.1.5 Session Layer

Main goal:

• Answer the question: Where to access a wanted service in the network? E.g.
find processors in the network to share a job.

• Handles the interactions between the two end points in setting up a session

• Deals with access rights

3.1.6 Presentation Layer

Main goal:
• Handles syntax and semantics of data

• Conversion of data structures, e.g. character sets

• Source coding (speech compression, data compression)

• Cryptographix end-to-end ciphering, integrity protection of documents, authen-

tication of communication parties
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3.1.7 Application Layer

Service provided to the user:

• Telecommunications: phone, fax, SMS

• Broadcast: radio, TV

• Data communications: file transfer, remote login, e-mail, HTTP

3.1.8 Common issues of all layers

Addressing:

• Networking means that resources are shared and used jointly in parallel.

• Address headers describe where to deliver certain data.

Segmentation, fragmentation:

• Split long data streams into pieces which are more convenient to handle

• Add headers and sequence numbers to each piece.

• Segments: Add checksum for ARQ, i.e. each segment can be retransmitted
individually

• Fragments: No individual chechsum, hence no retransmission of pieces. Only
retransmission of complete data stream after reassembly.

Connection setup, maintenance, release: (Connection-oriented services only)

• Setup: Common understanding between peer entities on parameters (modula-

tion alphabet, data rate, QoS, frame/packet size, ...)

• Maintenance, reconfiguration: Check that connection is alive, adjust pa-
rameters

• Release: Declare resource as free again.
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3.2 Communication in the OSI Model

Entity:

• Some parts of the OSI model have to be realized in hardwae, while some parts

are realized in soft ware. However, all functional units are call entities.

• Hence, terminals, network nodes, processes, users, ... are entities.

• In the OSI model direct communication is only allowed between entities of ad-
jacent layers N and N-1 using service primitives

• A service primitive can be considered as a call of a subroutine, i.e. a message
or parameter exchange between entities

• Example of primitives:

◦ connection request

◦ connection confirm

◦ request that data be sent

◦ signal the arrival of data

Confirm (4)Request (1) Indication (2) Response (3)

Layers N−1, ..., 1

Layer N entityLayer N entity
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Example how to use primitives:

• CONNECT.request -Dial Aunt Millie‘s phone number

• CONNECT.indication -Her phone rings

• CONNECT.response -She picks up the phone

• CONNECT.confirm -You hear the ringing stop

• DATA.request -You invite her to tea

• DATA.indication -She hears your invitation

• DATA.request -She says she will be delighted to come

• DATA.indication -You hear her acceptance

• Disconnect.request -You hang up the phone

• Disconnect.indication -She hears it and hangs up too
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• Entities in the same layer on different machines are called peer entities

• Peer-to-peer communication (protocols) is realized indirectly between

opposite entities of the same layer. Example: ARQ protocol (layer 2) sends
ACK or NAK via PHY (layer 1), without PHY understanding these data.

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

PhysicalPhysical Physical

Data link

Network

IMP

Layer Name of unit
exchanged
A P D U

P P D U

S P D U

T P D U

Packet

Frame

Bit

Interface

7

6

5

4

3

2

1

Host A Host B

Network

Data link

Application protocol

Presentation protocol

Session protocol

Transport protocol

Communication subset boundary

Internal subnet protocol

Network layer host − IMP protocol
Data link layer host − IMP protocol

Physical layer host − IMP protocol

THE OSI REFERENCE MODEL
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3.3 OSI Data Structure

• We distinguish between protocol data units (PDU) and Service data units(SDU).

• The PDU of layer N becomes the SDU at layer N-1.

• At layer N-1 a header is added to the SDU and the resulting packet is the PDU

of layer N-1.

• The header contains information such as address, segment number, PDU length.

• The contents of a SDU is transported without being evaluated in any way.

Application
layer

Presentation
layer

Session
layer

layer
Transport

Network
layer

Data link
layer

Physical
layer

Application
layer

Presentation

Session

layer

Network

Data link

layer

layer

Physical

layer

layer

layer

Transport

DH DT

NH

TH

SH

PH

AH

Data

Data

Data

Data

Data

Data

Data

Process Process
Sending Receiving

Actual data transmission path

Application protocol

Presentation protocol

Session
protocol

Transport
protocol

Network
protocol

Bits
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3.4 Switching Entities in TCP/IP and OSI

Repeater Bridge Router

Repeater: Connects two networks at physical layer

• Forwards bits from one network to another

• Two networks look like one

• Repeaters copy bits without understanding what they are doing.

Bridge: Connects two networks at data link layer

• Useful when the networks have different data link layers but the same network
layer

• Example: connection of Ethernet and Token bus

• Bridges are smart

• They can be programmed to copy frames selectively and make changes.
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Router: Connects two networks at network layer

• Useful when the networks have different network layers but the same transport

layer

• Example: connection of X.25 and Token bus

Gateway: Connects network on higere layers

• Useful to connect networks that does not use the OSI model at all

• In many cases: connection in the application level

3.5 Remarks

• Implementation of inter-layer communication is not specified in OSI. Hence,

highly vendor specific.

• Building a protocol stack in a single physical entity from layers of multiple
vendors is difficult!

• Inter-layer communication can be time consuming. This is critical in real time

applications, e.g. speech transmission.

• Shortcuts by management back plane.
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Chapter 4

Multiaccess communications

Satellite channels

FDM, TDM, Aloha

Satellite

Ground stations

90



Multidrop telephone line

Polling, Aloha

Multitap bus

Round robin
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Two extreme strategies:

(a) free for all (Aloha)

(b) perfectly scheduled (round robin)

Sublayer

medium access control (MAC)

sublayer of data link control (DLC)
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4.1 Idealized Slotted Multiaccess Model

1. Slotted system: fixed packet length, synchronized

2. Poisson arrivals: m modes, λ/m arrival rate/node

3. Collision or perfect reception

4. 0, 1, e Immediate feedback: 0 packets, 1 packet, or e-error

5. Retransmission of collisions. Backlogged nodes

6a No buffering. New arrivals at busy node are discarded.

6b Infinite set of nodes (m =∞)

• Approximation 6a is good for large m, small λ and small required delay.

• 6b gives an upper bound to the delay for finite m.
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4.2 Slotted Aloha

The Aloha network (1970) Uni. of Hawaii.

• Each backlogged node retransmits at random, e.g. with probability qr in each slot.

A total number of packets transmitted in a slot can be approximated as a Pois-
son random variable with parameter G > λ.

Then probability of successful transmission in a slot is Ge−G.

arrival rate

departure rate

G=1 G

Equilibrium

e^(−1)

λ

Ge^(−G)

Max departure rate at G = 1 is 1/e ≈ 0.368

This is maximum throughput rate of Slotted Aloha.

In equilibrium λ = Ge−G

G < 1 many idle slots

G > 1 many collisions

What is dynamics of the system ?
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i - number of slots until retransmission of backlogged packet.

p(i) = (1− qr)
i−1qr geometric distribution

We use no - buffering assumption (6a)

n - number of backlogged nodes at the beginning of a slot

each of them transmits with probability qr

each of m − n unbacklogged nodes transmits with probability (if at least 1 packet

arrives)
qa = 1− e−λ/m

Denote: Qa(i, n) - probability that i unbacklogged nodes transmit

Qa(i, n) =

(
m− n

i

)
(1− qa)

m−n−iqi
a

Qr(i, n) - probability that i backlogged nodes transmit

Qr(i, n) =

(
n

i

)
qi
r(1− qr)

n−i
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Markov chain (state is n)

0 1 2 3

P

P

P
P

P

P

P
P

P

P
P

10

00

02

03

11

12

21

22

23

33

32

Pn,n+i =





Qa(i, n), 2 ≤ i ≤ m− n

Qa(1, n)[1−Qr(0, n)], i = 1
Qa(1, n)Qr(0, n) + Qa(0, n)[1−Qr(1, n)], i = 0

Qa(0, n)Qr(1, n), i = −1

Steady-state probabilities pn can be found recurrently from




pn =
∑n+1

i=0 piPin

∑m
n=0 pn = 1

The expected number n =
∑m

n=0 npn

From Little’s Th. delay=n/λ

The system is unstable, and if qrn� 1 then it is locked for a long time.
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Define drift Dn in state n as expected change in n over one slot time:

Dn = (m− n)qa − Psucc

where

Psucc - probability of successful transmission

Psucc = Qa(1, n)Qr(0, n) + Qa(0, n)Qr(1, n) (∗)

G(n) [attempt rate] expected number of attempted transmissions when in state n

Gn = (m− n)qa + nqr

Example: For qa and qr small:

Psucc ≈ G(n)e−G(n)

[this follows from (*) and (1− x)y ≈ e−xy]

Probability of idle slot Pidle

Pidle = Qa(0, n)Qr(0, n) ≈ e−G(n)

Thus, number of packets in a slot is well approximated by Poisson distribution.
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a

Desired stable point
Departure rate

b unstableArrival rate

c

Undesired stable point

G=0

n=0 n=mnb

Ge^{−G}

G=mq

G=(m−n)q +
(m−n)q

G=mq r

a
nqra

a

Instability of Slotted Aloha for qr > qa

Conclusions:

• departure rate Psucc at most 1/e for large m.

• departure rate is small for long time in point c

• influence of qr: G(n) = mqa + n(qr − qa)

(1) qr ↑: retransmission delay ↓; G(n) ↑; point c reached for smaller n

(2) qr ↓: retransmission delay ↑; point c can disappear

For infinite - node assumption: (6b)

Attempt rate is G(n) = λ + nqr

Arrival rate in the plot is λ = const

• point c disappears

• if n > nb (for point b), then n→∞
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4.3 Stabilized Slotted Aloha

Throughput is Psucc ≈ G(n)e−G(n)

maxG(n) Psucc is when G(n) = 1

Let us change qr dynamically to maintain G(n) = 1.

Problem: n is unknown to nodes, and can only be estimated from feedback.

Main idea:
• increase qr when idle slot

• decrease qr when collision

We consider infinite node assumption (6b)

Definition: A multiaccess system is stable for given λ if the expected delay

per packet is finite.

Theorem: Ordinary slotted Aloha is unstable ∀λ > 0

Definition: The maximum stable throughput is defined as supp λ for which the

system is stable.

Theorem: The maximum stable throughput of ordinary slotted Aloha is 0.
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4.4 Pseudo - Bayesian algorithm

Mikhailov(1979), Rivest(1985).

• new arrivals are backlogged on arrival.

Attempt rate: G(n) = nqr

Psucc = nqr(1− qr)
n−1

n̂ - estimation of backlog n at the beginning of each slot.

• Each backlogged packet is transmitted independently with probability qr(n̂) =
min{1, 1

n̂
}

So, attempt rate G = nqr ≈ 1

Updating rule:

n̂k+1 =





max{λ, n̂k + λ− 1}, for idle or success

(∗)
n̂k + λ + (e− 2)−1 for collisions

Explanation: From Poisson approximation, if n̂ ≈ n, G ≈ 1

Psucc = Ge−G ≈ e−1 = 1
e

Pidle = e−G ≈ e−1 = 1
e

Pcollision = 1− Psucc − Pidle ≈ 1− 2e−1 = (e−2)
e

So (*) maintains balance between n and n̂

λ is unknown and should be estimated.

Theorem: (Mikhailov) If fixed λ̂ = 1/e is used in the algorithm, it is stable for all

λ < 1/e.
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4.5 Approximate delay analysis

Assume:

• λ is known

• Psucc =





1 for n = 1

1/e for n > 1

Denote:

Wi delay from arrival of ith packet till beginning of ith successful transmission.

ni number of backlogged packets before i′s arrival

Ri residual time to the beginning of the next slot

tj interval from the end of (j − 1)th success to the end of jth success

yi remaining interval until the beginning of ith transmission.
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arrivals

coll. coll. coll.

departures A

i+1 i+2  i

succ.i−3 succ.i−2 succ.i−1 succ.i

R t t yi i−2 i−1 i

Fig. Example for ni = 2

Wi = Ri +

ni∑

j=1

ti−j + yj

For ti−j, where 1 ≤ j ≤ n, backlog n ≥ 2 and Psucc = 1/e

E(tj) = e

From Little’s Theorem: ni = Wiλ

W = 1/2 + Wλe + E(y) (w)

To compute E(y) consider point A, where both (i − 1)st departure and ith arrival
has occurred.

• if backlog n = 1 then E(yi) = 0

• if n > 1 then E(yi) = e− 1
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Denote pn steady-state probability that backlog is n at a slot boundary

At state 1 (which has probability p1) transmission is successful, y = 0

Consider N →∞ time slots

λN - number of successful transmissions

p1N - number of successful transmissions from state 1

λN−p1N
λN = λ−p1

λ fraction of packets transmitted from states n > 1

E(y) =
λ− p1

λ
(e− 1) (y)
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To determine p1:

e−λ is probability of no arrivals during one time slot.

0 1

P P

e^{

e^{

−λ}

−λ}
0 1

p0 = p0e
−λ + p1e

−λ = (p0 + p1)e
−λ

λ = p1Psucc(1) + (1− p0 − p1)Psucc(> 1)

λ = p1 + (1− p0 − p1)/e

and we get

p1 =
(1− λe)(eλ − 1)

1− (e− 1)(eλ − 1)
(p)

From (w), (y), and (p) we get

w =
e− 1/2

1− λe
− (eλ − 1)(e− 1)

λ[1− (e− 1)(eλ − 1)]

w is very close to simulation results.

0.5

4

8

0 0.2 0.4 0.6

Stablized Aloha

beginning of successful transmission,
for stabilized Aloha and for TDM 

Aloha is little more than waiting for
the next slot, whereas as the arrival
rate approaches 1/e, the delay 
becomes unbounded.

with m=8 and m=16. For small
arrival rates, the delay of stabilized

time W in slots, from arrival unitl
Comparison of expected waiting 

W

Arrival Rate 

m=8

m=16

λ
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4.6 Unslotted (pure) Aloha

• arriving packet is transmitted immediately

• receiver rebroadcasts the received signal

• period τ until attempted retransmission is exponentially distributed p(τ) = xe−xτ

x - retransmission attempt rate

λ - overall Poisson arrival rate

n - backlog at a given time

The initiation times of attempted transmissions is (time-varying) Poisson process of
rate G(n) = λ + nx
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τ τ τ

t t t t

i−1 i i+1

i−1 i i+1 i+2

Assume unit-length packets.

The ith attempt will be successful if τi > 1, and τi−1 > 1.

Given backlog n for each interval, τi and τi−1 are independent and

Psucc = [e−G(n)]2 = e−2G(n)
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4.7 Pure Aloha

Arrivals

Equilibrium

DeparturesDrift

Pure Aloha as a function of the attempted transmission rate G. 

1/(2e)

Ge^{−2G}

G=1/2

Successful departures leave the system at a rate Ge^{−2G}, and

λ

G= λ

equilibrium at the point shown.
λarrivals occur at a rate    ,  leading to a hypothesized 

• maximum throughput is 1/2e (compare with 1/e for slotted Aloha)

• pure Aloha is unstable, stabilization is not known

• can be used for variable lengths packets
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4.8 Splitting algorithms

Idea: There are two packets A and B at 2 nodes, splitting with fair coin:

Probability Frame 1 Frame 2

1/4 A B

1/4 B A

1/4 A, B φ

1/4 φ A, B

n(i) - average number of slots to transmit i packets.

n(2) = 1
4 ∗ 2 + 1

4 ∗ 2 + 1
4 ∗ (n(2) + 1) + 1

4 ∗ (n(2) + 1) = 3
2 + 1

2n(2)

n(2) = 3

Throughput = 2/3 (compare with 1/e for slotted Aloha)
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4.9 Tree algorithms

S

Subset

Idle

Subset
Collision

SuccessSuccess

Subset
LRRR

Subset
LRRL

Idle Collision

Subset
LRR

Subset
LRL

Success

Subset
LL LR

Collision

Subset
L R

Collision
Set

Slot Xmit Set Waiting Sets Feedback

2

4
5

9
8
7
6

3

1 S
L
LL
LR
LRL
LRR
LRRL
LRRR
R −−

R
LRRR,R
R
LRR,R
R
LR,R
R
−− e

e
1
e

e
0

1
1
0

Tree algorithm. After a collision, all new arrivals wait and all nodes involved in the collision divide into subsets.
Each successive collision in a subset causes that subset to again split into smaller subsets while other nodes wait.

CRP - collision resolution period

What to do with new arrivals during CRP?

At the end of CRP each node estimates the number of new arrivals and deter-
mines the number j of subsets.

• Maximum throughput 0.43 packets/slot
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4.9.1 Improvements to the tree algorithm

−−

Idle

Collision

Subset
Collision

Subset

This subset can be incorporated
into subsequent collision resolution
periods (second improvement)

Slot Xmit Set Waiting Sets Feedback

e

1

(0)
1

0
e
1

e−−

R
LRRR,R
LRR,R
R
LR,R
R

S
L
LL
LR
LRL
LRRL
LRRR
(R)8

7
6
5
4
3
2
1

Subset
LRRL

SuccessSuccess
Subset
LRRR

This collision is avoidable
(first improvement)

Subset

Success
Subset
LL

Subset
L

LR

LRR
LRL

Idle

Subset
R

Original
CollisionS

implies that it contains two or more packets. Also, subset R is better combined with new arrivals since the
number of packets in it is Poisson with an undesirably low rate.

Improvements in the tree algorithm. Subset LRR can be split without first being transmitted since the feedback

• The first improvement gives maximum throughput 0.46 packets/slot (compare
with 0.43)

• The second with the first improvements give rise to First-come first-serve (FCFS)

algorithm, which is stable for λ < 0.4871
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4.9.2 Variants of the tree algorithm

The tree algorithm is called a blocked stack algorithm.

Disadvantage: receivers can not be turned off.

Possible solution: (unblocked stack algorithms)

Join new arrivals at the head of the stack. Thus, only currently backlogged nodes
need to monitor the channel feedback, all the rest can be turned off.

The maximum throughput is 0.40.
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4.10 First-Come First - Serve (FCFS) splitting algorithm

• splitting into subsets by arrival time

[T (k), T (k) + α(k)] allocation interval, packets to be transmitted in slot k. σ = L

or R status

FCFS algorithm:

1 If feedback= e, then

T (k) = T (k − 1)

α(k) = α(k − 1)/2

σ(k) = L

2 if feedback= 1 and σ(k − 1) = L, then

T (k) = T (k − 1) + α(k − 1)

α(k) = α(k − 1)

σ(k) = R

3 if feedback= 0 and σ(k − 1) = L, then

T (k) = T (k − 1) + α(k − 1)

α(k) = α(k − 1)/2

σ(k) = L

4 if feedback= 0 or 1 and σ(k − 1) = R, then

T (k) = T (k − 1) + α(k − 1)

α(k) = min{α0, k − T (k)}
σ(k) = R
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Arrival times

transmitted
packets

of previously

Current
time

T(k) Waiting interval

Current
time

Arrival times
of waiting
packets

Allocation interval

L

R

Allocation

RL
RR Current

time

k+1

k+2

k

Current
time

k+3

RR

T(k+3)

T(k+2)

T(k+1)

Allocation

FCFS splitting algorithm. Packets are transmitted in order of arrival. On collisions, the 
allocation interval generating a collision is split into two subintervals, with the leftmost
( earlier arrivals) transmitting first.

Allocation

1

3

2
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Current
time

Current
time

k+1

k+2

Current

k+3

T(k)
Allocation interval

Waiting interval

k

T(k+2)

T(k+1)

Allocation

Allocation
L

R

Current
timeWaiting interval

LL
LR

Waiting interval

T(k+3)
Allocation

LR

T(k+4)
Allocation interval

k+4

FCFS splitting algorithm. When a collision follows another collision,
the interval on the right side of the second collision is returned to the
waiting interval. The CRP is completed in slot k+3, and a new CRP is 
started with an allocation interval of fixed size.

Current
time

time
4
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R,0

succ,
idle

succ

L,1

R,1

coll,idle
L,2 L,3

R,3R,2

coll

Markov chain for FCFS splitting slgorithm. The top states are
entered after splitting an interval and correspond to the transmission
of the left side of that interval. The lower states are entered after 
success on the left side and correspond to transmission of the right side.
Transitions from top to bottom and from bottom back to R,0 correspond
to success.

PR,0

PR,1

PR,2

PR,3

P PL,2 PL,3L,1
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Stabilized
slotted
Aloha

FCFS
splitting

Arrival Rate

and the FCFS splitting algorithm as a function of arrival rate.
One becomes unbounded as the arrival rate approaches 1/e,
and the other as the arrival rate approaches 0.4871.

Comparison of expected delay for stabilized slotted Aloha

Improvements in the FCFS

• Splitting into equal-sized subintervals is nonoptimal.

For optimally sized subintervals maximum stable throughput is 0.4878

• Upper bound for maximum stable throughput (under assumptions 1 to 6b) is
0.587.

• For finite set of m nodes, TDM can achieve throughput up to 1. However,
expected delay (for a given λ) increases linearly with m.
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4.11 Carrier sense multiple access (CSMA)

• β - propagation and detection delay (in packet transmission units)

• infinite number of nodes

• Poisson arrivals of overall intensity λ

4.11.1 CSMA Unslotted Aloha

• when a packet arrives, its transmission starts immediately if the channel is idle.

• if the channel is busy, or collision, the packet is backlogged

• retransmission with delay τ exponentially distributed xe−xτ

Analysis

Consider an idle period started with backlog n. The time until the first transmission

starts is exp. distributed with rate

G(n) = λ + nx

After transmission-initiation the backlog is

n if a new arrival started transmission,

n− 1 if a backlogged packet started
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Time until next transmission is exponentially distributed with rate G(n) or
G(n− 1).

A collision occur if transmission starts within time β. Transmission will not start

with probability e−βG(n) or e−βG(n−1)

Assume βx is small → G(n) ≈ G(n− 1)

Probability of a successful transmission following an idle period

e−βG(n)

The expected time from the beginning of one idle period until the next is

1/G(n) + (1 + β),

where

1/G(n) - time until the first transmission starts

(1 + β) - time for transmission + sensing

We have departure rate (throughput)

S(n) =
e−βG(n)

1/G(n) + (1 + β)

for small β, the maximum S(n) is

Smax ≈
1

1 + 2
√

β
,

when G(n) ≈ β−1/2

117



4.11.2 Approximate delay analysis

Wi = Ri +

ni∑

j=1

ti−j + yi

R = E(Ri) = λ/2

t = E(ti) ≈
1

Smax
= 1 + 2

√
β

Little’s Th n = Wλ, n = E(ni), W = E(Wi)

y = E(yi) = t− (1 + β) = 2
√

β − β

W =
λ

2
+ λW (1 + 2

√
β) + 2

√
β − β

W =
λ
2 + 2

√
β − β

1− (1 + 2
√

β)λ

W

10.80.60.40.20

1
2
3
4
5
6
7
8
9
10 =0.1 0.01 10^{−3}

10^{−5}

λ

β
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4.11.3 Multiaccess reservation

Idea: Send short packets in a contention mode or TDM mode and reserve long slot
for data transmission

• ν � 1 length of reservation packet (data packet has length 1)

• Sr throughput of reservation (i.e., 1/e for slotted Aloha)

ν/Sr - time required for reservation

Throughput S with reservation

S =
1

1 + ν/Sr

If reservation packet carries also data

ν - time for reservation

(1− ν) - time for data (if reserv. successful)

Throughput is

S =
1

(1− ν) + ν/Sr

This is another way to compute S for CSMA Aloha.
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4.11.4 CSMA/Collision Detection (CSMA/CD)

Node 1 starts

Distance

Node 2 starts

Silence

Time

Node 1 stops

Collision detection. Node 2 starts to transmit almost 

immediately, but node 1 continues for almost another

Node 1 heard
Node 2 stops

Node 2 heard

reigns

on bus

     units after node 1; node 2 stops almost

     units before stopping

β

β

Throughput:

s >
e−βG

β + 1/G + 2β(1− e−βG) + e−βG

Smax >
1

1 + 6.2β

when βG = (
√

13− 1)/6 = 0.43
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4.12 Framing

Problem of framing at DLC (Data Link Control) is that of deciding where frames
start and stop.

Types of framing:

1. Character-based framing

2. Bit-oriented framing with flags

3. Length counts

4.12.1 Character-based framing

Character codes, e.g., ASCII:
Symbols:

S 1010011

T 1010100

Control characters:

STX 0000011

ETX 0001000

SYN 0010110

CRC-cyclic redundancy check field

SYN SYN SYNSTX Header Packet ETX CRC SYN

Frame

SYN = Synchronous idle
STX = Start of text
ETX = End of text

Simplified frame structure with character−based framing
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Problem if the packet contains ETX

Solution: transparent mode

DLE - data link escape character

SYNHeader Packet

Frame

DLE DLE ETX CRCSYN SYN STX SYN

DLE = Data link escape

Character−based framing in a transparent mode as used in the ARPANET

Problem: if DLE appears in packet

Solution: (character stuffing) In the packet:

transmitter: DLE → DLE DLE

receiver: DLE DLE → DLE

If error in DLE ETX the packet is lost and should be recoverd at higher levels of

OSI.

Disadvantage of character-based frames:

- long overhead

- length of frame should be integer number of characters.
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4.12.2 Bit oriented framing: Flags

Like DLE ETX indicate end of frame, let us use some flag (e.g., 01111110) at the
end of the frame.

Problem: packet can contain flag.

Solution: Bit-stuffing, flag=0160

Transmitter: inserts (stuffs) a 0 after 15 in the frame;

Receiver: deletes 0 after 15

Additionally:

0160 normal frame termination

0161 abnormal termination

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 00
0 0 0 0

Stuffed bits

Original frame

Bit stuffing. A 0 is stuffed after each consecutive
five 1’s in the original frame. A flag, 01111110,
without stuffing, is sent at the end of the frame.
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4.12.3 Average length of overhead for bit-stuffing

Frame before stuffing consists of independent random bits, with equal probability
=0 or 1.

Assume flag 01j0 (standard j = 6)

Insertion after ith bit of original frame, i ≥ j if string from i− j + 1 to i is 01j−1;

probability of this: 2−j

Insertion will also occer if a string from i− 2j + 2 to i is 012j−2;

probability of this is 2−2j+1� 2−j and we omit this case.

Expected number of insertions in string of length K is ≈ K2−j

Expected length of overhead (with flag)

E(Oν) ≈ E(k)2−j + j + 1

minjE(Oν): find smallest j for which

E(k)2−j + j + 1 < E(k)2−j−1 + j + 2

E(k)2−j−1 < 1

jopt = blog2 E(k)c
and for this jopt: E(Oν) ≤ log2E(k) + 2

Ex. E(k) = 1000 bit, jopt = 9, E(Oν) < 12 bits, j = 6, E(Oν) ≈ 23 bits

not a big reason to change standard
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4.12.4 Framing with length fields

L Packet L Packet

L - packet length

Kmax - maximum packet length

Overhead = blog2 Kmaxc+ 1

If error in the length L then synchronization is lost.
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4.13 How to select frame length

Questions: Given a message, in how many frames should it be divided? How long
should the frames be?

Aspects for choosing the optimum frame length:

• Overhead: More frames result in more headers, more overhead, lower throughput

• Pipelining effect: Shorter frames reduce the transmission delay

• Error rate: Long frames result in high packet error rates, many retransmissions,

lower throughput

Pipelining effect:

The pipelining effect occurs, when a switch has to receive a frame completely (e.g.
for CRC calculation) before it can forward the frame.

Example: two p2p links of equal speed (data rate)

One long frame

Source Switch Sink

Three short frames

Source Switch Sink

Gain from
Pipelining
Effect
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4.14 Token Passing

4.14.1 Token Ring

4

5

6

7

1 2

3

8

9

10

11

12 Node

Interface unit

Packet
from
3 to 6

Ring network. Travel of data around the ring is unidirectional. Each node
either relays the received bit stream to the next node with a one bit delay
or transmits its own packet, discarding the incoming bit stream.

IT - Idle (or free) token 0160

BT - Busy token 0161

Node without token: retransmits received data, when the node receives IT, it be-
comes a node with token.

Node with token:

- if nothing to transmit, retransmits IT

- if it has packets to transmit, it sends BT followed by the packets.
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4.14.2 Token bus

Nodes are logically connected in a ring and act as a token ring.

4.14.3 Polling

slaves

Master

Master sends IT to slaves.

Token passing delay is large.

128



4.15 Classification of multiple access

ALOHA
unslotted
slotted

Carrier Sensing
Splitting algorithm

Centralized

Polling

Decentralized

Token Passing
token ring
token bus

TDMA
FDMA
CDMA

with reservation

Random Access Deterministic Reservation

129



4.15.1 Comparison

Polling:

• Static network configuration is not suitable for mobile networks.

Token Passing:

• In mobile networks: Maintenance of logical ring far too complicated.

Random access schemes:

• No special requirements on network topology. Hence, avoids complicated net-
work maintenance.

• Fast/immediate access, when traffic load is low.

• Drawback: Network can become unstable under high traffic load.

Example GSM:

• Random access channel (RACH) for first contact to bases station.

• Traffic channel (TCH): Dedicated channel reserved for single terminal; carries

voice traffic and dedicated signaling.

Example UMTS:

• Voice traffic like in GSM.

• Additional Common Packet Channel (CPCH): Shared channel with random

access, for packet data (non-continuous traffic).
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Chapter 5

Automatic Repeat Request(ARQ)
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OSI model

Application

Presentation

Session

Transport
Layer

Network
Layer

Datalink

Physical
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Application
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Transport

Network
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Layer

Layer

Layer

Layer
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Layer

Layer

Layer

Layer

Layer

Layer

Layer

Layer
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5.1 Automatic Repeat Request(ARQ)

• ARQ detects frames with errors at the receiving DLC and requests retransmission.

How to detect errors?

Answer: use (n,k) binary block code.

In practice cyclic codes are used for error detection.

(CRC-Cyclic Redundancy Checks)

Probability of undetected error: PCRC ≈ 2−(n−k)

We consider:

• Stop-and-Wait ARQ

• Go-back-n ARQ (modulo m)

• Selective repeat ARQ

• ARPANET ARQ

• Hybrid ARQ
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Evaluation criteria for ARQ:

• Frame error rate (FER)

P (E) =
]erroneously accepted frames

]accepted frames

• Throughput

• Delay

• Buffer size

Analysis of frame error rate:

• Pb: channel bit error probability

• Pf = 1− (1− Pb)
n: Frame error probability

• PCRC ≈ 1
2r : probability of CRC undetected error (r is ]CRC bits)

• PC = 1− Pf = (1− Pb)
n: probabilit that frame is correct

• Pr = Pf(1− PCRC): probability that frame is in error and rejected

• Pe = PfPCRC : probability that frame is in error and accepted (detection error)

• P (E) = Pe + PrPe + P 2
r Pe + . . . = Pe

∑∞
i=0 P i

r = Pe

1−Pr

Analysis of maximum throughput:

• Θ: average number of transmission attempts per frame

• Θ = (1− Pr) + 2Pr(1− Pr) + 3P 2
r (1− Pr) + . . .

• Θ = (1− Pr)
∑∞

i=0 iP i−1
r = (1− Pr)

∂
∂Pr

∑∞
i=0 P i

r = (1− Pr)
∂

∂Pr

1
1−Pr

= 1
1−Pr

• maximum throughput: ηmax = 1
Θ
RCRC = (1− Pr)

k
n

• throughput of specific ARQ schemes (stop and wait, go-back-n, selective repeat)
will be smaller

• buffer size:

◦ heavily depends on ARQ scheme

◦ Interacts with throughput/delay (small buffer− >low throughput and large
delay)

135



5.2 Stop-and-Wait ARQ

Ack-acknowledgement, Nak-negative acknowledgement.

The problem with unnumbered packets:

Node A

Node B

Time at A

Time at B

0 0

Ack

Packet 0

Packet 0 or 1?

The trouble with unnumbered packets. If the transmitter at A times−out and sends packet
0 twice, the receiver at B cannot tell whether the second frame is a retransmission of 
packet 0 or the first transmission of packet 1.
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SN- sequence number

The problem with unnumbered acks:

Node A

Node B

0 0

Packet 0

Time at A

Time at B

SN 1 2

NakAckAck

The trouble with unnumbered acks. If the transmitter at A times−out and sends packet 0 twice,
node B can use the sequence numbers to recognize that packet 0 is being repeated. It must 
send an ack for both copies, however, and (since acks can be lost) the transmitter cannot tell
whether the second ack is for packet 0 or 1.

RN-request number

The header of a frame:

SN RN Packet CRC

The header of a frame contains a field carrying the sequence number, SN, of the packet
being transmitted. If piggybacking is being used, it also contains a field carrying the
request number, RN, of the next packet awaited in the opposite direction.
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Example of stop-and-wait (SW) algorithm:

Node A

Node B

0SN 0 1 2 3

1 1 2 3

210 3Packets out

RN

Example of use of sequence and request numbers for stop−and−wait transmission from A to B. Note that
packet 0 gets repeated, presumably because node A times−out too soon. Note also that node A delays
repeating packet 1 on the second request for it. This has no effect on the correctness of the protocol, but
avoids unnecessary retransmissions.

5.2.1 Stop-and-wait(SW) algorithm:

The algorithm at node A for A-to-B transmission:

1. Set the integer variable SN to 0.

2. Accept a packet from the next higher layer at A; if no packet is available, wait
until it is; assign number SN to the new packet.

3. Transmit the SNth packet in a frame containing SN in the sequence number

field.

4. If an error-free frame is received from B containing a request number RN greater
than SN, increase SN to RN and go to step 2. If no such frame is received within
some finite delay, go to step 3.
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The algorithm at node B for A-to-B transmission:

1. Set the integer variable RN to 0 and then repeat steps 2 and 3 forever.

2. Whenever an error-free frame is received from A containing a sequence number

SN equal to RN, release the received packet to the higher layer and increment
RN.

3. At arbitrary times, but within bounded delay after receiving any error-free data
frame from A, transmit a frame to A containing RN in the request number field.

SN and RN can be computed modulo 2

Evaluation:

• Buffer size:

Transmitter - 1 frame

Receiver - no buffer

• Throughput: ηSW = 1
Θ
· RCRC · τmsg

τmsg+τidle
is low due to big τidle.
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5.3 Go Back n ARQ

Several successive packets can be sent without waiting for the next packet to be
requested.

If i is the received request from B, there is a ”window” of n packets [i, i + n − 1]
that the transmitter is allowed to send. (Sliding window ARQ)

Example of go-back-7 ARQ

SN

Node B

Window

1 4

0 3 5 5

t

3

[0,6] [1,7] [2,8] [3,9] [5,11]

Node A

RN

Packets
delivered

0 2 3 5 6

0 1 2

20 1 4 5

Example of go back 7 protocol for A−to−B traffic. Both nodes are sending data, but only the
sequence numbers are shown for the frames transmitted from A and only the request numbers
are shown for the frames from B. When packet 0 is completely received at B, it is delivered to
the higher layer, as indicated at the lower left of the figure. At this point, node B wants to
request packet 1, so it sends RN=1 in the next outgoing frame. When that outgoing frame is 
completely received at A, node A updates its window from [0,6] to [1,7]. Note that when packets
3 and 4 are both received at B during the same frame transmission at B, node B awaits packet
5 and uses RN=5 in the next frame from B to acknowledge both packets 3 and 4.
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Effect for error frames on go-back-4 ARQ

SN

Node B

Window

0

Node A

RN

Packets
delivered

0 1 2 3 4

t

1 2 3 4

[0,3] [1,4]

1 11 1 1 2 3

1 2 30

[2,5]

Effect of a transmission error on go back 4. Packet 1 is received in error at B, and node B continues
to request packet 1 in each reverse frame until node A transmits its entire window, times−out, and
goes back to packet 1.

Effect of errors in the reverse direction:

SN

Node B

Window

Node A

RN

Packets
delivered

0 1 2 3 4

t

[0,3]

0

4 5

10 2 3

1 2 3

[2,5]

4

5 2

5 6

4 5

[4,7] [5,8]

Effect of transmission errors in the reverse direction for go back 4. The first error frame, carrying RN=1, 

packet number 3, (i.e., the last packet in the current window at A) has completed transmission and before

reverse frame is delayed until after node A sends its entire window and times−out. This causes A to go back
and retransmit packet 2.

a time−out occurs. The second error frame, carrying  RN=3, causes retransmissions since the following 

causes no problem since it is followed by an error free carrying RN=2 and this frame reaches A before
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Retransmission can occur in the absence of errors:

SN

Node B

Window

Node A

RN

Packets
delivered

0 1 2 3 4

t

[0,3]

0

0

1 2 3 4

1

[1,4]

1 3 4 5

3 4 5

[3,6] [4,7]

Effect of delayed feedback for go back 4. The frames in the B−to−A direction are much longer than those
in the A−to−B direction, thus delaying the request numbers from getting back to A. The request for packet
1 arrives in time to allow packet 4 to be sent, but after sending packet 4, node A times−out and goes back
to packet 1.
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5.3.1 The go-back-n algorithm

SNmin = i smallest-numbered packet not acknowledged

SNmax next packet to be accepted from the higher layer

At node A (A→B):

1. Set the integer variables SNmin and SNmax to 0.

2. Do steps 3,4 and 5 repeatedly in any order. There can be an arbitrary but
bounded delay between the time when the conditions for a step are satisfied and

when the step is executed.

3. If SNmax < SNmin +n, and if a packet is available from the higher layer, accept
a new packet into the DLC, assign number SNmax to it, and increment SNmax.

4. If an error-free frame is received from B containing a request number RN greater
than SNmin, increase SNmin to RN .

5. If SNmin < SNmax and no frame is currently in transmission, choose some

number SN, SNmin < SN < SNmax; transmit the SNth packet in a frame
containing SN in the sequence number field. At most a bounded delay is allowed

between successive transmissions of packet SNmin over interval when SNmin does
not change.

The go back n algorithm at node B for A-to-B transmission:

1. Set the integer variable RN to 0 and repeat steps 2 and 3 forever.

2. Whenever an error-free frame is received from A containing a sequence number

SN equal to RN, release the received packet ot the higher layer and increment
RN.

3. At arbitrary times, but within bounded delay after receiving any error-free data
frame from A, transmit a frame to A containing RN in the request number field.
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5.3.2 The go-Back-n algorithm module m (m > n)

The go back n algorithm at node A for modulo m operation, m > n:

1. Set the modulo m variables SNmin and SNmax to 0.

2. Do steps 3,4 and 5 repeatedly in any order. There can be an arbitrary but
bounded delay between the time when the conditions for a step are satisfied and

when the step is executed.

3. If (SNmax − SNmin) mod m < n, and if a packet is available from the higher
layer, accept a new packet into the DLC, assign number SNmax to it, and incre-

ment SNmax to (SNmax + 1) mod m .

4. If an error-free frame is received from B containing a request number RN, and

(RN − SNmin) mod m ≤ (SNmax − SNmin) mod m, set SNmin to equal RN .

5. If SNmin 6= SNmax and no frame is currently in transmission, choose some
number SN such that (SN − SNmin) mod m < (SNmax − SNmin) mod m;

transmit packet SN in a frame containing SN in the sequence number field.

The go back n algorithm at node B for modulo m operation, m > n:

1. Set the modulo m variable RN to 0.

2. Whenever an error-free frame is received from A containing a sequence number
SN equal to RN, release the received packet ot the higher layer and increment

RN to (RN+1) mod m.

3. At arbitrary times, but within bounded delay after receiving any error-free data

frame from A, transmit a frame to A containing RN in the request number field.
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5.3.3 Go-Back-n ARQ analysis

How to choose n?

• large enough to avoid idle periods

n ≥ round trip delay

frame transmission time

• as small as possible to decrease overhead

Throughput:

ηGBn =
k

nCRC
· 1

1 + (Θ− 1)n
= RCRC

1− Pr

1 + Pr(n− 1)

Buffer size:

transmitter - n frames

receiver - 0 frames
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5.4 Selective Repeat ARQ

Go-back-n:

ηGBn = RCRC
1− Pr

1 + Pr(n− 1)

Pr - probability of retransmission

If Prn� 1

then ηGBn ≈ RCRC(1− Pr) = ηmax

otherwise Go-back-n algorithm can be improved using selective-repeat ARQ.
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5.4.1 Basic idea of Selective-Repeat ARQ

• accept out-of-order packets

• request retransmission of only wrong packets

• still window [RN, RN+n-1] for transmitter

Selective repeat algorithm A→ B

At node A: same as go-back-n algorithm

At node B: RN (like in go-back-n) is lowest number of packet not yet correctly
received. Node B accepts all packets and deliver them ordered

Example:

A

B

SN

SN
RN

window   [0,n−1]=[0,10]

3 4 0 8 11 12

7 8 10

0

0 1 2 5 6 7 9 10

1 2 3 4 5 9

0 0 0 0 0 6 7 8 109

0

[6
,1

6]

[7
,1

7]

0 6

0−5

n=11
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Round trip delay:

n̂ =
τmsg + τAB + τACK + τBA

τmsg
= 1 + 2 + 1 + 2 = 6

n ≥ 2n̂− 1 = 11; m = n + 1 = 12 (module)

For large n throughput

ηSR = R(1− Pr) = ηmax

Buffer size n for both transmitter and receiver

In practice ACK or NAK is sent instead of RN.

0.5

0

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

Channel Bit error rate

Selective Repeat

Stop and Wait

η

N=3
k/n=7/15=0.467

10^{−4} 10^{−3} 10^{−2} 10^{−1} 10^{0}

Go back N
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5.5 ARPANET ARQ

(parallel channels with stop-and-wait)

Stop and Wait virtual channel A

Incoming packets Bit pipe

SN
Virtual channel One bit RN for each virtual channel

RN 0,0 0,0 0,0 0,01,0 1,0 1,0 0,1

0A packet 1 0B packet 2 1A packet 3 0B packet 2 0A packet 4

Packet 1 Packet 3 Packet 2

ARPANET ARQ. (a) Eight multiplexed, stop−and−wait virtual channels.
(b) Bits in the header for ARQ control. (c) Operation of multiplexed stop
and wait for two virtual channels. Top−to−bottom frames show SN and 
the channel number, and bottom−to−top frames show RN for both channels.
The third frame from bottom to top acks packet 1 on the A channel.

(c)

(b)

(a)

Stop and Wait virtual channel H
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Advantages:

• repetition of ACKs leads to reliable reverse channel

• small idle time → high throughput ≈ ηmax

Disadvantages:

• delivers packets unordered

Buffersize:

transmitter 8

receiver 0
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5.6 Hybrid ARQ

If probability of retransmission in DLC is large, use additional forward-error-correction

in DLC.

Combining

Code

Combining

DiversityWith 2 codes

Type I Type II

Hybrid ARQ

One code for
both error
correction and
detection

One code for
error correction,
another for
error detection

With 1 code
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5.6.1 Hybrid ARQ, Type I, with 2 codes

Information

k

EncoderInf. Encoder Packet

Error Error
detection correction

Channel

r r

n
C

n
C

k

k

P

21

n  =k+r
n  =n  +r

1 1
2 1 2

2

2

1

C1

1

C2

2

1 2Parity checks C Parity checks C

P2 - frame error rate of decoder C2 (P2 � Pf)

Probability of retransmission P I
r = P2(1− PCRC)� Pr

Probability that frame in error and accepted P I
e = P2PCRC

Final frame error rate

P I(E) =
P I

e

1− P I
r

=
P2PCRC

1− P2(1− PCRC)

ηI
max = R1R2(1− P I

r ) = R1R2[1− P2(1− PCRC)]

ARQ Hybrid I Throughput

Stop-and-wait ηI
max

τmsg

τmsg+τidle

Go-back-n ηI
max

1
1+P I

r (n−1)

Selective-repeat ≈ ηI
max
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Comparison of classic ARQ with Hybrid Type I ARQ with 2 codes.

Selective-repeat strategy

———— Hybrid

− · − · − Classic

0.1

0

0.15

0.05

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10^(−2) 10^(0)
P

10^(0)

10^(−5)

10^(−10)

P(
E

) η

10^(−15)

10^(−20)

10^(−2) 10^(0)

P
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5.6.2 Hybrid ARQ Type I with 1 code

Information

k r

Parity checks C1

(n, k, d) code C1 corrects τ = bd−1
2 c errors

Take correcting radius τ
′

< τ

Decoding:

1.
Decoder

failure

codewordr c

2. If | r − c |> τ
′

or failure then Detect error otherwise Output c

d

C 1 C 2

τ’ τ’

τ τ

−−−−− correct error
−−−−− detect error

If weight distribution of C1 is known, P I
r and P I

e can be computed and P I(E) and

η can be found using the same formulas.
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Comparison of classic ARQ with Hybrid Type I ARQ with 1 code.

Selective-repeat strategy

———— Hybrid

− · − · − Classic

0.1

0

0.15

0.05

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10^(−2)

P P
10^{0}

η
10^(−2)

10^(0)

10^(−4)

10^(−6)

P(
E

)

10^{−2}10^(0)

10^(−8)

10^(−10)

10^(−12)

10^(−14)
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5.6.3 Hybrid ARQ Type II

Diversity combining:

• Joint decoding of all retransmissions of one packet.

Code combining

Parity−checks

2. If errors were detected, transmit second segment

1. Transmit first segment: use it for error correction and detection

Redundancy

Segment 1

Segment 2

powerful code ...

Information

Information

and use both segments together for error correction and detection using more

Information Redundancy 2
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Chapter 6

Routing

Routing algorithm is the network layer protocol that guides packets to their desti-
nation.

Examples:

(1) Information about network (graph)

BA

C
D

E
F

G

1

2

3
2

2
2

4

5

6

7

(2) Routers to other nodes: Routes starting from node A
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(3) Routing tables for control of switches:

Switch of node A:

Destination

Next node

B

B

C

B

D

B

E F

E B

G

B

Switch of node B:

Destination

Next node

D E F GA

A

C

C D A D D

Switch of node C:

Destination

Next node B B

D

B

E F

B

GA B

B G

Basically: How does a switch work?

incoming lines

Outgoing lines
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Network may use:

• datagrams or

• virtual circuits

1

2

3

2
1

1
2 1

21
2 1 2 3

3
3

2
2

3
2

3 2
3

Routing in a datagram network. Two packets of the same user pair can 
travel along different routes. A routing decision is required of each
individual packet.

n : Packet from user n

1

2

n

2

3
3

5

4

1

4 2 3

5

Routing in a virtual circuit network. All packets of each virtual circuit
use the same path. A routing decision is required only when a virtual
circuit is set up.

: Packet from user n
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Offered load Throughput

Rejected
load

Throughput = Offered load - rejected load

Let Throughput = Offered load

From queueing theory:

λ

mµ
λ - arriving rate (throughput)
mµ - service rate (when busy)

ρ = λ
mµ - utilization factor

The average delay = 1
µ + f(λ,µ,...)

1−ρ

Throughput

D
el

ay

λmµ 2µ 1m
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Example I

Origin 1 2

4

53

6

All links have a capacity of 10 units. If all traffic is 
routed through the middle link (4,6), congestion

are used, the average delay is small.

All links have a capacity of 10 units

Destination

5 units 5 units

Origin

occurs. If, instead, paths (1−−−3−−−6) and (2−−−5−−−6)
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Example II Datagram routing is better.

5 units

Origin Origin

15 units

1 2

4

53

6

Destination

All links have a capacity of 10 units

All links have a capacity of 10 units. The input traffic
can be accommodated with multiple −path routing , but
at least 5 units of traffic must be rejected if a single−path
routing is used.
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6.1 Classification of routing algorithms

• Datagram (packet switching) versus connection-oriented switching

• Static versus adaptive

◦ Static: Routes between switches/terminals are determined once (possibly at
network setup)

◦ Adaptive: New routes are determined frequently or on demand, taking into
account the actual traffic load, delay, and buffer queue length on all individ-

ual links.

• Centralized versus distributed algorithm

◦ Centralized: Bellmann-Ford algorithm, Dijkstra algorithm

◦ Distributed: Ford-Fullerson algorithm, distributed Bellmann-Ford algorithm.

• Support of p2p, multicast/p2mp, broadcast connections

◦ Multicast/broadcast can be useful for distributing network status informa-
tion in adaptive routing.

• Address resolution methods, network topology: Routing tables with entries for
all existing terminals are impossible to handle in large networks (e.g. telephone

networks, Internet)

◦ Hierarchical network structure

◦ Name server (IP: Domain Name Server, UMTS/GSM Home Location Reg-

ister, Visiting Location Register).
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Example

Routing in telephone networks:

• Connection-oriented

• Hierarchical:

◦ country code +49

◦ city code 731

◦ company 505

◦ phone 4816
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6.2 Basics from Graph Theory

Graph, Directed Graph (Digraph): G={N,E}
N: Set of nodes

E: Set of edges E ⊆ N×N, Edge e=(m,n)

• Node m is connected to node n (in graph),

• There is a link from node m to node n (in digraph)

d(e): Weight of an edge e ∈ E (can correspond to delay, traffic load, buffer
queue length,...)

Example:

A
B

C

D
E

1
1

1

1
2

2 2

3

N={A,B,C,D,E}
E={(A,D),(A,E),(A,C),(B,A),(B,C),(C,B),(D,A),(E,B)}
d(E)=(1,2,2,1,1,3,1,2)
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Adjacency matrix:

A B C D E
A
B
C
D

212
1 1

3
1

2E

Incidence matrix:

(A,D) (B,C)
A
B
C
D
E

1
1
−1

−1

...
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Walk: sequence of connected nodes.

Path: a walk with no repeated nodes.

Cycle: Path, whose starting node of the fist edge equals the ending node of the

last edge, and all the edges are distinct.

Example:

A
B

C

D
E

1
1

1

1
2

2 2

3
Cycle: (A,C,B,A)

Path: (A,E,B)

Connected graph: there is a path connecting every two nodes.

Hamiltonian cycle: cycle, which contains all nodes of the graph.

Tree: connected graph without cycles.

| N |=| Etree | +1

Spanning (Complete) tree: contains all nodes of the graph.
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Minimal tree: Complete tree, with minimum sum of edge weights over all complete
trees (There can exist more than one minimal tree in a given graph).

A
B

C

D
E

Source tree

A
B

C

D
E

Sink tree
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6.3 Routing algorithms

6.3.1 Flooding

Principle: Forward a packet to all neighboring nodes except the node which sent
the packet.

Advantages:
• All nodes are reached (broadcast)

• All possible paths are used in parallel, including the shortest path from source
to any destination.

• Any nod needs to know only his incoming and outgoing lines, but nothing else
about the network.

Drawback: High network load!

Problems:

• Cycles: Packet will be forwarded in cycle forever.

• Same packet received on several lines-forward each of them?

Counter measures:

• Hop counter: Packet is deleted after certain number of hops. Requires appro-
priate counter setting.

• Packet carries source node’s address and a sequence number. Switching node
can recognize already known packets and discard them.

Applications:

• Distribution of network status info for other, more elaborate routing algorithms
(connectivity, traffic load, link failures,...)

• For concurrent update of data bases in all network nodes.

• In military networks with extreme robustness demands.
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6.3.2 Complete tree and Hamiltonian cycle

Principle:
• Determine a complete source tree (with source node as root), or a Hamiltonian

cycle from the graph of the network.

• Forward the packet along the tree or the cycle (preferably in both directions).

Example:

Complete tree

BA

C
D

E
F

G

1

2

3
2

2
2

4

5

6

7

Hamiltonian cycle

BA

C
D

E
F

G

1

2

3
2

2
2

4

5

6

7
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Advantages:

• All nodes reached (broadcast).

• Significantly lower network load than with Flooding.

• No problems with cycles.

Drawbacks:

• Network graph must be known (contrary to Flooding).

• New complete tree/Hamiltonian cycle must be determined, when network topol-
ogy changes.

• All nodes must know the complete tree/Hamiltonian cycle.
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6.3.3 The Bellman - Ford algorithm

Problem: Find a shortest path from every node of G to destination node 1.

Let dij =∞ if (i, j) is not an edge of G.

Assume that G has no cycles of negative weight.

Let Dh
i denote length of a shortest (≤ h) walk from node i to 1; Dh

i = 0 ∀h

Bellman - Ford algorithm:

1. Initialization: D0
i =∞ ∀i 6= 1

2. For h = 1, 2, . . . , | N | do

Dh
i =: minj[dij + Dh−1

j ], ∀i 6= 1

If Dh
i = Dh−1

i then stop.
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1

4

2

8

2

4 21

2

3

4

5

1

Example

Shortest path problem-
are lengths as indicated

Shortest paths using at
most 1 arc

Shortest paths using
at most 2 arcs

Shortest paths using
at most 3 arcs

Final tree of shortest paths

D1
1 = 0

D2
1 = 0

D3
1 = 0

D4
1 = 0

positive and therefore all cycles have positive length. The shortest

example.
paths are found after N-1 iterations, which is equal to 4 in this

the shortest (≤h) walks are paths because all arc lengths are

D1
2 = 1 D1

4 =∞

D1
3 = 4

D2
2 = 1 D2

4 = 9
D1

5 =∞

D2
3 = 2 D2

5 = 6
D3

2 = 1 D3
4 = 9

D3
3 = 2 D3

5 = 4
D4

2 = 1 D4
4 = 8

D4
3 = 2 D4

5 = 4

Destination
node

Succesive iterations of the Bellman-Ford method. In this example,
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Theory: The BF algorithm terminates after a finite number h ≤| N | iterations
and Dh

i is the shortest path length from i to 1.

Proof: (Sketch) (For simplicity assume dij > 0)

Induction on h.

1. For h = 1 D1
i = di1 ∀i 6= 1

2. Suppose ∀i Dk
i is length of the shortest (≤k) path P from i to 1 ∀k ≤ h.

P has no cycles, otherwise it will not be a shortest.

Let us show that Dk+1
i is the length for a shortest path P

′

Let P
′

= (1, ν2, . . . , νk, i), then weight

W (P
′

) = W (1, ν2, . . . , νk) + W (νk, i) = min
j

[Dk
i + dij] (j = νk)

BF algorithm works in case dij < 0 too.

Complexity of BF algorithm: O(| N |3) or

O(m· | E |) where m is maximum length of the shortest path.
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Bellman-Ford algorithm works with negative weights when every cycle has nonzero
weight.

What if ∃ a cycle of negative weight?

Example:

1 2 3
1

−3

1

i Di
1 Di

2 Di
3

∞ ∞

∞0

0

0

0

2

2

0

1

2

3

1

1

-1

| N |= 3 D3
2 < D2

2

In general: If ∃ i D
|N |
i < D

|N |−1
i , then ∃ cycle of negative length.
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Dijkstra’s algorithm

Problem: Find a shortest path from every node of G to destination node 1.

• Assume, weight of edge dij ≥ 0 ∀ i, j

General ides: iteration on path length (for BF algorithm, iteration on number of

hops).

i j

j: (k+1)st closest node

Shortest path from the
(k+1)st closest node
must pass exclusively
through nodes in P

Destination

Set P of k closest
nodes to node 1

Basic idea of Dijkstra’s algorithm. At the kth step we have the
set P of the k closest nodes to node 1 as well as the shortest distance

some node not in P with node 1, there is a shortest one that passes
exclusively through nodes in P (since dij ≥ 0). Therefore, the
(k+1)st closest node and the corresponding shortest distance are obtained

This calculation can be organized efficiently as discussed in the text,
resulting in an O(N 2) computational complexity.

Complement of P

1

Di from each node i in P to node 1. Of all paths connecting

by minimizing over j! ∈ P the quantity mini∈P {dji + Di}.
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Dijkstra’s algorithm:

N = {1, 2, . . . , | N |} set of nodes

Node 1 is destination

Di-shortest path length to node 1

P -set of closest nodes to node 1

dij-weight of edge (i, j)

Initialization

P = {1}, D1 = 0, Dj = dj1 ∀j 6= 1

Step 1 (Find the next closest node)

i = argminj 6=P Dj

Set p := P
⋃{i}

If P = N , then stop.

Step 2 (Updating of labels)

∀j 6= p Dj := min{Dj, dji + Di}
Go to Step 1.
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Example: Dijkstra’s algorithm

edges to new vertices

permanent hop

nonpermanent hop

to be joined to Pi

i

1

4
1

4

6

5

32

4

3 21

1

P∈

1

Initialization: D1 = 0, D2 = 1, D4 = 4 (D3 = D5 = D6 =∞)

D1 = 0

4 D4 = 4

1 D2 = 12

1

4

1 i = arg min{D2, D4} = 2; P = {1, 2}
2 ∀j! ∈ P Dj := min{Dj, dji + Di}
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D3 = 4

D5 = 2

D4 = 4

D2 = 1
3

11

2 3

54

1 i = arg min{D3, D4, D5} = 5; P = {1, 2, 5}
2 D3 = min{D3, d3,5 + D5} = min{4, 1 + 2} = 3

D4 = min{D4, d4,5 + D5} = 3
D6 = 2 + 4 = 6

2

D4 = 4 = 3

1

4 5

1

3

1
4 6

D6 = 6

D3 = 4 = 3

1 i = arg min{D3, D4, D6 } = {3, 4}; P = {1, 2, 5, 3, 4}
2 D6 = min{D6, d6,3 + D3} = 5
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2

4

3

1

2

4 5

6

D3 = 3

D6 = 6 = 5

1 i = 6; P = {1, 2, 3, 4, 5, 6}= N ; Stop

Result:

D2 = 1 D3 = 3

D6 = 5

6

D5 = 2D4 = 3

4

1

2 3

5

Complexity of Dijkstra’s algorithm O(| N |2)
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Correctness of Dijkstra’s algorithm follows from:

At the beginnning of every step 1:

a Di ≤ Dj ∀i ∈ P j! ∈ P

b Di is the shortest path for ∀i ∈ P

At every iteration one node is added to P. So, after | N | −1 iterations P = N and
algorithm stops.

From b it follows that when P = N , Di is the shortest path ∀i.
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Comparison of Bellman-Ford and Dijkstra’s algorithms

1

32

4 5

6

1

4

3

1

1

1

2

4

dij = dji for all (i, j)

1

2

4

Bellman-Ford

D1
2 = 1

D1
4 = 4

2

1

4

3

D2
2 = 1

5

D2
3 = 4

1

2

D3
2 = 1

4 5

D3
3 = 3

3 D3
6 = 6

6

(D4
6 = 5)

D3
4 = 3 D3

5 = 2

D2
4 = 1 D2

5 = 2
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1

2

4

3

5

Dijkstra D2 = 1 D3 = 4

2

1

D4 = 4
D2 = 1

D5 = 2

3

D3 = 3

4 5

D4 = 3 D5 = 2

6

D6 = 6

1

2

D2 = 1 D3 = 3

4

3

6

5 D6 = 5

D5 = 2D4 = 3

P = {1, 2}

P = {1, 2, 5}

P = {1, 2, 3, 4, 5}

Max. complexity Remarks

Bellman-Ford O(| N |3) works with negative dij

Dijkstra O(| N |2) requires dij ≥ 0
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Coding in networks

Without coding:

Can we send a,b to nodes 1,2 in one time slot? No!

A B

a b

a a b

a

(a) (a,b)

1 2
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With coding:

Yes!

A B

a b

(a,b)

a+b a+b

(a,b)

a ba+b

1 2
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