
Differential Linear Network Coding in
Slowly-Varying Networks

Master Thesis
of

Carmen Maria Sippel

A NACHRICHTENTECHNIK

Institute of Communications Engineering
Ulm University

June 2018

M/2018/PU/01

Institute of Communications Engineering

MASTER THESIS

Differential Linear Network Coding in
Slowly-Varying Networks

Abstract

The topic of Network Coding (NC) is an emerging field of research in communication
technology. It was introduced in [ACLY00] as a method of achieving the maximal
throughput in a network. Due to the task of nodes in the network to randomly linear
combine incoming messages over a finite field, the name Random Linear Network
Coding (RLNC) was established. In [SKK08] a special form of rank-metric codes was
proposed for error correction in RLNC networks. These rank-metric codes built up
subspace codes, which could be used for error control in RLNC according to [KK08],
by so-called lifting. This procedure has the drawback that the data rate is severely
limited by its construction. Therefore a differential approach called Differential Lin-
ear Network Coding (DLNC) was introduced in [SCFH13], where higher rates could
be achieved under the premise that the network does not considerably change be-
tween several transmissions. Further investigations into the tolerability of possible
variations have been carried out in [PCF+15].

The aim of this work is to analyze both procedures in a probabilistic channel, mainly
by comparing their failure probabilities. As a result, parameter regions are found,
where DLNC outperforms lifting for certain network properties. The pure mathe-
matical view is topped off with a simulative comparison on the error rates of both
transmission schemes.

Submission date: June 1st, 2018

Candidate: Carmen Maria Sippel

Supervisor: Sven Puchinger

1st Examiner: Prof. Dr.-Ing. Martin Bossert

2nd Examiner: Prof. Dr. Irene Bouw

Catalog No.: M/2018/PU/01

I confirm, that the presented master thesis is an original work completed indepen-
dently without inadmissible outside help other than the indicated sources. I also
certify that this work has not been submitted to any other examination board in the
same or similar form and all references, direct and indirect, are indicated as such
and have been cited accordingly.

Ulm, June 1st, 2018

(Carmen Maria Sippel)

Contents

1. Introduction 1

2. Theory 3
2.1. Preliminaries . 3
2.2. Rank-Metric Codes . 4

2.2.1. Rank Metric . 5
2.2.2. Linearized Polynomials . 6
2.2.3. Gabidulin Codes . 7

2.3. Error Correction in Random Linear Network Coding 9
2.3.1. Channel Model . 11
2.3.2. Probabilistic Error Model . 13
2.3.3. Lifted Rank-Metric Codes . 14

2.4. Differential Linear Network Coding 16
2.4.1. Varying Networks . 18
2.4.2. Decoding Guarantee . 19

3. Preparation 23
3.1. Full-Rank Restriction . 23

3.1.1. Application of the Rank Distribution 24
3.1.2. Considerations on Full-Rank Gabidulin Codewords 25

3.2. Rate Considerations . 27
3.3. Considerations on Lifted Interleaved Gabidulin Codes 32

4. Static Networks 35
4.1. Preliminaries . 35
4.2. Simplified Comparison . 37
4.3. Additional Consideration of the Receive Rank Deficiency Matrix . . . 43
4.4. Lifting vs. DLNC in Static Networks 47

5. Slowly Varying Networks 53
5.1. Examination of the Channel Deviation 53
5.2. Probabilistic Analysis . 55

5.2.1. General View . 55
5.2.2. Extension of Theorem 4.3.3 58

i

Contents

5.2.3. Lifting vs. DLNC in Varying Networks 63

6. Simulation 69
6.1. Structure of the Implemented Channel Model 69
6.2. Decoding Guarantee for Lifted Gabidulin Codes 71
6.3. Decoding Guarantee for Gabidulin Codes in DLNC 71

6.3.1. Calculation of the Pseudoinverse for DLNC 71
6.4. Simulation Results . 72

6.4.1. Static Networks . 72
6.4.2. Slowly-Varying Networks . 74

7. Conclusion 77

Acronyms 79

Notations 81

Appendix A. Proofs 83
A.1. Proof of Theorem 4.3.3 . 83
A.2. Proof of Theorem 4.4.1 . 85
A.3. Proof of Theorem 5.2.5 . 86
A.4. Proof of Theorem 5.2.7 . 88

Appendix B. Implementation of the RLNC Library 91

ii

1. Introduction

Nowadays communications technology plays a major role in the lives of a vast
amount of people, either directly, e.g. when using mobile communications for a
phone call, or indirectly, e.g. with basic services that increasingly rely on global con-
nectivity, such as supply chains. In particular digital communication networks are
important for the exchange of information in these scenarios, as it can be seen in the
example of the Internet. The leading principle for the distribution of information
or the targeted consignment of messages is called routing. Other than in analog
telephony, where the exchange of information happens continuously over once set-
up circuit-switched links, in digital communication networks messages are usually
encapsulated into packets and sent via determined paths.

With the results of Ahlswede et al. [ACLY00] the idea arose, that the throughput
via a communication network can be extended to the maximum flow possible in the
network. The basis for their work is the so-called max-flow min-cut theorem (cf.
e.g. [CLRS09]). This is a result from graph theory, revealing that the capacity of
the network, which is the min-cut, can be achieved by a so-called flow. This flow
then represents the maximum throughput.

Ahlswede et al. converted the result for coding theory by specifying the rate region
for a block code. While doing so the term Network Coding (NC) [ACLY00] was
established. The conceptual innovation of their research was to not consider the
transmission to be guided over single paths but randomly distributed, meaning that
the information should spread in the network in a non-dedicated way. Apart from
increased throughput, NC offers more benefits, such as security, robustness for link
failures and packet loss (cf. [HL08], for security also [FS07]).

Another milestone in the topic of NC is [KK08], where a channel model, the so-called
operator channel was introduced and the problem was tackled by subspace codes
(also called codes in projective space). Proceeding from these subspace codes, Silva
et al. proposed a technique called lifting [SKK08], which transfers rank-metric codes
to a special class of subspace codes, namely constant-dimension codes. Furthermore,
they introduced a matrix representation for the operator channel, which not only
modeled the network but also errors imposed on edges in the network, and coined
the term Random Linear Network Coding (RLNC), that is the application of codes

1

1. Introduction

in order to cope with the errors in a network where the information is combined
randomly at inner nodes. Meanwhile, applications, e.g. [KRH+06], and fields of use
are suggested for RLNC with meshed wireless networks leading the way.

Another possibility for the application of rank-metric codes for error correction
in a RLNC setting is Differential Linear Network Coding (DLNC) as introduced
in [SCFH13]. The procedure rests upon the fact that communication networks usu-
ally do not change vastly and it provides better error correction capabilities especially
for high data rates. The method is analogous to the Differential Phase-Shift Key-
ing (DPSK) scheme, which is the differential version of Phase-Shift Keying (PSK).
It has been shown that for DLNC, together with the demodulation step, a so-called
Additive Matrix Channel (AMC) can be established [SCFH13]. A first intuitive
analysis of this channel yields that, as with DPSK, the DLNC procedure has to
cope with twice the amount of errors. [PCF+15] were the first to consider slow vari-
ations in the channel. They mainly proposed Partial Unit Memory (PUM) codes as
means to overcome the changes in the network.

This work shall combine the results gained in [SCFH13] and [PCF+15] and attain
more insight into the mechanics and behavior of the procedures of lifting and DLNC
under the presumption of a probabilistic channel. The aforementioned publications
miss an analytic examination of the DLNC scheme. This gap shall be filled by
the presented work. The main contributions are statements about the relation of
the failure probabilities of both methods in static, as well as in varying networks in
combination with parameter ranges. To be precise, it is derived for which parameters
the DLNC procedure outperforms lifted rank-metric codes in static networks and it
is analyzed in how far the network is allowed to change without impairing DLNC
so much that it cannot compete with the lifted rank-metric codes.

The thesis is structured as follows. Chapter 2 comprises the concepts that are nec-
essary to understand the main ideas of lifting and DLNC, starting with codes in
rank metric, continuing with the channel model for RLNC and concluding with the
main aspects of DLNC.

In Chapter 3 we conduct some considerations on the rate and rank conditions, as
well as on the use of so-called interleaved Gabidulin Codes in RLNC.

Then we start with the probabilistic analysis of static networks in Chapter 4, followed
by Chapter 5, which is concerned with the analysis of varying networks.

The setup for the simulations can be found in Chapter 6, more precisely Sections 6.1 -
6.3. There it is described how the channel has been implemented and how decoding
failures are recognized. The simulation results are located in Section 6.4.

In Chapter 7 a summary of the results as well as future work is presented.

2

2. Theory

Before starting to investigate the behavior of so-called lifting and DLNC, we intro-
duce some known theory. Note that most of Sections 2.1 and 2.2 originates from
[Wac13]. Hence we only mention it, if other sources were used or if a part is explic-
itly taken from [Wac13]. In Section 2.2 we introduce a concept called rank metric,
which functions as fundament for rank-metric codes. In Section 2.3 the concept of
RLNC and the system model is described.

2.1. Preliminaries

Throughout this work q is the power of a prime p, Fq is a finite field of order q, also
called ground field. Since q is power of a prime, Fq is an extension field of degree
` := logp(q) and p is called the characteristic [LN83, Theorem 2.2]. However for our
purposes an extension field of Fq of degree m, i.e. a m-dimensional vector space over
Fq is necessary. This extension field is denoted by Fqm . If a ∈ Fqm is a an element
of the extension field, it can be represented as a vector over Fq using an arbitrary
but fixed basis of Fqm over the ground field. As for prime fields, the cardinality of
the basis is m. Determining the order of the basis provides the opportunity to map
a ∈ Fqm onto the vector over Fq. The formal construction of Fqm works the same as
the extension from Fp to Fq, that is using an irreducible polynomial and one of its
roots. So, combining elements of Fqm to a row vector a = (a0, a1, . . . , an−1) ∈ Fnqm
leads to the possibility of describing a as matrix A ∈ Fm×nq over the ground field by
expressing every element of the row vector as (column) vector over Fq. We denote
the representation matrix as follows:

A =




A0,0 A0,1 . . . A0,n−1

A1,0 A1,1 . . . A1,n−1
...

...
...

Am−1,0 Am−1,1 . . . Am−1,n−1


 , (2.1)

3

2. Theory

where the vector representation of one element of a is

aj =




A0,j

A1,j
...

Am−1,j


 ∈ Fm×1

q ∀j ∈ {0, . . . , n− 1}.

The mapping is given by [Wac13, Def. 2.1]

aj =
m−1∑

i=0

Ai,jβi ∀j ∈ {0, . . . , n− 1},

where βi are the fixed basis vectors of an arbitrary basis of Fqm over Fq. As conven-
tion, small letters denote elements of Fqm , capital letters such over Fq. Further we
need the row space of a matrix.

Definition 2.1.1 (Row Space [Mey00])
The row space of a matrix X is defined by

〈X〉 =

{
x =

n∑

i=1

λixi : λi ∈ Fq,xi is the i-th row vector of X

}
.

The following bounds on the rank of matrices are crucial for the most of the results.
For reference reasons they are stated here. Let A ∈ FN×nq and B ∈ Fn×Mq , then

rk (A ·B) ≤ min{rk (A) , rk (B)} (2.2)
rk (A + B) ≤ rk (A) + rk (B) (2.3)
rk (A + B) ≥ | rk (A)− rk (B) |. (2.4)

More bounds can be found in [SKK08]. Also note that if B is of full rank, it is
rk (A ·B) = rk (A).

2.2. Rank-Metric Codes

Instead of using vectors in combination with the Hamming metric as codes, also
matrices can be used. For these matrices, the above mentioned representation in
Fm×nq of row vectors over Fnqm is used. A special code class emerged from this
treatment. These are called rank-metric codes. Their definition is based on the
concept of rank metric, which is introduced in the following paragraph.

4

2.2. Rank-Metric Codes

2.2.1. Rank Metric

The notion of rank metric has been independently introduced by Delsarte [Del78],
Gabidulin [Gab85] and Roth [Rot91]. The announced concept is based on the rank
distance and rank weight, which are defined as follows.

Definition 2.2.1 (Rank Weight, Rank Distance [Gab85], [Del78], [Rot91])
Let a = (a0, a1, . . . , an−1), b = (b0, b1, . . . , bn−1) ∈ Fnqm and A,B ∈ Fm×nq their matrix
representations over the ground field Fq. Then the rank weight of a is defined to be
the rank of its matrix representation A:

wtrk(a) := rk (A)

and the rank distance between the vectors a and b is the rank of the difference of the
matrix representations of both:

distrk (a, b) := rk (A−B) .

Important to know is that the rank distance is a metric, since it fulfills the three
conditions for metrics. Namely for a, b, c ∈ Fnqm it is

1. non-negativity: distrk (a, b) ≥ 0 ∧ distrk (a, b) = 0 ⇐⇒ a = b,

2. symmetry: distrk (a, b) = distrk (b,a) and

3. triangle inequality: distrk (a, c) ≤ distrk (a, b) + distrk (b, c).

If we now turn to rank-metric codes, some parameters are needed to describe them.
These are the length n (number of codeword symbols per row), the cardinalityM,
that is the number of codewords and the minimum rank distance, which is defined
as follows:

Definition 2.2.2 (Minimum Rank Distance [Gab85], [Del78], [Rot91])
Let C be a rank-metric code. Then its minimum rank distance is defined by

drk := min
c(1),c(2)∈C
c(1) 6=c(2)

{
distrk

(
c(1), c(2)

)}
.

Analogous to Hamming metric the minimum rank distance equals the minimum
rank weight for linear codes.

5

2. Theory

2.2.2. Linearized Polynomials

Gabidulin codes are defined by evaluating so-called linearized polynomials. These
are described as follows.

Definition 2.2.3 (Linearized Polynomials [Ore33])
A polynomial p(x) is a linearized polynomial if

p(x) =

dp∑

i=0

pix
qi , pi ∈ Fqm ∀i ∈ 0, 1, . . . , dp,

where pdp 6= 0. Then degq(p(x)) = dp is called the q-degree of p(x).

Together with ordinary polynomial addition and the so-called symbolic product the
linearized polynomials form a non-commutative univariate polynomial ring, which
we be denote by Lqm [x]. Let us recall that a ring is a fundamental mathematical
structure consisting of a set (here it is the set of linearized polynomials) and the two
operations of addition and multiplication, where closure, associativity, distributivity
and, in case of addition, commutativity hold. Furthermore for each operation there
exist identities. In our case xq0 = x is the multiplicative identity and the all-zero
polynomial is the additive identity.

Since the usual polynomial multiplication is not closed in the set of linearized poly-
nomials, the symbolic product fills the role of the multiplication in the polynomial
ring. The symbolic product is defined as the composition of two linearized poly-
nomials and denoted by a(x) ◦ b(x) := a(b(x)). Let c(x) = a(x) ◦ b(x), then its
coefficients cj are calculated via

cj =

j∑

i=0

aib
qi

j−i, ∀j ∈ [0, da + db],

where da and db are the q-degrees of a(x), respective b(x). The adjective “linearized”
stems from the fact, that the evaluation of a linearized polynomial is linear over Fq.

Theorem 2.2.4 [LN83, p. 108]
Let p(x) ∈ Lqm [x], si ∈ Fqm and Ai ∈ Fq for i ∈ {1, 2}, then

p(A1s1 + A2s2) = A1p(s1) + A2p(s2). (2.5)

Proof:
This is possible because ∀A ∈ Fq it holds that Aqi = A ∀i ∈ N. Furthermore in
commutative rings with characteristic p it is (a+ b)p

i
= ap

i
+ bp

i for a, b in the ring,

6

2.2. Rank-Metric Codes

i an integer [LN83, Theorem 1.46], which in turn causes (a+ b)q
i

= aq
i
+ bq

i in Fqm ,
since qi = p`

i and `i is an integer. Thus allowing

p(A1s1 + A2s2) =
∑

pi(A1s1 + A2s2)q
i

= A1

∑
pis

qi

1 + A2

∑
pis

qi

2

= A1p(s1) + A2p(s2).

�

Therefore the evaluation of a linearized polynomial gets connected to the matrix rep-
resentations used before. Having an element s ∈ Fqm which can be represented by a
(column) vector S = (S0, S1, . . . , Sm−1)> ∈ Fm×1

q with the basis B = {β0, . . . , βm−1}
of Fqm over Fq (the order of the basis has to be fixed), the evaluation of a linearized
polynomial p(x) over Fqm is given by

p(s) =
m−1∑

i=0

Sip(βi). (2.6)

With these definitions we can turn to Gabidulin codes, which are addressed in the
following section.

2.2.3. Gabidulin Codes

Gabidulin codes are an important class of rank-metric codes. The definition utilizes
the evaluation of a linearized polynomial with linearly independent elements over Fq.

Definition 2.2.5 (Linear Gabidulin Code [Gab85], [Del78], [Rot91])
Let g0, g1, . . . , gn−1 ∈ Fqm be fixed elements and linearly independent over Fq. Then
a linear Gabidulin code G[n, k] over Fqm of length n ≤ m and dimension k ≤ n is
the set of all words, that fulfill

G[n, k] :=

{(
f(g0), f(g1), . . . , f(gn−1)

)
: f(x) ∈ Lqm [x], degq f(x) < k

}
,

i.e. the set of evaluation points of the above defined fixed elements g0, g1, . . . , gn−1.

As evaluation points one could, for example, choose a normal basis, since the com-
putations can be done efficiently with such a basis [Wac13, Section 3.1.1]. A normal
basis is characterized by the fact, that βi = βq

i for all βi in the basis, i.e. the basis
is generated by one so-called normal element β ∈ Fqm . Using the definition of the
q-transform from [Wac13, Definition 2.12] the Gabidulin codewords can be seen as

7

2. Theory

the inverse q-transform of the evaluation polynomial f(x). This view is analogous
to the definition of Reed Solomon (RS) codes by the Discrete Fourier Transform (as
it is done e.g. in [Bos13, Definition 3.4]). These Gabidulin codes are then q-cyclic.
The structure of Gabidulin codes rewards them, being the RS code equivalent in
rank metric. Considered as codes in Hamming metric, Gabidulin codes are (as RS
codes) maximum distance separable, which means they are optimally spread in the
space they are defined in. The rank metric equivalent for Maximum Distance Sep-
arable (MDS) codes are Maximum Rank Distance (MRD) codes. In rank metric,
Gabidulin codes are also MRD codes, because they fulfill the rank metric equivalent
of the Singleton bound with equality, i.e. the minimum rank distance of a linear
Gabidulin code achieves drk = n− k + 1.

The generator matrix of a Gabidulin code can be calculated as follows

GG =




gq
0

0 gq
0

1 . . . gq
0

n−1

gq
1

0 gq
1

1 . . . gq
1

n−1
...

...
...

gq
k−1

0 gq
k−1

1 . . . gq
k−1

n−1



,

cf. [Gab85, Theorem 7]. Multiplication of coefficients ui to the row of the gener-
ator matrix is the same as evaluating the linearized polynomial, which defines the
Gabidulin code, i.e. if u ∈ Fkqm , then c = u ·GG ∈ G[n, k].

Error-Erasure Decoding of Gabidulin Codes

Error-erasure decoding utilizes insight into the error, obtained via side information.
This can be explained as follows. An error always consists of an error value and its
location in the codeword. Since matrices are used as codewords, these terms can
be matched to column space and row space of the error matrix. In case the column
space is known, one usually speaks of an erasure or column erasure (cf. [Wac13]). For
the contrary case, when the row space is known, so-called deviations were introduced
in [SKK08]. Here [Wac13] used the term row erasure. The last case is that neither
is known, which ends up in a full error. Table 2.1 shows an overview on all notations
on errors, erasures and their numbers. These erasures and deviations provide partial
inside into the errors. Figure 2.1 extracts erasures, deviations and full errors from
the error matrix. L · Ê represent the erasures, where the column space (gray) is
known. The second addend relates to the deviations, i.e. the row space L̂ is known.

Silva et al. showed in [SKK08, Theorem 11] under which conditions error-erasure
decoding is possible.

8

2.3. Error Correction in Random Linear Network Coding

Silva [SKK08] Wachter-Zeh [Wac13] here

notation # notation # #

full error ε (full) error t ε
erasure µ column erasure γ µc

deviation δ row erasure % µr

Table 2.1.: Notation of errors and numbers of errors in [SKK08], [Wac13] and this
work.

B

m

n = L

µr

· Ê µr

m

+ L̂

µc

· E µc

m

+ L̃

τ

· Ẽ τ

m

Figure 2.1.: Decomposition of the error matrix B into full-rank matrices, the grey
matrices are known.

Theorem 2.2.6 [SKK08, Theorem 11]
Let ε the number of full errors, µc the number of erasures and µr the number of
deviations in a received word, then error-erasure decoding of a Gabidulin code with
minimum distance drk is possible if and only if

2ε+ µc + µr ≤ drk − 1. (2.7)

They also gave algorithms for the decoding procedure. Noteworthy in equation (2.7)
is that “erasures and deviations cost half of an error in the rank metric” [SKK08].

2.3. Error Correction in Random Linear Network
Coding

In 2000 Ahlswede et al. proposed in [ACLY00] that for every communication network
it is possible to achieve the maximum throughput with a strategy referred to as
Network Coding (NC). Later a concept called RLNC, built upon the results of
Ahlswede, was introduced by Kschischang et al. [KK08] and then combined with
rank-metric codes in [SKK08].

In this work we regard the unicast scenario, so there is one sender and one receiver
somewhere in the network and information shall be passed from the first to the
latter. The nodes on the way between sender and receiver are called internal nodes,

9

2. Theory

s

r

a

b

x+e

Figure 2.2.: Example of a considered network with sending node s and receive node
r and the propagation of one error e. x is a message vector sent between two inner

nodes a and b.

they have the task to combine incoming packets using random linear factors (in case
of RLNC) and spread them further. They might not be aware of the actual code,
used by sender and receiver. An example of such a network is shown in Figure 2.2.

The information on a link is sent as (row) vectors x ∈ FMq , which are called packets.
At the sender n packets are sent on different links at a time. So the information
can virtually be packed together into a matrix X ∈ Fn×Mq . The event of starting to
send an information matrix up to the reception of it at the receiver side, is called
generation. If only one generation is regarded, it is called a one-shot scenario, if
more happen, it is usually referred to as a multi-shot scenario. Hence referring to a
certain shot, is the same as talking about one generation. Another given condition
is that the topology of the network is not known. Thus the transmission scheme is
independent of it. Later there will be considerations on a changing topology between
different generations in a multi-shot scenario. All assumptions and properties for
the network can be found in Table 2.2.

Whenever information is sent over a link between two nodes, it can happen, that
an error is superimposed. This error propagates through the network in the same
way as it is done with the information packets, which means in case of RLNC,
there will be linear combinations of it, i.e. one error spreads all over the network.
Because these errors might reach the receiver by several paths, the network is quite
sensitive to these transmission errors. Therefore, a suited method of error correction
is necessary.

Kötter et al. [KK08] showed how subspace codes can be used advantageously in a
RLNC scenario and in [SKK08] Silva et al. explained, how to construct subspace

10

2.3. Error Correction in Random Linear Network Coding

definitions description

internal nodes nodes which are not addressed, but pass on the
message as linear combination of the incoming
messages

generation, shot entity of a transmission between sending and re-
ceiving node

properties description

point-to-point transmission/
unicast scenario

sending node addresses one receiving node

non-coherence unawareness of the topology of the network
multi-shot network consideration of more than one generation
time-varying the network may change between generations

(from Chapter 5 on)
labeling packets of different generations can be distin-

guished and are processed separately (this is ac-
tually not a property but a treatment)

Table 2.2.: Definitions and properties of RLNC networks considered in this work.

codes in rank metric for the error correction in the same scenario. In the following
the mathematical understanding of the network as channel is presented.

2.3.1. Channel Model

In [KK08] the operator channel was introduced, which compressed all the properties
into a simple channel model. But since Kötter and Kschischang were working with
subspace codes instead of rank-metric codes, the channel is a slightly modified for
our purposes. Regard the transmit matrix X ∈ Fn×Mq . The idea of RLNC is to
build random linear combinations of incoming packets at each internal node and
send them to all adjacent nodes [SKK08]. Note that for simplicity we regard only
directed acyclic networks. The random factors of the linear combinations are chosen
once and stay the same for one node, as long as it is in the network.

End-to-end consideration of these random linear combinations yields the multiplica-
tion with a random matrix A, which is called the network channel matrix and stays
the same as long as the network topology is not changed. It is an N × n-matrix if
N is the number of collected packets at the receiving side. Since the matrix mul-
tiplication is a linear transformation, it preserves the row space of the transmitted
matrix, i.e. the span of its rows. This is an important feature for the use of codes

11

2. Theory

in network coding. However we did not consider errors in the channel up to now.
That is why we introduce an N ×M -matrix B, the additive error matrix, which
emerges from the (possibly linearly combined) errors, that happen on links between
nodes. The Hamming matrix of this error matrix might be high, but usually the
rank is not. That is why it is useful to apply rank-metric codes in these scenarios.
The incoming packets at the receiving node are denoted Y and calculate to

Y = A ·X + B ∈ FN×Mq . (2.8)

Due to the multiplication and addition of matrices this channel model is called Mul-
tiplicative Additive Matrix Channel (MAMC). If rk (Y) < N , the linear dependent
packets are removed, since they do not give further information for the decoding
problem. Therefore the receive matrix Y might not have the same size as it is
stated above, but we can be sure it has full rank. For simplicity we assume N = n.
All in all, what is obtained is a channel defining an RLNC network by the MAMC,
Silva et al. called it Random Linear Network Channel (RLNCC).

Definition 2.3.1 (RLNC Network, cf. [SKK08, eq. (17)])
Let A ∈ FN×nq , B ∈ FN×Mq and X ∈ Fn×Mq , then

Y = A ·X + B

defines the RLNC network. A is called channel matrix, B is the error matrix, X
is the transmit matrix and Y ∈ FN×Mq is the receive matrix.

The following lemma provides more insight into properties of the channel model.
Since the proof in [SKK08] is presented from a different point of view, we propound
another proof here.

Lemma 2.3.2 [SKK08, Lemma 14]
Let A ·X + B specify a RLNC channel with X ∈ Fn×Mq as the transmit matrix,
B ∈ FN×Mq , the error matrix in one generation and A ∈ FN×nq the channel matrix.
Then

rk

[
X
B

]
= rk (X) + rk (B) . (2.9)

Proof:
The statement is equivalent to dim(〈X〉 ∩ 〈B〉) = 0. Assume one of the rows of B
lies in the row space of X, i.e. 〈X〉 ∩ 〈B〉 6= ∅, one could find a B′ of lower rank,
s.t. dim(〈X〉∩ 〈B′〉) = 0 and 〈B′〉 ⊂ 〈B〉. Choose rank of B′ to be maximal. More
precisely construct B′ from B, by changing the row vectors bi ∈ 〈X〉 from B to

12

2.3. Error Correction in Random Linear Network Coding

b′i = 0 and keep all other row vectors. Then

〈B −B′〉 =

{
b =

n∑

i=1

λi(bi − b′i) : λi ∈ Fq

}

=

{
b =

n∑

i=1

λibi : λi ∈ Fq, bi 6= b′i

}

=

{
b =

n∑

i=1

λibi : λi ∈ Fq, bi ∈ 〈X〉
}
.

Concluding 〈B −B′〉 ⊆ 〈X〉, which implies that the subtraction of B and B′ can
be expressed as a transformed X, say

B −B′ = A′X. (2.10)

Then the channel model equals another channel

AX + B
(2.10)
= AX + A′X + B′ = (A + A′)X + B′,

represented by a channel matrix A + A′ and an error matrix B′ of lower rank than
before. This should then be the channel to be considered. �

Accordingly the error matrix B should always be of smallest rank for given A,X.

2.3.2. Probabilistic Error Model

The errors on the edges can be seen as independent Bernoulli trials with different
probabilities pi.1 Let p̄ = 1

|N |
∑|N |

i=1 pi, where |N | is the number of nodes in the
network. Then the sum of these random variables can be approximated by the
Binomial distribution with parameters |N | and p̄. Choi [CX02] showed that the
Binomial distribution is better than the Poisson distribution Pois (p̄) for finite |N |.
One can therefore assume that rk (Bi) ∼ Bin (|N |, p̄). Nevertheless the rank of the
error matrix Bi must be smaller than the number of received packets (i.e. its first
dimension). Therefore Seidl [SCFH13] proposes, that

Pr {rk (Bi) = k} ≈ 0,∀k > n ⇐⇒ p̄ · |N | � n

and can therefore be neglected. RLNC networks have a number of nodes, fulfilling
|N | � n, therefore for probabilistic analysis we assume rk (Bi) ∼ Bin (n, pB) with a
respective pB = |N |

n
p̄ in order to have the same expected value in both distributions.

For completeness one can define Pr {rk (Bi) = n} =
∑|N |

i=n

(|N |
i

)
p̄i(1− p̄)|N |−i, i.e. the

Probability Mass Function (PMF) being clipped.
1pi being the probability that an error happens on a particular edge.

13

2. Theory

2.3.3. Lifted Rank-Metric Codes

In order to cope with the sort of channel introduced in Definition 2.3.1 Silva et
al. suggested lifted rank-metric codes (in fact lifted Gabidulin codes). The lifting
construction utilizes an identity matrix to display parts of the network channel
matrix A, which otherwise would not be known to the receiver. For rank-metric
codes it is defined as follows.

Definition 2.3.3 (Lifting Construction [SKK08, Def. 3])
Let In×n be an identity matrix of size n×n, M = n+m and S ∈ Fn×mq an arbitrary
matrix. Then the function L : Fn×mq → Fn×Mq , mapping

S 7→ L(S) = [In×n | S] ,

is called lifting.

The matrix S might be coded or uncoded. Since coding is necessary for error
control in random linear networks, the information is usually be encoded. Then it
is denoted by a matrix C. Obviously the action of lifting describes concatenating
the actual codeword to a n × n identity matrix. In case Gabidulin codes are used
for lifting, the transpose of a usual Gabidulin codeword-matrix is taken, in order to
get a matrix from Fn×mq . This has the benefit that the appended identity matrix
has a smaller size due to n ≤ m. Such a codeword is then called lifted Gabidulin
codeword. In [Wac13, Lemma 2.18] it has been shown that lifted Gabidulin codes
are MRD codes. The code is due to its construction a so-called constant-dimension
code, which itself is a special class of subspace codes (also called codes in projective
space). The lifted Gabidulin code has minimum subspace distance

dLifted = 2drk = 2(n− k + 1),

cf. [SKK08, Proposition 4]. The subspace distance is an important measure for
subspace codes and defined as follows.

Definition 2.3.4 (Subspace Distance [SKK08, Def. 2])
Let X ∈ Fn×Mq , Y ∈ FN×Mq . Then the subspace distance of their row spaces is
defined to be

ds(〈X〉, 〈Y 〉) := dim(〈X〉+ 〈Y 〉)− dim(〈X〉 ∩ 〈Y 〉)
= 2 dim(〈X〉+ 〈Y 〉)− dim(〈X〉)− dim(〈Y 〉). (2.11)

The subspace distance is also useful to rewrite the main result for the decoding
capability of the lifted rank-metric codes as stated in [SKK08].

14

2.3. Error Correction in Random Linear Network Coding

Decoding guarantee of the Lifting Construction

The following derivation stems in parts from a draft by Sven Puchinger. We regard
the above introduced channel and a lifted rank-metric codeword X and the receive
word Y of a RLNC channel as defined in 2.3.1. For the theoretic analysis of the
error correction capabilities, we regard the subspace distance of the row spaces of
transmit matrix X and receive matrix Y in combination with the result of Silva et
al. as stated in (2.7).

Theorem 2.3.5 [SKK08, Theorem 9&10]
Let Y = AX + B ∈ Fn×Mq be a receive matrix in a RLNC network with A ∈ Fn×nq

as channel matrix, B ∈ Fn×Mq as error matrix and X ∈ Fn×Mq as lifted rank-metric
codeword, where the respective rank-metric code has minimum distance drk. Then
decoding is possible if and only if

2 rk (B) + n− rk (Y) ≤ drk − 1.

Proof:
Examination of Theorem 9 and the proof of Theorem 11 (the theorem is recited here
as Theorem 2.2.6) in [SKK08] reveals, that error correction is possible if and only if

ds(〈X〉, 〈Y 〉) Theorem 9
======= 2(ε+ µr + µc)− µr − µc

Theorem 11
≤ drk − 1

with drk as defined above, ε the number of full errors, µc the number of (column)
erasures and µr the number of row erasures (deviations in [SKK08]). It is known, that
the rank of a matrix equals the dimension of its row space, i.e. rk (X) = dim(〈X〉).
Furthermore it is

rk

[
X
Y

]
= dim(〈X〉+ 〈Y 〉), (2.12)

as it can be seen in equation (6) of [SKK08]. By inspecting the subspace distance
we obtain:

ds(〈X〉, 〈Y 〉)
(2.11)
= 2 dim(〈X〉+ 〈Y 〉)− dim(〈X〉)− dim(〈Y 〉)

(2.12)
= 2 rk

[
X
Y

]
− rk (X)− rk (Y) (2.13)

(2.8)
= 2 rk

[
X

AX + B

]
− rk (X)− rk (Y)

lower part
======
−AX

2 rk

[
X
B

]
− rk (X)− rk (Y) (2.14)

15

2. Theory

With assumption (2.9) from Lemma 2.3.2 we have

ds(〈X〉, 〈Y 〉)
(2.14)
= 2 rk

[
X
B

]
− rk (X)− rk (Y)

(2.9)
= 2 rk (B) + rk (X)− rk (Y)

rk(X)=n
====== 2 rk (B) + n− rk (Y) .

�

The result of Theorem 2.3.5 can be lower bounded by

ds(〈X〉, 〈Y 〉) ≥ 2 rk (B) ,

since rk (X) = n and rk (AX + B) ≤ n. Concluding that in the best case one can
decode a lifted rank-metric code in a RLNC scenario as long as rk (B) ≤ drk−1

2
.

2.4. Differential Linear Network Coding

If a lifted Gabidulin code is applied in a RLNC scenario, the channel matrix A is
sounded in each generation, which implies that the network could change completely
between two shots without impairing the success of the scheme. A vast change in
the network is usually not the case. Therefore Differential Linear Network Cod-
ing (DLNC) was introduced in [SCFH13]. The method can be explained via DPSK,
which is the differential version of Phase-Shift Keying (PSK). In PSK each mod-
ulated information point has a certain phase and exactly this phase information is
transmitted. On the other hand, in DPSK the first point is fixed and only the phase
differences between information points is sent. This is in particular useful if the
phase change induced by the channel is not too high.

Analogous thereto DLNC has an initialization matrix and further information matri-
ces are multiplied onto each other step after step, yielding a differential modulation
scheme. For the network coding approach this means to start with an initial matrix
X0 = [In×n |0n×m] ∈ Fn×Mq , here 0n×m is the n ×m-all-zero matrix, and multiply
it with the information S1 ∈ Fn×Mq , M = m+ n ≥ 2n (which could be a transposed
Gabidulin codeword). In each shot the information matrix Si ∈ Fn×Mq is multiplied
to the previous transmit matrix, such that the current transmit matrix relates to
the preceding one in the following way:

X i = (X i−1)[n] · Si. (2.15)

The notation (·)[n] shall say that only the first n columns are used. A condition
on Si is that it has to have full rank in the front part, which leads to a loss ∼ 1/q

16

2.4. Differential Linear Network Coding

X in

M

= (X i−1)[n] · Si

location of full-rank restriction

n

Figure 2.3.: Rank condition for the, possibly encoded, information matrix Si. The
shaded parts shall have full rank.

(cf. [SCFH13]). The condition is illustrated in Figure 2.3. Since in matrix multipli-
cations the second dimension of the first matrix has to be equal to the first dimension
of the second matrix, we have to adjust the encoding for non-square matrices, i.e.
take first n columns of the preceding sending matrix X i−1.

Due to the fact that of the M = n+m columns n must be chosen to be invertible,
Seidl introduced the loss LDLNC (cf. [SCFH13, equation (23)])

LDLNC =
n

q(n+m)
. (2.16)

Note that GLn(Fq) the general linear group, i.e. the set of all invertible matrices, is
like the name says a group over matrix multiplications. Therefore it is closed, which
leads to the fact, that all X i are invertible, if Si is always chosen to be invertible
in the front part. The demodulation rests upon the matrix multiplication of the
received matrix Y i and its preceding (weak) pseudo inverse Y +

i−1. Such a weak
pseudo inverse Y +

i must fulfill

Y +
i · Y i = In + LI>U . (2.17)

Hereby U ⊆ {0, 1, . . . , n} and L is a matrix that meets I>UL = −I |U| (IU equals
In×n without the rows not in U). Silva et al. proved in [SKK08], that it is always
possible to find such a matrix. The pseudo inverse is necessary because A might not
be invertible. For non-square receive matrices, only the first n columns of Y i−1 have
to be considered for the calculation of the pseudo inverse. So the demodulations
calculates to

Ŝi = (Y i−1)+
[n] · Y i. (2.18)

It has been shown in [SCFH13], that the demodulation result is obtained as the
superposition of the transmitted information and an error, i.e. Ŝi = Si +Ei, where
the effective error matrix Ei depends on the current as well as the previous error
matrix, the beforehand defined pseudo inverse Y +

i−1 and the transmission matrix

17

2. Theory

X i = (X i−1)[n]·Si
differential

modulation

Si

Ai

+ Bi

differential

demodulation
Ŝi = (Y i−1)

+
[n] ·Y i

Ŝi

≡

Si

+ Ei

Ŝi

Figure 2.4.: Transformation of the differential modulation scheme to AMC
according to [SCFH13].

Si. Thus one is concerned with an AMC, as illustrated in Figure 2.4, which can
be handled using rank-metric codes like introduced in Chapter 2.2. However a first
intuition shows, that one has to deal with an error rank at least two times higher
than with the lifting construction, since the current as well as the previous error
matrix influence the effective error matrix.

2.4.1. Varying Networks

The concept was enhanced in [PCF+15], allowing slow variations in the network,
i.e. nodes joining or leaving between generations. This affects the network channel
matrix A. The changes can be expressed by the so-called channel deviation, which
is defined as follows.

Definition 2.4.1 (Channel Deviation [PCF+15])
Let Ai be the channel matrix in the i-th generation, then we define the channel
deviation

∆Ai := Ai −Ai−1

to be the change between current and preceding channel matrix.

It was proved in [PCF+15], that the rank of the channel deviation can be upper
bounded by the minimum of incoming or outgoing edges of leaving nodes.

18

2.4. Differential Linear Network Coding

Theorem 2.4.2 [PCF+15, Theorem 1]
Let ∆Ai be the channel deviation of an RLNC network in generation i. Further let
ν be the only leaving or joining node between generation i−1 and i, as well as win be
the number of its incoming edges and wout the number of its outgoing edges. Then

rk (∆Ai) ≤ min{n,win, wout}.

This can be comprehended by interpreting each new/missing linear combination
sent to or from the appearing/disappearing node to other network codes as an error.
The rank of the channel deviation is then always be smaller or equal than the
number of incoming edges of this node (determining the number of incoming linear
combinations) and also smaller than or equal to the outgoing edges (determining
the outgoing linear combinations) of this leaving or joining node.

Furthermore detailed investigations into the PMF of rk (∆Ai) were made. It is
stated, that the PMF of rk (∆Ai) can be upper bounded as follows. We define the
respective random variable (RV) as rk (∆Ai).

rk (∆Ai) ≤ rk (∆Ai) :=
∑̀

j=1

w(νj),

where νj, j ∈ {1, . . . , l} are leaving or joining nodes. The number L of joining or
leaving nodes is randomly distributed. Assuming L ∼ Bin (|N |, p∆N), where |N | is
the number of nodes in the network, leads to the PMF

frk(∆Ai)(τ) ≤ frk(∆Ai)
(τ) =

|N |∑

`=0

fL(`) · f (∗)`
W (τ). (2.19)

Here fL(`) is the PMF of the random variable L, i.e. the number of joining or leaving
nodes and fw(τ) is the PMF of the random variable W corresponding to the node
weight w, which can be upper bounded by a binomial distribution with parameters
|N | and pw. Further f (∗)`

W (τ) is the `-fold convolution of fW (τ) with itself. In
Figure 2.5 the PMF is shown for values, that were chosen in the simulations in
Section 6.4.2. The parameters are explained separately in Table 2.3.

2.4.2. Decoding Guarantee

As derived in [SCFH13], the end-to-end channel resembles an AMC with an effective
error matrix Ei. The rank of Ei is then crucial for the question whether the correct
codeword in the DLNC scenario can be retrieved from the receive matrix Y i. Note
that DLNC is a modulation scheme, i.e. the error correction capability originates
from the Gabidulin code, that is applied on each information word. Hence we refer
to the respective Gabidulin code, when considering code properties of DLNC.

19

2. Theory

0 5 10 15 20 25 30 35 40

10−9

10−7

10−5

10−3

10−1

τ

f r
k
(∆

A
i
)(
τ
)

p∆N = 10−4

p∆N = 10−5

Figure 2.5.: PMF of the upper bound of the rank of the channel deviation for
parameters as used in the simulations in Section 6.4.2, namely |N | = 1000,

pw = 0.01, p∆N as given in the plot.

Parameters Definitions

|N | Number of nodes in the network

p∆N Probability that a node leaves or joins the network during
one generation.

pw Interconnection probability, i.e. the probability that there
is an edge between two distinct nodes.

Table 2.3.: Definitions of the parameters for varying networks, all assumptions
stick to [PCF+15].

Theorem 2.4.3 [SCFH13, PCF+15]
Let Y i = AiX i + Bi describe a RLNC scenario, where X i is a with information
matrix Si DLNC modulated transmit matrix. More precisely X i = (X i−1)[n] · Si,
cf. (2.15), where X i−1 is the preceding transmit matrix. By DLNC demodulation
Ŝi is obtained as in (2.18), i.e. Ŝi = (Y i−1)+

[n] · Y i, with (Y i−1)+
[n] fulfilling (2.17).

Then the effective error matrix calculates to

Ei = Ŝi − Si = LI>USi + (Y i−1)+
[n]Bi−1Si + (Y i−1)+

[n]Bi + (Y i−1)+
[n]∆AiX i.

Let further the applied Gabidulin code have minimum distance drk. Then decoding
is possible if and only if

rk (Ei) ≤
⌊
drk − 1

2

⌋
.

20

2.4. Differential Linear Network Coding

Since Si, (Y i−1)+
[n] and X i have full rank n, an upper bound for its rank can be

given by applying (2.3).

Corollary 2.4.4 [PCF+15, Theorem 2]
The effective error matrix as given in Theorem 2.4.3 can be approximated by

rk (Ei) ≤ rk
(
LI>U

)
+ rk (Bi−1) + rk (Bi) + rk (∆Ai) . (2.20)

Consequently the error correction is possible if

rk
(
LI>U

)
+ rk (Bi−1) + rk (Bi) + rk (∆Ai) ≤

⌊
drk − 1

2

⌋
,

and a Gabidulin code with minimum distance drk is applied.

21

22

3. Preparation

In this chapter we discuss the impact of the full-rank restriction for codewords
in DLNC on the cardinality as well as the rate. Furthermore, lifted interleaved
Gabidulin codes are considered in combination with lifting.

3.1. Full-Rank Restriction

For DLNC it is necessary to claim that the front part of the transmit matrices has
full rank. Therefore we are interested in the proportion of regular matrices under all
n×n-matrices in Fq. Another reason is that the Probability Density Function (PDF)
of the rank of channel matrix A is helpful e.g. for Section 3.1.1.

We denote the number of Matrices ∈ Fm×nq of rank r as Mr(n,m, q). If m ≥ n i.e.
if the matrix is tall or square, the number is calculated as follows

Mr(n,m, q) =

[
m
r

]

q

r−1∏

i=0

(qn − qi). (3.1)

On the other hand, for fat matrices (n ×m-matrix, where m ≥ n), the number is
calculated by

Mr(n,m, q) =

[
m
r

]

q

r∑

i=0

(−1)r−i
[
r
i

]

q

qni+(r−i2).

As indicated, for square matrices either formula can be used. The formulas were

found in [vLW01] in Chapter 25. Hereby
[
.
.]

q

is the Gaussian coefficient [KK08],

also called Gaussian polynomial or q-binomial coefficient. It is q-analog to the
binomial coefficient and defined as

[
n
`

]

q

=
`−1∏

j=0

(qn − qj)
(q` − qj) =

`−1∏

j=0

(1− qn−j)
(1− qj+1)

∀` ≤ n.

23

3. Preparation

In case of ` > n the Gaussian coefficient is defined to be zero. The binomial coeffi-
cient is obtained for q → 1−, since

lim
q→1−

1− qα
1− q = α.

For more information on q-analogs see [KS98]. The probability, that from the set of
all n× n-matrices a singular matrix is drawn, accordingly calculates to

Pr {rk (A) = r} =
1

qn2

[
n
r

]

q

r∑

i=0

(−1)r−i
[
r
i

]

q

qni+(r−i2) =
1

qn2

[
n
r

]

q

r−1∏

i=0

(qn− qi). (3.2)

Cyran showed in [Cyr17] that for q > 4 one can derive (referring to equation (3.69))

Pr {rk (A) < n} ≈ 1

q
. (3.3)

Note that this tends to zero for growing q. We will use this result later.

3.1.1. Application of the Rank Distribution

Regard the beforehand introduced matrix LI>U , which is used in DLNC. It is useful
to know the statistics of this matrix (cf. end of Chapter 4). Since Y +

i−1 and X i have
full rank, one can upper bound rk

(
LI>U

)
as follows

rk
(
LI>U

)
=n− rk

(
Y +

i−1 · Y i

)
= n− rk (Y i) (3.4)

=n− rk (AiX i + Bi)︸ ︷︷ ︸
≥| rk(AiXi)−rk(Bi)|

(2.4)
≤ n− rk (AiX i) + rk (Bi)

=n− rk (Ai) + rk (Bi) . (3.5)

For the bound we use the assumption that rk (Ai) ≥ rk (Bi), which is true with high
probability. Due to (3.4), we call LI>U the Receive Rank Deficiency Matrix (RRDM).
The PDF of rk (Ai) can be expressed by the fraction of the number of matrices of a
certain rank versus the number of all n×n-matrices as given in (3.2). As mentioned
before the probability for full-rank matrices is quite high for large q. From (3.3)
we can conclude, that the probability Pr {rk (A) = n} ≈ 1 − 1

q
is close to one for

high q and therefore contributes most to the PDF of rk (A). A lower bound for the

24

3.1. Full-Rank Restriction

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

r

P
r
{n
−

rk
(A

i)
+
rk

(B
i)
≤

r}

n = 10, q = 8
n = 10, q = 256
n = 40, q = 8
n = 40, q = 256
n = 100, q = 8
n = 100, q = 256

Figure 3.1.: A lower bound for the CDF of rk
(
LI>U

)
for several q and n, where

pB = 0.05.

Cumulative Density Function (CDF) of rk
(
LI>U

)
can be given by

Pr
{

rk
(
LI>U

)
≤ r
}
≥ Pr {n− rk (Ai) + rk (Bi) ≤ r} (3.6)

=
n∑

i=0

Pr {rk (Bi) = i}Pr {n− rk (Ai) + i ≤ r}

=
n∑

i=0

Pr {rk (Bi) = i}Pr {rk (Ai) ≥ n− r + i}

=
n∑

i=0

Pr {rk (Bi) = i} (1− Pr {rk (Ai) ≤ n− r + i}),

using the law of total probability. These components can be calculated. The exam-
ples in Figure 3.1 show, that we can assume the probability Pr

{
rk
(
LI>U

)
≤ r
}
to

be quite high, even if r is relatively small.

3.1.2. Considerations on Full-Rank Gabidulin Codewords

So far we have considered uncoded matrices. Now it is time to turn to rank-
metric codes. At first we consider square matrices, i.e. m = n. According to
Gabidulin [Gab85, eq. (18)], the number of codes of rank weight n of MRD codes
is calculated by

An(n,m, q, d) =
n−d∑

i=0

(−1)i+n−d
[
n

d+ i

]

q

q(n−d−i)(n−d−i−1)/2(qm(i+1) − 1). (3.7)

25

3. Preparation

101 102
10−2

10−1

100

q

P
r
{r
k
(C

)
<

n
}

1
q
d = 39
d = 38
d = 37
d = 36

Figure 3.2.: Relative number of singular square Gabidulin codeword matrices of
G[n, n− d+ 1] with n = m = 40 and minimum distance d calculated via (3.8). For
d < n− 3 the relative number of singular Gabidulin codewords does not vary

cosiderably from the case d = n− 3.

Therefore the probability, that a randomly chosen Gabidulin codeword does not
have full rank, can be calculated. Let C ∈ Fm×nq be a Gabidulin codeword, then

Pr {rk (C) < n} = 1− An(n,m, q, d)

qnk
. (3.8)

Calculating the number An(n,m, q, d) for several values shows, that the number
of rank-deficient, i.e. singular matrices in the Gabidulin code behaves similarly to
singular n×n-matrices. Consequently, not being able to choose singular matrices as
information in DLNC is quite close to choosing only full-rank Gabidulin codewords.
Variations in the code rate were examined by changing k, whereas n stayed the
same. The variation affects the behavior of An(n,m, q, d) only slightly, as seen in
Figure 3.2, except for k = 1 where the An(n,m, q, d) = (qm−1) and the loss therefore
calculates to 1/qm. For k ≥ 4⇔ d ≤ n− 3 the curves for Pr {rk (C) < n} are very
close to the case d = n − 3. As long as n ≥ 10 the curves hardly vary for different
n.

For non-square Gabidulin codewords we have

Pr {rk (C) < n} = 1− An(n,m, q, d)

qmk
. (3.9)

Since the number of overall codewords is affected more than the number of full-rank
Gabidulin codewords (regard the term (qm(i+1) − 1) in the sum), the loss is even
smaller for m > n. Nevertheless we are restricted to codewords that fulfill the full-
rank condition in the first n columns. Simulations show that this constraint also

26

3.2. Rate Considerations

101 102

10−2

10−1

100

q

P
r
{r
k
(C

)
<

n
}

1/q
simulations, m = 20
simulations, m = 40
simulations, m = 60

Figure 3.3.: Simulations for the relative number of non-square full-rank Gabidulin
codewords of a Gabidulin code over Fqm of length n = 10 and dimension k = 8.
For the simulations 10000 random transposed Gabidulin codeword matrices were

tested for their rank in the first n columns.

leads to a loss of 1/q, see Figure 3.3. So the statistics for uncoded matrices is very
close to the one of Gabidulin encoded matrices and especially to the statistics of
square matrices, thus we can assume this loss in the coded case as well.

3.2. Rate Considerations

In order to compare the lifting construction and DLNC on a fair basis, the overall
rate R of both schemes must be equal. The parameters n,m and q shall be the same
for both methods. The code used for lifting is defined over Fqm , while the one for
DLNC uses FqM , where M = n + m. Given this condition, the dimension kD can
be chosen lower than the one for the lifting construction. Therefore DLNC has the
advantage of being able to correct more errors than the lifted Gabidulin code. This
can be seen in Figure 3.4. The code rate for Gabidulin codes over FMq is calculated
as usual by

r =
logq (M)

Mn

M=qMk

======
k

n
. (3.10)

Yet regarding the matrices in Fig. 3.4, reveals that the identity matrix of the front
part of the lifted Gabidulin codeword contributes to the number of sent symbols
and therefore must be considered. Thus the overall rate for a lifted Gabidulin code

27

3. Preparation

0

01

1

n

n
m · k k

d− 1

m
c ∈ Fn

qm

(a) Lifted Gabidulin Codeword

M · kD kD

dD − 1

n m
c ∈ Fn

qM

(b) DLNC

Figure 3.4.: Comparison of lifted Gabidulin and usual Gabidulin codewords, where
the matrices are of same size. The shaded part indicates the information symbols.

The whole codeword is highlighted in gray. Note that M = n+m.

GL[n, kL] over Fqm calculates as

RL =
m

n+m

kL

n
. (3.11)

Important to notice is, that it can never be greater than m
n+m

, cf.

RL =
m

n+m

kL

n

kL≤n≤ m

n+m
:=Rmax, (3.12)

i.e. for higher rates, the procedures DLNC and lifting are not comparable. Certainly
for m → ∞ the fraction approaches 1. But choosing m too high is not a feasible
solution, since the computational complexity grows with the field size, cf. [SKK08,
Appendix E], [Wac13, Section 3.1.1]. The overall rate for the Gabidulin code G[n, kD]
used in DLNC defined over FqM reads

RD =
kD

n

(
1− n

qM

)
, (3.13)

when using the loss introduced in [SCFH13]. As one can see the higher q and the
higherm (compared to n), the closer the overall rate gets to the code rate. Although
the approximation of 1/q could not analytically be derived for full-rank non-square
Gabidulin codewords, we conjecture this loss in the number of matrices. With this
assumption we have a code cardinality of

MD = qMkD

(
1− 1

q

)
(3.14)

for DLNC. Therefore we obtain as overall rate of symbols

RMD
=

logq (MD)

Mn

(3.14)
=

MkD + logq

(
1− 1

q

)

Mn
=
kD

n
− 1

Mn
logq

(
q

q − 1

)
. (3.15)

28

3.2. Rate Considerations

q kD r = kD
n

M RD RMD

16

18 18
40

= 0.45
80 279

640
≈ 0.4359 ≈ 0.449993

120 141
320
≈ 0.4406 ≈ 0.449995

24 24
40

= 0.6
80 93

160
≈ 0.5813 ≈ 0.599993

120 47
80

= 0.5875 ≈ 0.599995

256

18 18
40

= 0.45
80 4599

10240
≈ 0.4491 ≈ 0.44999998

120 2301
5120
≈ 0.4494 ≈ 0.44999999

24 24
40

= 0.6
80 1533

2560
≈ 0.5988 ≈ 0.5999998

120 767
1260
≈ 0.5992 ≈ 0.5999999

Table 3.1.: Comparison of examples of the overall rates RD from equation (3.13)
and RMD

, equation (3.15), for n = 40.

In Table 3.1 the two definitions of overall rates are compared for several parameter
values. One can see that for high q and M , the rates do not differ considerably.
Nevertheless the derived overall rate RMD

from (3.15) approaches the code rate
much faster. Since the rate loss LDLNC introduced by [SCFH13] is more conservative,
we will stick to it. Note that regarding the relative number of matrices, this loss
is a rather bad approximation. For equal overall rates the dependency between the
dimensions is derived from

mkL

Mn
=
kD

n

(
1− n

qM

)

⇐⇒ kL = kD
M

m

(
1− n

qM

)

︸ ︷︷ ︸
→1 for q→∞

. (3.16)

The dimensions must be integers, therefore rounding might be necessary, which
complicates the search for suitable parameters for equal overall rates. Therefore we
allow small variations between the rates. Since M > m, we have kD < kL. DLNC
therefore has a higher minimum distance than lifting. However, the better error
correction capability is necessary, for the DLNC case has generally to cope with a
higher error rank than the lifting case, due to more terms contributing to the rank.
For a certain factor δ between the error correction radii one can derive the following
code rate region.

29

3. Preparation

Theorem 3.2.1
Let τD be the error correction radius of a Gabidulin code GD[n, kD] over FqM used
for DLNC and τL the error correction radius of a lifted Gabidulin code G[n, kL] over
Fqm, where M = n+m. Further let δ > 1 and minimum distance drk,D = n−kD + 1
odd and the overall rates of both schemes be equal, i.e. (3.16) holds. Then

δτL ≤ τD ⇐⇒
kL

n
≥ δ − 1

δ − m

M(1− n
qM)

. (3.17)

Proof:

δτL ≤τD

τ=b(drk−1)/2c⇐======⇒ δ
drk,L − 1

2
≤ drk,D − 1

2
(3.18)

(3.16)⇐⇒ δ(n− kL) ≤n− kL
m

M

(
1− n

qM

)−1

⇐⇒ (δ − 1)n ≤
(
δ − m

M

(
1− n

qM

)−1
)
kL

⇐⇒ kL

n
≥ δ − 1

δ − m

M(1− n
qM)

. (3.19)

Note that the rounding in (3.18) can be neglected if and only if we demand drk,D to
be odd. �

This scenario could be referred to as an adversary channel, since this statement is
most useful if the channel always introduces the maximum amount of τL (for lifting)
respectively τD (for DLNC) errors. For the probabilistic analysis it is nevertheless
reasonable, as it provides a lower bound for the code rate kL/n, where the allegations
made in further chapters hold. Since we assume δτL = τD in these chapters, the
statement must be slightly changed.

Lemma 3.2.2
Let τD be the error correction radius of a Gabidulin code GD[n, kD] over FqM used
for DLNC and τL the error correction radius of a lifted Gabidulin code G[n, kL] over
Fqm, where M = n + m. Further let δ > 1, minimum distance drk,D and drk,L both
odd and RD ≥ RL. Then

δτL = τD ⇐⇒
kL

n
≥ δ − 1

δ − m

M(1− n
qM)

. (3.20)

30

3.2. Rate Considerations

Proof:

kD

n

(
1− n

qM

)
≥ m

M

kL

n

⇐⇒ δkL − (δ − 1)n ≥ mkL

M

(
1− n

qM

)−1

⇐⇒ kL

(
δ − m

M

(
1− n

qM

)−1
)
≥ (δ − 1)n

⇐⇒ kL

n
≥ δ − 1

δ − m
M

(
1− n

qM

)−1 ,

where we get kD = δkL − (δ − 1)n from

δ
n− kL

2
= δτL = τD =

n− kD

2
.

�

If q is chosen high enough, the loss due to the full-rank codeword constraint can
be disregarded as indicated in equation (3.16). Then the lower bound for the code

rate depends (apart from δ) on the term m
M

(
1− n

qM

)−1

, i.e. on n and m. Later we
will regard theorems, where we find out, which code length one has to choose at
least, such that DLNC has a lower failure probability than lifting. Therefore one
might not want to fix n in the beginning. This is why we introduce a factor f , that
replaces the dependency of the lower bound of the code rate on q, n and m. Let

m

M

(
1− n

qM

)−1

=
m

m+ n q−1
q

:=
1

f
. (3.21)

For large q this resembles the relation of m to M = n+m. Instead of fixing m and
n in the beginning, one can hence set f as desired and later adjust m for the code
length n, obtained in Chapter 4. Due to 0 < n ≤ m and q > 1 it is f ∈ (1, 2). Note
that for m = n it is

f
q→∞−−−→ 2.

We define

rmin,f :=
δ − 1

δ − 1
f

. (3.22)

31

3. Preparation

Using f = 2 yields the smallest bound for the code rate, which will be used for
comparison later on. Note that this is the worst case for lifting. With this simplified
case where m = n and q → ∞, i.e. RD = kD/n, RL = kL/(2n) (for equal overall
rates we therefore have kD = 1

2
kL), we get

kL

n

(3.22)
≥ δ − 1

δ − 1/2
:=rmin,2 (3.23)

=⇒ RL = RD ≥
1

2

δ − 1

δ − 1/2
=

δ − 1

2δ − 1
. (3.24)

This implies, that e.g. for the case δ = 2, which is the intuitive view on the problem,
one can say that DLNC supersedes lifting for overall rates greater 1/3.

3.3. Considerations on Lifted Interleaved Gabidulin
Codes

Interleaved Gabidulin codes are obtained by aligning several Gabidulin codewords
vertically or horizontally. We refer to the vertical concatenation and restrict to ho-
mogeneous interleaved codes, where all concatenated codes have the same dimension,
for simplicity. The definition uses the notation introduced in [Wac13, Def. 2.17].

Definition 3.3.1 (Homogeneous Interleaved Gabidulin codes [Wac13])
Let g0, g1, . . . , gn−1 ∈ Fqm be fixed elements and linearly independent over Fq. A
linear vertically homogeneous interleaved Gabidulin code G[n, k, L] over Fqm of length
n ≤ m and dimension k ≤ n is then the following set

G[n, k, L] :=








f (1)(g0) f (1)(g1) . . . f (1)(gn)
f (2)(g0) f (2)(g1) . . . f (2)(gn)

...
...

...
f (L)(g0) f (L)(g1) . . . f (L)(gn)


 :f(x) ∈ Lqm [x],

degq f
(i)(x) < k ∀i ∈ {1, . . . , L}

}
.

L is called interleaving order.

These codes represent the equivalent of interleaved RS codes in rank metric. Inter-
leaving establishes the possibility to decode beyong half the minimum distance drk

of the code.

32

3.3. Considerations on Lifted Interleaved Gabidulin Codes

0

01

1

n

n
kI

drk,I − 1

L times

m m m

. . .

. . .

Figure 3.5.: Codeword of a lifted interleaved Gabidulin code G[n, kI, L] over Fqm of
length n and interleaving order L, where the interleaved Gabidulin codeword is
transposed before lifting. The gray parts indicate the concatenated codewords

(f (i)(g0), f (i)(g1), . . . , f (i)(gn)) of the underlying Gabidulin code.

Theorem 3.3.2 [Ove07, Theorem 3.9]
Let G[n, k, L] be an interleaved Gabidulin code. Then for error rank

ε ≤ L

L+ 1
(n− k) (3.25)

the probability that a receive word is decoded falsely is upper bounded by

Prfail ≤ 1−
(

1− 4

qm

)(
qmε − qmL

qmε

)
,

as given in [Ove07, equation (12)] for L� n− k.

The success probability is high for reasonably large q and m. As one can see, for
L→∞ one can approach the minimum distance as decoding bound. What must be
considered, is that the statement in (3.25) only holds for L� n−k = drk−1, where
drk is the minimum distance of the rank-metric code. This means that for high L
we also need sufficiently large drk, i.e. for fixed n lower code rates are regarded. In
order to use interleaved codes in RLNC the codewords are transposed and lifted.
Figure 3.5 illustrates such a codeword.

The procedure of interleaving has the advantage, that the rate loss due to lifting is
reduced, since the identity matrix is sent once for several codewords. Furthermore,
since the computational expense grows with the field size, it is more efficient to
decode several codewords in Fqm than a respective non-interleaved Gabidulin code-
word over FqLm (compare [SKK08, Appendix E]). The problem with it is that the
length of a packet is considerably longer, so that there might be buffer problems at
inner nodes that have to store all incoming packets before combining them and the
latency increases.

Most important, if the packet length is fixed, then the code length is relatively small
compared to the packet size, i.e. n� n+mL. It is especially relatively smaller than

33

3. Preparation

a lifted non-interleaved code, see

n

n+mL
<

n

n+m
for L > 1.

According to Shannon’s work [Sha48], in a probabilistic channel the performance of
a code is better the longer the code. Hence we can conclude that for a given packet
length, the usage of interleaving might be disadvantageous. Nevertheless there are
applications, where the packet size is not restricted, in such scenarios interleaving
can improve the error correction capabilities without limiting the code length.

On the other hand, when using an interleaved Gabidulin code in a DLNC scheme,
where we have the same packet size, the relative code length is larger than the one
of the lifted code, due to the identity matrix of the lifting construction. Say we
have interleaving length L for both schemes. Then the lifted interleaved codeword
consists of L+1 submatrices, L of lengthm and one of length n. Since the interleaved
Gabidulin code used for DLNC shall have the same interleaving order L, its code
length nD is upper bounded by

nD,max = mD =
n+mL

L
=
n

L
+m > m = nmax ≥ n.

This upper bound is larger than the one for the lifted Gabidulin code, where n ≤ m.
Therefore we can assume, that in a probabilistic channel the interleaved Gabidulin
with DLNC scheme performs better than the lifted interleaved Gabidulin code.
These considerations show that interleaved Gabidulin codes in combination with
DLNC might do better compared to lifted interleaved Gabidulin codes in RLNC
scenarios.

34

4. Static Networks

The word static means, that in this chapter the channel matrix A is assumed to
stay the same between generations.

Definition 4.0.1 (Static Network [SCFH13])
Let AiX i + Bi define a RLNC network in generation i with channel matrix Ai,
transmit matrix X i and error matrix Bi. Then the network is called static if the
channel matrix Ai is constant over all generations, i.e.

∆Ai = Ai −Ai−1 = 0.

The main goal of this work is to acquire knowledge about the nature of lifting and
DLNC by probabilistic analysis. Therefore we need some preliminaries in this topic
as well as others.

4.1. Preliminaries

Since we assume, that the rank of the error matrix is binomially distributed (cf.
Section 2.3.2), we introduce some properties of the Binomial distribution here. Fig-
ure 4.1 displays some examples of the Binomial Distribution. A property, we make
vast use of, is the following. The Binomial Distribution of the sum of two random
variables X1 ∼ Bin (n1, p) and X2 ∼ Bin (n2, p) is calculated as follows. Let τ ∈ N,
where τ ≤ n1 + n2, then

Pr {X1 +X2 ≤ τ} =
τ∑

k=0

(
n1 + n2

k

)
pk(1− p)n1+n2−k.

In the case n1 = n2 = n we therefore have

X1, X2 ∼ Bin (n, p) =⇒ X1 +X2 ∼ Bin (2n, p) . (4.1)

In several upcoming proofs we need the concept of the Kullback-Leibler Divergence.

35

4. Static Networks

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

x

f X
(x
)

n = 20, p = 0.2
n = 20, p = 0.4

Figure 4.1.: Probability density function of Binomial Distributions, X ∼ Bin (n, p).
The shown parameters are not realistic for communication networks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

τ̂

D
K
L
(τ̂
||p

)

p = 0.05
p = 0.1
p = 0.15

Figure 4.2.: Kullback-Leibler divergence for τ̂ ∈ (p, 1).

Definition 4.1.1 (Kullback-Leibler Divergence [KL51])
Let x and p be the success probabilities of Ber(x) and Ber(p) distributed random
variables. Then

DKL(x||p) = x ln
x

p
+ (1− x) ln

1− x
1− p

is called Kullback-Leibler divergence (or relative entropy) of two Bernoulli trials with
probabilities x and p.

Figure 4.2 shows the Kullback-Leibler divergence for τ̂ > p. The Kullback-Leibler
divergence is used in the following two bounds for the binomial distribution.

36

4.2. Simplified Comparison

Lemma 4.1.2 [Hoe63, Ash67]
Let X ∼ Bin (n, pB) and τ > npB. Then

Pr {X ≥ τ} ≤ exp
{
−nDKL

(τ
n

∣∣∣∣pB

)}
(<)

and

Pr {X ≥ τ} ≥ 1√
2n

exp
{
−nDKL

(τ
n

∣∣∣∣pB

)}
. (>)

The first bound can be derived by the Chernoff bound and is known as Chernoff-
Hoeffding Theorem. See [?] inequality (2.1) and recall, that the sum of Bernoulli-
distributed random variables is binomially distributed. Combining inequality (4.7.2)
from [Ash67] with 2−x ≥ e−x ∀x ≥ 0 and x(1 − x) ≤ 1

4
for p < x < 1 leads to

the second bound. Moreover we need the Lambert-W function (also called omega
function or product function) introduced in [Lam58], i.e. the special case regarded
in [Eul83], cf. also [CGH+96].

Definition 4.1.3 (Lambert-W function [Lam58, Eul83])
The Lambert-W function W : C → C is defined to be the inverse of the function
f(a) = a · ea = z, meaning that

W(z) = a = f−1(a · ea) ∀a, z ∈ C.

Note that it has several branches. This work is concerned with branches defined
for real numbers. There are two real-valued branches, these are the main branches
W0(z) ≥ −1 and W−1(z) ≤ −1. They are defined for z ≥ −e−1, besides W−1 is
only defined for non-positive numbers. Furthermore the function is two-valued for
z ∈ [−e−1, 0]. Also important to note is that W−1(z) → −∞ for z → 0−. This is
used later on. Another important property is that W0(−e−1) = W−1(−e−1) = −1.
The two main branches of the Lambert-W function are depicted in Figure 4.3.

4.2. Simplified Comparison

The failure probabilities, to be considered, depend on the statistics of the rank of
the error matrices. When considering the rank of an error matrix, we regard it as a
random variable (RV). In the following we use these substitutions: R1 = rk (Bi−1),
R2 = rk (Bi) and R+ = rk (Bi) + rk (Bi−1). Be aware that in the lifting case only
one generation is regarded and therefore it is not necessary to distinguish between

37

4. Static Networks

−e−1 0 1 2 3 4
−4

−2

−1

0

2

z

W
(z
)

W−1(z)
W0(z)

Figure 4.3.: Both main branches of Lambert-W function for real values z.

R1 and R2. Nevertheless both random variables are used in later proofs, which is
why we introduced this notation.

At a first glance (with some neglections), DLNC has like DPSK on average to fight
with twice the amount of errors, since the received matrix depends on two error
matrices, i.e. the error rank is assumed to consist of the terms depicted in Figure 4.4.

rk (Ei) ≤ rk
(
LI>U

)
︸ ︷︷ ︸

=0

+ rk (Bi−1) + rk (Bi) + rk (∆Ai)︸ ︷︷ ︸
=0

Figure 4.4.: Intuitive view on the error rank in DLNC, cf. equation (2.20), where
rk (∆Ai) and rk

(
LI>U

)
are assumed to be zero.

Therefore we will at first regard, how the sum of two equally distributed random
variables behaves, compared to only one of it. In the best case for lifting it is possible
to decode if rk (Bi) ≤ τ = b(drk,L−1)/2c, a decoding failure will consequently appear
if the inequality is not fulfilled. In the case of DLNC, when we set rk (∆Ai) = 0
(due to the assumption of a static network) and rk

(
LI>U

)
= 0 (since it is usually

quite small) from (2.20), what stays is

rk (Ei) ≤ rk (Bi−1) + rk (Bi) ≤
⌊
drk,D − 1

2

⌋
= τD.

The failure probability is therefore determined by the probability that the sum of
the rank of the error matrices Bi and Bi−1 is greater than the respective correction

38

4.2. Simplified Comparison

radius τD. Due to the naive assumption of the double amount of errors, we expect
the error correction radius of DLNC τD = 2τ to be twice the size of the correction
radius of the lifted Gabidulin code. All in all the question is under which conditions
the statement

Pr {R+ > 2τ} < Pr {R2 > τ}
holds. In order to be able to apply the bounds (<) and (>) as they are on the
probabilities we also include the error correction radius in the failure probabilities,
i.e. we compare

Pr {R+ ≥ 2τ} < Pr {R2 ≥ τ} . (4.2)

Only the case τ > E[R2] = npB (n and pB defined as in Section 2.3.2) is regarded, as
the number of correctable errors is always chosen larger than the expected number
of errors. Otherwise the performance would be bad. Furthermore we define τ̂ := τ/n
as normed version of the error correction radius τ of the lifted Gabidulin code. Note
that there is a direct link between τ̂ and code rate r if MDS or MRD codes are used:

r =
k

n
=
n− d+ 1

n
= 1− 2τ

n
= 1− 2τ̂ ⇐⇒ τ̂ =

1

2
(1− r). (4.3)

As a first step for the proof of the statement (4.2) above we introduce the following
lemma.

Lemma 4.2.1
Let τ̂ > pB and DKL(τ̂ ||pB) ≥ c > 0 ∧ c ≤ e−1. If n > − 1

2c
W−1(−c), where W−1(z)

is the −1-st branch of the Lambert-W function, then

exp
{
−nDKL

(
τ̂
∣∣∣∣pB

)}
<

1√
2n
.

Proof:
Since n > − 1

2c
W−1(−c) we know that

∃n0 ≤ n : n0 = − 1

2c
W−1(−c), (4.4)

where n0 ∈ R, since c ≤ e−1 and n0 > 0 due to c > 0. Equation (4.4) is equivalent
to

W−1(−c) = − 2cn0

Def. W⇐===⇒ −c = − 2cn0e−2cn0

⇐⇒ 1

2n0

= e−2cn0

⇐⇒ 2n0 = e2cn0 ,

39

4. Static Networks

0 2 4 6 8 10 12 14 16 18 20 22 24
−20

0

20

40

60

80

100

n

f
(n
)
=

e2
cn

−
2n

c = 0.1
c = 0.15
c = 0.3
roots n0

Figure 4.5.: Function f(n) and its roots n0 for several values of c.

implying that n0 is a root of the function f(n) = e2cn− 2n. Its derivative calculates
to

d
dn
f(n) = 2ce2cn − 2 = 2(ce2cn − 1).

It is f(0) = 1 and f ′(0) = 2c− 2 ≤ 2e−1 − 2 < 0 but also

d
dn
f(n) > 0⇐⇒ e2cn >

1

c

⇐⇒ n > − 1

2c
ln(c).

Hence we have two roots ∈ R, where the smaller one ∈ (0, 1) is given by W0 and
the other one by W−1. Defining n1 by d

dnf(n)|n=n1 = 0, i.e. the abscissa of the
minimum, we have for n0 ≥ n1:

n > n0 = − 1

2c
W−1(−c) =⇒ e2cn > 2n

⇐⇒ e−2cn <
1

2n
.

The function f(n) and its root n0 are illustrated for example values of c in Figure 4.5.
Since the square root is strictly monotonically increasing, applying the square root

40

4.2. Simplified Comparison

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35
0

100

200

300

400

500

f(n) > 0

c

n
(c
)

n0 = −W(−c)/(2c)

Figure 4.6.: Lower bound on n : f(n) > 0 dependent on c. The grey region fulfills
the condition.

preserves the relation and therefore

e−2cn <
1

2n
c≤DKL(τ̂ ||pB)⇐=======⇒ e−nDKL(τ̂ ||pB) ≤ e−cn <

1√
2n0

.

The respective conditions on n0 as a function of c can be found in Figure 4.6. Using
this lemma, we can now state the first theorem concerning the failure probabilities.
The main outcome of the theorem is that one has to choose n large enough for the
failure probability of DLNC to be smaller than the one of lifted Gabidulin code. As
one can see in Figure 4.7, the condition yields sensible n. Further analysis is given
right below the theorem.

Theorem 4.2.2
Let R+ := R1+R2 be the sum of two independent random variables, R1, R2 ∼ Bin (n, pB).
With the restrictions from Lemma 4.2.1, i.e. τ > npB, τ̂ := τ

n
, c := min {e−1,DKL(τ̂ ||pB)}

and n > 1
2c

W−1(−c), it is

Pr {R+ ≥ 2τ} < Pr {R2 ≥ τ} .

41

4. Static Networks

0.9 0.8 0.7 0.6̄ 0.6 0.5
r

0.05 0.1 0.15 0.2 0.25
0

200

400

τ̂

n
m
in

=
d−

W
−
1
(−
c)
/(

2c
)e

pB = 0.05
pB = 0.1
pB = 0.15

Figure 4.7.: Depiction of the lower bound on n for several values of pB. The
constant is chosen to be c := min {e−1,DKL(τ̂ ||pB)}. rmin,2 = 0.6̄, i.e. RD ≥ RL is
only partly regarded, as indicated by the transparency. W−1(·) is the −1st branch

of the Lambert-W function.

Proof:
Regard the two bounds (<) and (>) from page 37. Since R+ is distributed as
Bin (2n, pB), cf. (4.1), we get

Pr {R+ ≥ 2τ}
(<)
≤ exp

{
−2nDKL

(
2τ

2n

∣∣∣∣pB

)}

= exp
{
−nDKL

(τ
n

∣∣∣∣pB

)}2

= exp
{
−nDKL

(τ
n

∣∣∣∣pB

)}

︸ ︷︷ ︸
Lemma 4.2.1

< 1√
2n

· exp
{
−nDKL

(τ
n

∣∣∣∣pB

)}

<
1√
2n

exp
{
−nDKL

(τ
n

∣∣∣∣pB

)}

(>)
≤ Pr {R2 ≥ τ} .

The lower bound on n, we call it nmin, is illustrated in Figure 4.7. One can see that,
for a given pB, one can find an n such that the inequality is solved by increasing τ
and n by the same factor, i.e. fix τ̂ and increase n. Note that τ̂ always refers to the
correction radius of the lifted Gabidulin code. The closer τ gets to a considered pB,
the larger n must be chosen if one wants to guarantee a performance improvement
of DLNC against lifting. For τ̂ � pB ⇒ DKL(τ̂ ||pB) ↑. Since W−1(−z) /∈ R for
z > e−1, the constant c is chosen to be c := min {e−1,DKL(τ̂ ||pB)} , which means for

42

4.3. Additional Consideration of the Receive Rank Deficiency Matrix

τ̂ → 1 (where DKL(τ̂ ||pB) > e−1 at some point), nmin becomes constant over τ̂ . This
region is not reached, due to the fact, that the minimum distance of a code cannot
exceed the code length. This causes a condition for the minimum distance used in
the code of DLNC

drk,D = 2τD + 1 ≤ n
τD=2τ
=⇒ 2τ̂ ≤ 1

2
− 1

2n

⇐⇒ τ̂ ≤ 1

4
− 1

4n

and therefore a constraint for the abscissa. Note that n ≥ τ is necessary for the
definition of the Kullback-Leibler divergence, nevertheless this is satisfied by the code
design, because otherwise the minimum distance drk,L > n and hence contradicts
its definition. Since δ = 2, the minimum code rate for the restriction RD ≥ RL

(cf. Lemma 3.2.2) is rmin,2 = 2
3
. The overall rate is accordingly RL = 1

3
, see also (3.24)

on p. 32.

4.3. Additional Consideration of the Receive Rank
Deficiency Matrix

The additive error Ei, derived for the AMC in DLNC by Seidl [SCFH13], is calcu-
lated by

Ei = LI>USi − Y +
i−1Bi−1Si + Y +

i−1Bi.

Due to calculation rules for the rank of a matrix, cf. equations (2.2) and (2.3) from
page 4, the error rank rk (Ei) has been approached by

rk (Ei) ≤ rk (Bi−1) + rk (Bi) ,

since Si and Y +
i−1 have full rank (cf. [SCFH13]). Up to now LI>U had been neglected.

Now we consider this part. Regard the upper bound of rk
(
LI>U

)
as introduced

in (3.5) on p. 24:

rk
(
LI>U

)
≤ n− rk (Ai) + rk (Bi) .

If we assume rk (Ai) = n, we can upper bound rk
(
LI>U

)
≤ rk (Bi). The considera-

tion of rk
(
LI>U

)
therefore leads to a supplementary addend

rk (Ei) ≤ rk (Bi) + rk (Bi−1) + rk (Bi) = rk (Bi−1) + 2 rk (Bi) . (4.5)

Consequently all components of the error rank of DLNC in the static case are con-
sidered and rk

(
LI>U

)
is approximated, as seen in Figure 4.8.

From Theorem 4.2.2 we can deduce

43

4. Static Networks

rk (Ei) ≤ rk
(
LI>U

)
︸ ︷︷ ︸
≤rk(Bi)

+ rk (Bi−1) + rk (Bi) + rk (∆Ai)︸ ︷︷ ︸
=0

Figure 4.8.: Static case, where rk
(
LI>U

)
≤ rk (Bi) is applied.

Corollary 4.3.1
Consider the following random variables E ≤ R1 + 2R2, where R1, R2 ∼ Bin (n, pB).
Let τ > npB, τ̂ = τ

n
, c := min {e−1,DKL(τ̂ ||pB)} and n > − 1

2c
W−1(−c). Then

Pr {E ≥ 4τ} < Pr {R2 ≥ τ} .

Proof:
Since E ≤ R1 + 2R2 ≤ 2(R1 +R2) = 2R+ with R+ ∼ Bin (2n, pB), we have

Pr {E ≥ 4τ} ≤ Pr {2R+ ≥ 4τ} = Pr {R+ ≥ 2τ} .
Then because of Lemma 4.2.1 and Theorem 4.2.2, we can state

Pr {E ≥ 4τ} < Pr {R2 ≥ τ} if n > −W−1(−c)
2c

,

for 0 < c ≤ DKL(τ/n||p). �

Thus we have proved, that DLNC exceeds RLNC with lifting for a factor of δ = 4
between the error correction radii, which implies a higher correction radius for an
overall rate RL ≥ 3/7 (according to equation (3.24) on page 32). This bound for RL

can be improved by reducing δ. First we introduce another lemma.

Lemma 4.3.2
Let α ∈ (0, 1], x2 > x1 > npB, further c1 := DKL

(
x1
n

∣∣∣∣pB

)
and

c2 := min

{
DKL

(x2

n

∣∣∣∣pB

)
, c1 +

e−1

α2

}
.

If n > W−1(α2(c1 − c2))/(2(c1 − c2)), then

exp
{
−nDKL

(x2

n

∣∣∣∣pB

)}
<

α√
2n

exp
{
−nDKL

(x1

n

∣∣∣∣pB

)}
.

Proof:
Analogous to the proof of Lemma 4.2.1, we have

n >
1

2(c1 − c2)
W−1(α2(c1 − c2)) =⇒ e2n(c2−c1) >

2n

α2
,

44

4.3. Additional Consideration of the Receive Rank Deficiency Matrix

where n ∈ R due to the condition α2(c2− c1) ≤ e−1, further n > 0 since α2 > 0 and
c2 > c1, which emanates from x2 > x1 and the monotonicity of the Kullback-Leibler
divergence. By repositioning the terms analogous to the proof of Lemma 4.2.1 we
obtain

exp
{
−n
[
DKL

(x2

n

∣∣∣∣pB

)
−DKL

(x1

n

∣∣∣∣pB

)]}
≤ e−n(c2−c1) <

α√
2n
,

since c2 ≤ DKL

(
x2
n

∣∣∣∣pB

)
, from which the claim emerges directly. �

Note that the smaller α, the larger n must be chosen. With this lemma, we can
state the following theorem. Again it is shown, that for large enough n and suitable
εδ (especially not too small) the failure probability of DLNC is smaller than the
one of the lifted Gabidulin code. The new condition can be observed in Figure 4.9.
Further analysis is given below the theorem.

Theorem 4.3.3
Let R1, R2 ∼ Bin (n, pB). Further δ > 3, 0 < εδ ≤ (δ− 3)τ/3, c1 := DKL

(
τ
n
||pB

)
and

c2 := min{DKL

(
τ+εδ
n
||pB

)
, c1 + 4e−1}.1 If n > W−1((c1−c2)/4)

2(c1−c2)
, then

Pr {R1 + 2R2 ≥ δτ} < Pr {R2 ≥ τ} .

Proof:
The proof is in Appendix A.1, p. 83. The idea of the proof is, to utilize the arguments
of Theorem 4.2.2 on 2 Pr {R2 ≥ τ + εδ} instead of Pr {R+ ≥ τ}, which we get by
splitting the probability Pr {R1 + 2R2 ≥ δτ}, using the law of total probability. �

Considering rk (Bi) = R2 and rk (Bi−1) = R1, this theorem states that DLNC is
better than lifting if εδ is chosen reasonably, i.e. not too small, and n large enough,
where the lower bound on n is given by the Lambert W-function as in the conditions.
This time, there is again the upper bound on the argument of the Lambert-W
function, implying c2 − c1 < 4e−1. Similar to before, we choose

c1 := DKL

(τ
n

∣∣∣∣pB

)
∧ c2 := c1 +

4

e
,

for the case DKL

(
τ+εδ
n

∣∣∣∣pB

)
> DKL

(
τ
n

∣∣∣∣pB

)
+ 4

e
, which occurs for εδ → τ .

In Figure 4.9 one can see the lower bound on n for a certain pB. It also shows
that for a higher code rate r (especially τ̂ → pB) or lower choices of δ, n has to
be chosen larger. Be aware, that δτ̂ ≤ 1

2
− 1

2n
, since the two procedures cannot

be compared if the minimum distance of DLNC drk,D = 2δτ + 1 exceeds the code
length n. Therefore one can see different dropouts before τ̂ = 0.15. Furthermore

1The last definition guarantees c2 − c1 ≤ 4e−1.

45

4. Static Networks

0 5 · 10−2 0.1 0.15
0

100

200

300

400

500

R = 0.45
δ = 1.83̄

R = 0.6
δ = 4

τ̂

n
m
in

=
dW

−
1
((
c 1
−
c 2
)/
4
)

2
(c

1
−
c 2
)
e δ = 3.3

δ = 3.6
δ = 4
simulations

1 0.9 0.8 0.7
r

Figure 4.9.: Lower bound on n for several factors δ. Here τ̂ = τ
n
, pB = 0.05,

c1 := DKL

(
τ
n

∣∣∣∣pB

)
and c2 := min

{
c1 + 4

e
,DKL

(
τ+εδ
n

∣∣∣∣pB

)}
, where εδ =

(
δ
3
− 1
)
τ .

The simulations (indicated by the marks) have been executed for n = 40. RD ≥ RL

is only assumed for non-transparent parts (for δ = 3.3 the restriction is not fulfilled
at all).

τ+εδ ≤ n, otherwise the argument of the Kullback-Leibler divergence does not fulfill
its constraints. Nevertheless this case only occurs only for high εδ, respectively δ
and therefore does not restrict the regions of our interest, see condition εδ ≤ (δ−3) τ

3

from the theorem, which also yields

δ ≥ 3
(

1 +
εδ
τ

)
, (4.6)

i.e. we achieve a smaller δ < 4 ⇐⇒ εδ < τ/3. The condition also implies δ
!
> 3,

otherwise εδ ≤ 0, which is not allowed.

According to Lemma 3.2.2 (see p. 30), we can use rmin,f from equation (3.22) as
bound in the plot, when restricting to RD ≥ RL.2 The other direction, i.e. getting δ
from a minimum code rate, is done by

rmin,f =
δmin − 1

δmin − 1
f

⇐⇒ δmin =
1− rmin,f

f

1− rmin,f

, (4.7)

2This is only partly considered in Figure 4.9, i.e. r < rmin,2, where the plots are transparent.

46

4.4. Lifting vs. DLNC in Static Networks

where f is defined as in (3.21) on page 31. By the claim of the theorem, the lower
bound of the overall rate from (3.24) asymptotically reduces to

RL ≥
δ − 1

2δ − 1

(4.6)
≥ 2 + 3 εδ

τ

5 + 6 εδ
τ

εδ→0−−−→ 2

5
.

Note that the bound for rk
(
LI>U

)
is rather rough, therefore the lower bound on n

is not tight. In the following result we can tighten the bound by keeping rk
(
LI>U

)

as it is.

4.4. Lifting vs. DLNC in Static Networks

Finally all terms (cf. Figure 4.10) are regarded in the error rank of the DLNC
procedure. From Section 2.3.3 we know that in the lifting case it must be

rk (Ei) ≤ rk
(
LI>U

)
+ rk (Bi−1) + rk (Bi) + rk (∆Ai)︸ ︷︷ ︸

=0

Figure 4.10.: All components of the error rank in the static case are considered.

ds(〈X i〉, 〈Y i〉) = 2 rk (Bi) + n− rk (Y i) ≤ drk,L − 1

for decodability (cf. Theorem 2.3.5). Here we indexed the matrices with the respec-
tive generation in order to be able to compare to DLNC later. On the other hand
for DLNC we have due to (3.4):

rk
(
LI>U

)
= n− rk (Y i)

and therefore the following condition must hold

2 rk (Ei) ≤ 2 (rk (Bi−1) + rk (Bi) + n− rk (Y i)) ≤ drk,D − 1.

One can see, that the RRDM rk
(
LI>U

)
= n− rk (Y i) appears in both formulas. We

introduce ρ, with drk,D = ρdrk,L. It shall be the equivalent to δ from before, i.e.

2τD + 1 = ρ(2τ + 1)

⇐⇒ τD = ρτ +
ρ− 1

2
=

(
ρ+

ρ− 1

2τ

)
τ = δτ. (4.8)

47

4. Static Networks

Therefore ρ can be calculated from δ and τ by

ρ =
2δτ + 1

2τ + 1

τ↑≈ δ.

As before we define R+ := rk (Bi−1) + rk (Bi) = R1 +R2. Now we want to prove:

Pr
{
R+ + rk

(
LI>U

)
≥ ρ

2
drk,L

}
≤ Pr

{
2 rk (Bi) + rk

(
LI>U

)
≥ drk,L

}
. (4.9)

The probabilities represent the failure probabilities of the two procedures. With the
next theorem we find a tighter lower bound on n than in Theorem 4.3.3, for which
the DLNC scheme supersedes the lifted Gabidulin scheme. Analysis and illustration
of the bound can be found below the theorem and in Figure 4.11.

Theorem 4.4.1
Let R+ = R1 + R2 be the sum of two binomially distributed random variables, i.e.
R1, R2 ∼ Bin (n, pB), where npB <

drk,L
2

<
(
ρ
2
− 1
)
drk,L +1. Let rk

(
LI>U

)
be another

random variable and α = Pr
{

rk
(
LI>U

)
≤ drk,L − 1

}
. Further c1 := DKL

(
drk,L

2n

∣∣∣∣pB

)
,

c2 := min
{

DKL

(
1
n

((
ρ
2
− 1
)
drk,L + 1

) ∣∣∣∣pB

)
, c1 + e−1

α2

}
and n > W−1(α2(c1−c2))

2(c1−c2)
. Then

Pr
{
R+ + rk

(
LI>U

)
≥ ρ

2
drk,L

}
< Pr

{
2R2 + rk

(
LI>U

)
≥ drk,L

}
.

Proof:
The proof is given in Appendix A.2 (on p. 85). It resembles the proof of Theo-
rem 4.3.3 with the difference, that the law of total probability is applied on each
side of the inequality, leading to the same addend on both sides, which can therefore
be canceled. The rest is then application of Lemma 4.3.2. �

For the plots in Figure 4.11 we use the abbreviation d̂ = drk,L/n as equivalent for τ̂ .
Regard that there is a connection between d̂ and code rate r:

d̂ =
drk,L

n
MRD code
=======

n− kL + 1

n
= 1− r +

1

n
,

and the connection depends on n. Looking at it from the other side we find that r
is a function of d̂ and n. We define

r(n) = 1− d̂+
1

n

n→∞−−−→ 1− d̂. (4.10)

The approximation for n→∞, which is a lower bound on r(n), is used in the plots.
Furthermore, we approximate x̂1 =

(
ρ
2
− 1
)
d̂ + 1

n
by x̃1 =

(
ρ
2
− 1
)
d̂, which is a

lower bound, for the plots. So the actual nmin is slightly smaller. It yields a familiar

48

4.4. Lifting vs. DLNC in Static Networks

0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6
r(∞) = 1− d̂

simulations

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

100

200

300

400

500

R = 0.45
ρ = 1.6429

R = 0.6
ρ = 3.4

d̂

n
m
in
=
dW

−
1
(α

2
(c

1
−
c 2
))

2
(c

1
−
c 2
)
e

ρ = 3.15, α = 0.5
ρ = 3.15, α = 1
ρ = 3.25, α = 0.5
ρ = 3.25, α = 1
ρ = 3.4, α = 0.5
ρ = 3.4, α = 1
simulations

Figure 4.11.: Lower Bound for n according to Theorem 4.4.1 for several ρ and α
with parameters pB = 0.05, c1 = DKL

(
1
2
d̂
∣∣∣∣pB

)
, c2 = min

{
c1 + 1

α2e
,DKL

(
x̃1

∣∣∣∣pB

)}
,

where x̃1 =
(
ρ
2
− 1
)
d̂ ≤

(
ρ
2
− 1
)
d̂+ 1

n
. r(∞) in the upper x-axis is a lower bound

for the code rate that can be achieved at a specific d̂, cf. (4.10). Note that
RD ≥ RL is not regarded in the transparent part of the curves.

49

4. Static Networks

0 2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

r

P
r
{n
−

rk
(A

i)
+
rk

(B
i)
≤

r}

n = 10, q = 8
n = 10, q = 256
n = 40, q = 8
n = 40, q = 256
n = 100, q = 8
n = 100, q = 256

Figure 4.12.: 0.5-Quantiles of the lower bound of the CDF of rk
(
LI>U

)
as given

in (3.6) on p. 25 for q = 8. The respective relative ranks are r1 = r
n

= 1
10

= 0.1,
r2 = 3

40
= 0.075, r3 = 6

100
= 0.06. Here pB = 0.05.

behavior, the smaller α and the smaller ρ, the larger one has to choose n. As usual,
when τ̂ approximates pB, n must be larger too. Here ρ · d̂ ≤ 1 must hold, for lifting
and DLNC to be comparable. The depicted simulations are the same as before, but,
according to our choice of kL and kD, we calculated ρ instead of δ. Figure 3.1 on
page 25 shows that for d̂ > 0.1 the assumption α = Pr

{
rk
(
LI>U

)
≤ drk,L − 1

}
≥ 0.5

is a suitable assumption. The same figure is shown in more detail as Figure 4.12,
where the approximate median, i.e. 0.5-quantile of some of the CDFs is also drawn.

Due to the codomain of the Lambert-W function α2(c2 − c1) ≤ e−1 must hold, thus
c2 is chosen to be

c2 = min

{
c1 +

1

α2e
,DKL

(
1

n

((ρ
2
− 1
)
drk,L + 1

) ∣∣∣∣pB

)}
.

One should note, that from the restrictions in Theorem 4.4.1, we get a constraint
for ρ:

drk,L

2
<
(ρ

2
− 1
)
drk,L + 1

⇐⇒ ρ > 3− 2

drk,L

, (4.11)

i.e. the smaller drk,L, the smaller one can choose ρ. For high values of drk,L, ρ can
be chosen close to and equal to 3, ρ = 3 yields δ = 3 + 1

τ
. By defining f as in

50

4.4. Lifting vs. DLNC in Static Networks

equation (3.21), see Section 3.2 p. 31, for RD ≥ RL, the minimal ρ necessary can be
calculated from code rate r by

rmin,f
(3.22)
=

δ − 1

δ − 1
f

(4.8)
=

ρmin + ρmin−1
2τ
− 1

ρmin + ρmin−1
2τ
− 1

f

:=rρ (4.12)

⇐⇒ ρmin =
1−

1
2τ

+ 1
f

1
2τ

+1
rmin,f

1− rmin,f

. (4.13)

Be aware, that due to (4.11), the code rate must fulfill

rmin,f >
2(1− 1

2τ+1
)

3−
1
2τ

+ 1
f

1
2τ

+1
− 2

2τ+1

for a specified τ . The respective overall rate with constraints m = n and q →∞ is

RL
(3.24)
=

δ − 1

2δ − 1
=

1

2

ρmin + ρmin−1
2τ
− 1

ρmin + ρmin−1
2τ
− 1

f

ρ=3
=

2 + 1
τ

5 + 2
τ

τ↑→ 2

5
,

which is the same rate bound as in the result before. Note that, for high code rates
and small n, the correction radius τ cannot be neglected. It is also important to
note, that Figure 4.11 does not fully comply with the condition RD ≥ RL, i.e. r
contradicts rmin,2 in the transparent areas.

However, one can see that DLNC exceeds lifting in this context again, when the
parameters are chosen appropriately.

51

52

5. Slowly Varying Networks

Finally, we come to the part that justifies the term “slowly-varying” in the title, i.e.
we regard the time-varying case. While [SCFH13] stuck to an invariant network,
[PCF+15] allowed some changes in the network between generations. The chang-
ing network can be represented by the so-called channel deviation ∆Ai (cf. Defi-
nition 2.4.1). In order to investigate time-varying networks, we therefore have to
examine rk (∆Ai) and allow especially rk (∆Ai) > 0.

5.1. Examination of the Channel Deviation

In Section 2.4.1 we have already described some properties of the channel deviation,
as e.g. an upper bound and arising from that bound its PMF. One can also calculate
the Probability Generating Function (PGF) of the upper bound of random variable
rk (∆Ai), which we denote by rk (∆Ai).

Lemma 5.1.1
Let L ∼ Bin (|N |, p∆N), Wj

i.i.d.∼ Bin (|N |, pw) and rk (∆Ai) =
∑L

j=1Wj be random
variables, |N |, pw and p∆N as defined in Section 2.4.1, cf. Table 2.3. Then the PGF
of rk (∆Ai), we call it Grk(∆Ai)

, is given by

Grk(∆Ai)
(z) =

(
1− p∆N + p∆N (1− pw + pwz)|N |

)|N |
. (5.1)

Proof:
For a discrete random variable X the PGF is defined to be

GX(z) := E[zX] =
∞∑

x=0

fX(x)zx. (5.2)

For definition and properties of the PGF see [Spo14, Section 5.2]. One important
property of the PGF of the sum of L independent identically distributed random
variables Xi ∼ X is

G∑L
i=1Xi

(z) = (GX(z))L. (5.3)

53

5. Slowly Varying Networks

With these formulas we can derive

G∑L
i=0W

(z)
(5.2)
=== E

[
z
∑L
i=0W

]

law of total expectation
============== E

[
E
[
z
∑L
i=0W |L

]]

(5.3)
=== E

[
(GW (z))L

]

(5.2)
=== GL(GW (z)).

Since the PGF of a binomial random variable X ∼ Bin (n, p) reads

GX(z) = (1− p+ pz)n,

it is

Grk(∆Ai)
(z) =

(
1− p∆N + p∆N (1− pw + pwz)|N |

)|N |
.

�

The knowledge about the PGF is useful for the calculation of i-th moment of a
random variable, since via the Moment Generating Function (MGF) MX(t) it is

E
[
X i
]

=
di

dti
MX(t)

∣∣∣
t=0

=
di

dti
GX(et)

∣∣∣
t=0
.

Therefore we have as expected value of rk (∆Ai)

EA := E
[
rk (∆Ai)

]
=

d
dt

(
1− p∆N + p∆N

(
1− pw + pwet

)|N |)|N | ∣∣∣
t=0

= |N |
(

1− p∆N + p∆N
(
1− pw + pwet

)|N |)|N |−1

·

· p∆N · |N |
(
1− pw + pwet

)|N |−1 · pwet
∣∣∣
t=0

= |N |2p∆Npw,

which is the same as the multiplication of the expected value of random variable L
and the one of random variable W . Using the Markov bound, we obtain

Pr {rk (∆Ai) > εA} ≤ Pr
{

rk (∆Ai) > εA

}
≤ EA

εA
=
|N |2p∆Npw

εA
. (5.4)

With higher moments and for example the Chernoff bound, it could be possible to
derive tighter bounds. In Section 2.4.1, more precisely equation (2.19) on p. 19,
we have defined the PMF of an upper bound of rk (∆Ai). The CDF denoted by
Frk(∆Ai)

(x) can be achieved by adding up the values of the PMF. Quantiles of

54

5.2. Probabilistic Analysis

the random variable are calculated via the quantile function F−1

rk(∆Ai)
: [0, 1] → R,

defined as F−1

rk(∆Ai)
(y) = inf{x : Frk(∆Ai)

(x) ≥ y}. Consequently

Pr {rk (∆Ai) > εA} ≤ Pr
{

rk (∆Ai) > εA

}
≤ c

⇐⇒ εA ≥F−1
rk(∆Ai)

(1− c).

This will be used later on.

5.2. Probabilistic Analysis

As in Chapter 4, we want to compare the failure probabilities of DLNC and lift-
ing. Additional to the chapter before we consider the channel deviation, which
compromises the performance of DLNC. Section 5.2.1 regards the problem without
any approximations for the error ranks, while in Section 5.2.2 we use the theorems
introduced in Chapter 4 and integrate them in the new setting.

5.2.1. General View

As DLNC is not suited for heavily changing networks, it is useful to know the
boundary between networks that change too much for DLNC to be applied and the
ones which change slowly enough to have a benefit with DLNC compared to lifting.
In order to find this boundary, we introduce the following definition.

Definition 5.2.1 (ε-varying Network)
Let rk (Ei) refer to the error rank when using DLNC and a Gabidulin code with
error correction radius δτ in a static network. The network is then called ε-varying
if ∃ ε > 0 :

Pr {rk (Ei) + rk (∆Ai) ≥ δτ} ≤ Pr {rk (Ei) ≥ δτ}+ ε.

From the definition we directly get the following lemma, which gives a rough ap-
proximation.

Lemma 5.2.2
A network with channel deviation ∆Ai is ε-varying if

Pr {rk (∆Ai) > 0} ≤ ε.

55

5. Slowly Varying Networks

Proof:

Pr {rk (Ei) + rk (∆Ai) ≥ δτ} =
n∑

i=0

Pr {rk (∆Ai) = i}Pr {rk (Ei) ≥ δτ − i}

≤ Pr {rk (∆Ai) = 0}︸ ︷︷ ︸
≤1

Pr {rk (Ei) ≥ δτ}+

+
∑

i>0

Pr {rk (∆Ai) = i}Pr {rk (Ei) ≥ δτ − i}︸ ︷︷ ︸
≤1

≤ Pr {rk (Ei) ≥ δτ}+ Pr {rk (∆Ai) > 0}
≤ Pr {rk (Ei) ≥ δτ}+ ε.

This lemma highlights the importance of the probability Pr {rk (∆Ai) > 0}. Note
that since Pr {rk (∆Ai) > 0} ≤ Pr

{
rk (∆Ai) > 0

}
, it is

Pr
{

rk (∆Ai) > 0
}
≤ ε =⇒ Pr {rk (∆Ai) > 0} ≤ ε.

Due to the property of the PGF, that Pr {X = k} = 1
k!
G

(k)
X (0) for k ∈ N, it is

Pr
{

rk (∆Ai) > 0
}

= 1− Pr
{

rk (∆Ai) = 0
}

= 1−Grk(∆Ai)
(0)

= 1−
(
1− p∆N + p∆N (1− pw)|N |

)|N |
.

Figure 5.1 shows the dependence of Pr
{

rk (∆Ai) > 0
}
on the number of nodes |N |

and the probability of a node to join or leave p∆N .

Let ELiftedGab be the error matrix in an RLNC channel, where lifting has been
applied together with a Gabidulin code. In Chapter 4 it has been shown, that

Pr {rk (Ei) ≥ δτ} < Pr {rk (ELiftedGab) ≥ τ}

for several manifestations of rk (Ei) and rk (ELiftedGab). Hence

∃ε > 0 : Pr {rk (Ei) ≥ δτ}+ ε ≤ Pr {rk (ELiftedGab) ≥ τ} .

Thus, for an ε-varying network with ε ≤ Pr {rk (ELiftedGab) ≥ τ}−Pr {rk (Ei) ≥ δτ},
DLNC improves upon lifting. It is hence suitable to define this as the boundary of
slowly-varying networks.

56

5.2. Probabilistic Analysis

10−6 10−5 10−4 10−3 10−2 10−1

10−6

10−4

10−2

100

p∆N

P
r
{ rk

(∆
A

i)
>

0}

|N | =10
|N | =100
|N | =1000

Figure 5.1.: Relation between Pr
{

rk (∆Ai) > 0
}

and p∆N for several network
sizes |N |. pw was chosen to be 0.01.

Definition 5.2.3 (Slowly-Varying Network)
Let ELiftedGab and Ei be the error matrices in an ε-varying network, where a lifted
Gabidulin code with error correction radius τ , respectively DLNC in combination
with a Gabidulin code of error correction radius δτ have been applied. The network
is called a slowly-varying network if

ε ≤ Pr {rk (ELiftedGab) ≥ τ} − Pr {rk (Ei) ≥ δτ} .

From this definition and Lemma 5.2.2 we can build the next theorem.

Theorem 5.2.4
Regard a Pr {rk (∆Ai) > 0}-varying network. Further let the network be slowly-
varying, then

Pr {rk (Ei) + rk (∆Ai) ≥ δτ} ≤ Pr {rk (ELiftedGab) ≥ τ} .

Proof:
By Definition 5.2.1 it is

Pr {rk (Ei) + rk (∆Ai) ≥ δτ} ≤ Pr {rk (Ei) ≥ δτ}+ Pr {rk (∆Ai) > 0}
and since the condition for slowly-varying is

Pr {rk (∆Ai) > 0} ≤ Pr {rk (ELiftedGab) ≥ τ} − Pr {rk (Ei) ≥ δτ} ,
the proof directly follows, as

Pr {rk (Ei) + rk (∆Ai) ≥ δτ} ≤ Pr {rk (Ei) ≥ δτ}+ Pr {rk (ELiftedGab) ≥ τ}
− Pr {rk (Ei) ≥ δτ}

= Pr {rk (ELiftedGab) ≥ τ} .

57

5. Slowly Varying Networks

So far we treated the problem in a general way. When taking into account the
components, that the error matrices consist of, the demand Pr {rk (∆Ai) > 0} ≤ ε
from Lemma 5.2.2 can be relaxed to Pr {rk (∆Ai) > εA} ≤ ε for a εA > 0.

5.2.2. Extension of Theorem 4.3.3

We can specify the problem by using assumptions from the chapter before, e.g.
rk (Ei) ≤ rk (Bi−1) + 2 rk (Bi), cf. equation (4.5) on page 43. As before we define
R1 = rk (Bi−1) and R2 = rk (Bi), furthermore rk (∆Ai) shall be named A. See
Figure 5.2 for comparison to the actual error rank.

rk (Ei) ≤ rk
(
LI>U

)
︸ ︷︷ ︸
≤rk(Bi)

+ rk (Bi−1) + rk (Bi) + rk (∆Ai)

Figure 5.2.: Varying case with the approximation of rk
(
LI>U

)
.

In the following theorem we regard, which code rate region (specified by δ) has to be
chosen, in order for the failure probability of DLNC to be smaller than the failure
probability of lifting, when the network statistics and especially the statistics of
rk (∆Ai) is given. The discussion of parameters is given below the theorem. Later
we consider the other way, i.e. which specifications the statistics of rk (∆Ai) must
fulfill for a given rate region. This interpretation is shown in Figure 5.4 and 5.5.

Theorem 5.2.5
Let R1, R2 ∼ Bin (n, pB), let A be a random variable with the PGF given in (5.1).1
Further let npB < τ < n, δ′ > 3, 0 < εδ ≤ (δ′ − 3)τ/3, c1 := DKL

(
τ
n

∣∣∣∣pB

)
and

c2 := min
{

DKL

(
τ+εδ
n

∣∣∣∣pB

)
, c1 + 4e−1

}
. It must be n > 1

2(c1−c2)
W−1

(
1
4
(c1 − c2)

)
(as

in Theorem 4.3.3). Further let c := 1√
2n

e−nc1 − 2e−nc2 and εA = F−1
A (1 − c), where

F−1
A : [0, 1]→ R is the quantile function of RV A, and δ = δ′ + εA

τ
. Then

Pr {R1 + 2R2 + A ≥ δτ} ≤ Pr {R2 ≥ τ} .

Proof:
The proof of this theorem is located in Appendix A.3, see p. 86. The proof works
as the one for Theorem 4.3.3 to which it is the analog for varying networks. The

1i.e. specified by parameters |N |, pw and p∆N

58

5.2. Probabilistic Analysis

additional constraints guarantee, that the probability Pr {A > εA}, which appears
as new addend from the sum splitting after applying the law of total probability, is
smaller than the difference of the failure probabilities assumed for Theorem 4.3.3,
i.e. Pr {R2 ≥ τ} − 2 Pr {R2 ≥ τ + εδ}. �

Most of the conditions are familiar from Theorem 4.3.3. By εA = F−1
A (1 − c), the

new feature of varying networks is met.

The combined restrictions on εδ and δ are due to δ = δ′ + εA
τ

and εδ ≤ (δ′ − 3) τ
3
:

εδ ≤ (δ − 3− εA/τ) τ
3
and

δ ≥ εA
τ

+ 3
(

1 +
εδ
τ

)
(5.5)

respectively. From the choice of εδ and εA we can therefore compute a minimal value
for δ, to find out the rate region (using Lemma 3.2.2), where DLNC exceeds lifting
for the given network and the constraint RD ≥ RL. This means, that εA and εδ are
now sizing δ, but their task divides up. εA causes dimensioning of the probability
of rk (∆Ai) to be greater than εA, while εδ is necessary for the estimation of n. εA
should be chosen large in order to minimize the probability Pr {rk (∆Ai) > εA}, but
εδ should as well be chosen large, if one wants to minimize n.

In the upcoming plots (cf. Figure 5.3 - 5.5) the following constraints must be fulfilled:

• τ̂ > pB,

• τ+εδ
n

= τ̂(1+ ε̃δ) ≤ 1 for it must be a p-coin in the Kullback-Leibler divergence,

• the argument of the Lambert-W function must be greater than −e−1 for real
results,

• the minimum distance of DLNC must not exceed n, i.e. τ̂ ≤ n−1
2δn

and

• the code rate given by τ̂ , namely r = 1− 2τ̂ must be higher than rmin,2 = δ−1
δ− 1

2

,
cf. (3.23), p. 32. Then the statements in the plot hold for n = m and RD ≥ RL.

The last point is the crucial one in the plots given below.

Remark
As it can be seen in inequality (A.15), see p. 88, in the proof of Theorem 5.2.5,
c = 1√

2n
exp {−nc1} − 2 exp {−nc2} is a lower bound for the difference that specifies

a slowly-varying network. It therefore plays a similar role to ε in slowly-varying
networks. Due to εA > 0, the considered networks do not fulfill the ε-criterion, i.e.
c ≥ ε, but it could nevertheless be shown, that DLNC can outperform lifting in these
networks.

59

5. Slowly Varying Networks

0.88 0.86 0.84 0.82
r

0.05 0.06 0.07 0.08 0.09

10−10

10−8

10−6

10−4

10−2

100

τ̂

c
=

1 √
2
n
e−

n
c 1
−

2e
−
n
c 2

δ = 3.3, εA = 6, n = nmin

δ = 3.3, εA = 6, n = nmin + 5
δ = 3.6, εA = 5, n = nmin

δ = 3.6, εA = 5, n = nmin + 5
δ = 4, εA = 4, n = nmin

δ = 4, εA = 3, n = nmin + 5

Figure 5.3.: Depiction of the difference c for several δ. Parameters: pB = 0.05,
ε̃A = εA

τ
= δ−3

4
= ε̃δ, nmin = dW−1((c1 − c2)/4)/(2(c1 − c2))e, where

c1 = DKL

(
τ̂
∣∣∣∣pB

)
and c2 = min

{
DKL

(
τ̂(1 + ε̃δ)

∣∣∣∣pB

)
, c1 + 4e−1

}
. The step width

between calculated values of τ̂ is 0.0001. Since εA (calculated as in (5.6)) is
different for each point τ̂ in the plot, we only display its minimum (denoted by εA)

per curve.

Figure 5.3 shows, how the difference c might look like for several δ. Obviously, the
closer δ is to 3, the smaller is c. One can see that the difference might change for
varied choices of n. As parameters we chose pB = 0.05, ε̃A = εA

τ
= δ−3

4
and ε̃δ = 3 εA

τ
.

Note that we chose δ, ε̃δ = εδ
τ
and ε̃A = ε

τ
with its fixed relation, so εA is calculated

as

εA = bε̃A · bτ̂ · ncc (5.6)

at each point, therefore we only mention the minimum εA. The pattern of jumps in
the curves are due to the calculation of nmin for each point. Between the points we
have steps of 0.0001. Since the curves are smoother for n = nmin + 5, we use this in
further plots.

It is also possible to look from another point of view on the problem by providing
bounds for the parameters of the random variable rk (∆Ai) for a certain correction
radius τ and a rate region specified by δ. As it is a consequence of the theorem
before, we commit it to writing as a corollary.

60

5.2. Probabilistic Analysis

Corollary 5.2.6
Let R1, R2 ∼ Bin (n, pB) be independent RVs, τ > npB, δ > 3, εδ ∈ (0, δ−3

3
τ) and

εA = (δ−3)τ−3εδ. Further c1 = DKL

(
τ
n

∣∣∣∣pB

)
, c2 = min

{
DKL

(
τ+εδ
n

∣∣∣∣pB

)
, c1 + 4e−1

}

and n > W−1((c1 − c2)/4)/(2(c1 − c2)) (defined as in Theorem 4.3.3). In addition
c = 1√

2n
e−nc1 − 2e−nc2. If the parameters of RV A fulfill F−1

A (1− c) ≤ εA, then

Pr {R1 + 2R2 + A ≥ δτ} ≤ Pr {R2 ≥ τ} .

Proof:
With δ > 3, εδ ∈ (0, δ−3

3
τ) and εA = (δ − 3)τ − 3εδ we ensure that (5.5) holds

with equality. Choosing n to be nmin = dW−1((c1 − c2)/4)/(2(c1 − c2))e (with the
constants c1 and c2 as defined above) or higher and difference c, as given, together
with F−1

A (1− c) ≤ εA, we have all the conditions from Theorem 5.2.5. �

The corollary describes, how the variations in the network are restricted, when
we demand DLNC to overtop lifting for a certain rate region. Specifying the rate
region by rmin,f and using the parameter to calculate the respective δmin is possible
via equation (4.7) on p. 46.

The restriction on the changes in the network is given as an upper bound on the
(1− c)-quantile, i.e. F−1

A (1 − c) ≤ εA. Since the inversion of the CDF of rk (∆Ai)
for any of the parameters |N |, p∆N or pw is not trivial, one might want to use a
simpler approximation. One can e.g. upper bound the expected value of rk (∆Ai)
using the Markov bound, cf. (5.4), and c, defined as in Theorem 5.2.5:

E [rk (∆Ai)] ≤ EA = |N |2p∆N · pw ≤ c · εA :=Emax. (5.7)

We call the upper bound for the equal case Emax. Due to

EA ≤ Emax =⇒ Pr {rk (∆Ai) > εA} ≤ c,

this figure can serve as guideline how the channel deviation is restricted for e.g. a
chosen rate region. Therefore its effects are depicted in the following plots.

The statement of Corollary 5.2.6 is illustrated in Figure 5.4. Here the upper bound
for the expected values of the random variable of the channel deviation Emax is
depicted as function of τ̂ for several δ. As usual, for higher δ, there are more
opportunities, i.e. Emax is larger. The jumps result from the fact, that for each drawn
point a respective n and Kullback-Leibler divergences c1 and c2 are calculated. Note
that here we chose δ, ε̃δ = εδ

τ
and ε̃A = ε

τ
to be fixed for one curve, as in Figure 5.3,

but we varied the relation between ε̃δ and ε̃A. Therefore, we get different behavior
for equally colored curves (i.e. curves with the same mark). As in Figure 5.3, εA is
calculated as εA = bε̃A · bτ̂ · ncc at each point. Hence we only show the minimum εA.

61

5. Slowly Varying Networks

5 · 10−2 6 · 10−2 7 · 10−2 8 · 10−2 9 · 10−2 0.1

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100
R = 0.6
δ = 4

τ̂

E m
a
x
=
c
·ε

A

δ = 3.3, εA = 3
δ = 3.3, εA = 27
δ = 3.6, εA = 2
δ = 3.6, εA = 24
δ = 4, εA = 2
δ = 4, εA = 22
simulations

0.88 0.86 0.84 0.82 0.8
r

Figure 5.4.: Relation between τ̂ and Emax for several δ and ε̃δ = εδ/τ . Emax is an
upper bound for the expected value of the channel deviation calculated by (5.7).
The respective c is displayed in Fig. 5.3. From the variation of ε̃δ different ε̃A

resulted. εA = bε̃A · bτ̂ · ncc varies with τ̂ , thus we only display the minimum for
each curve and denote it by εA. Parameters: pB = 0.05, n = nmin + 5, for the

calculation see Fig. 5.3.The step width was chosen to be 0.0001.

Noteworthy is, that for smaller εA, the values of Emax are larger. This means that,
according to the Markov approximation, one can allow the channel to vary more, if
εA is relatively small. Regard, that εA > 0 must hold, otherwise the approximation
yields Emax = 0. Direct computation of the quantile by F−1

rk(∆Ai)
(1 − c) could give

more accurate insight into the behavior. Due to longer computation times, this is
not considered here.

Another way to depict the dependencies is to regard Emax over δ, as shown in Fig. 5.5.
Here we also compute the constituents of Corollary 5.2.6 for given δ. As already
shown in the previous figure, for larger δ, the expected value is larger too. Fixed
parameters are τ̂ = 0.06, pB = 0.05 and a step width of 0.001 between calculated
points on the abscissa. Since nmin (and therefore n = nmin + 5), c and εA are
calculated for each of these points, one still can see little jumps. Observe, that

62

5.2. Probabilistic Analysis

3 3.25 3.5 3.75 4
10−15

10−12

10−9

10−6

10−3

100
R = 0.6

δ

E m
a
x
=
c
·ε

A

εA =1
εA =22
εA =85
simulations

0.818182 0.833333 0.846154 0.857143

rmin,2 =
δ−1
δ− 1

2

(nonlinear scale)

Figure 5.5.: Dependency of Emax on δ. Bear in mind, that the Markov
approximation from (5.7) was used. Parameters: pB = 0.05, τ̂ = 0.06, n = nmin + 5.

c can be looked up in Fig. 5.3 for several values of δ at τ̂ = 0.06. εA is the
minimum of εA in each curve. The different manifestations of εA = bε̃A · bτ̂ · ncc

are obtained by varying ε̃δ. For the calculation of nmin, see caption of Fig. 5.3. The
plot was generated for a step width of 0.001 between points on the abscissa.

different choices of εδ (which cause different εA) have different effects on certain
areas of the curve. Since τ̂ is close to pB, the minimum code length nmin is rather
large. On the other hand, the illustration is only possible for τ̂ < 0.07 in order
to not contradict rmin,2 = 0.857 on the right side of the plot. rmin,2 is calculated
via (3.23), recall that this is a lower bound for parameter choices, i.e. the minimum
code rate for a specific δ if n = m in the lifted codeword.

5.2.3. Lifting vs. DLNC in Varying Networks

In a similar way as in Theorem 5.2.5, one can use Theorem 4.4.1 as a base for
another commensurate statement. This time, all components of the error rank are
considered, including the channel deviation, see Figure 5.6. Again the strategy is to
find the rate region, where DLNC is better than lifting in a given network, where the
channel deviation is specified by the parameters |N |, p∆N and pw. Detailed analysis
and parameter discussion is given in Figures 5.7- 5.9 below the theorem.

63

5. Slowly Varying Networks

rk (Ei) ≤ rk
(
LI>U

)
+ rk (Bi−1) + rk (Bi) + rk (∆Ai)

Figure 5.6.: Finally the case, where all components of the error rank are considered
as they are.

Theorem 5.2.7
Let R1, R2 ∼ Bin (n, pB), A another random variable with the PGF given in (5.1) ,
α = Pr

{
rk
(
LI>U

)
≤ drk,L − 1

}
, 2npB < drk,L and ρ′ > 3− 2

drk,L
, c1 = DKL

(
drk,L

2n

∣∣∣∣pB

)

and c2 = min

{
DKL

((
ρ′
2
−1
)
drk,L+1

n

∣∣∣∣pB

)
, c1 + e−1

α2

}
and n > 1

2(c1−c2)
W−1 (α2(c1 − c2))

as in Theorem 4.4.1. Further let c := α√
2n

e−nc1 − e−nc2, εA = F−1
A (1 − c), where

F−1
A : [0, 1]→ R is the quantile function of RV A, and ρ ≥ ρ′ + 2εA

drk,L
. Then

Pr
{
R+ + rk

(
LI>U

)
+ A ≥ ρ

2
drk,L

}
≤ Pr

{
2R2 + rk

(
LI>U

)
≥ drk,L

}
.

Proof:
The proof can be found in Appendix A.4 on p. 88. It combines the procedure of the
proofs of Theorem 4.4.1 (comparison of lifting and DLNC for rk (∆Ai) = 0) and
Theorem 5.2.5, which is concerned with rk (∆Ai) > 0, in order to put the statement
of Theorem 4.4.1 into the context of varying networks. �

The theorem shows (like the one before) that for given manifestations of the param-
eters of rk (∆Ai) DLNC is comparably better than lifting, if the error correction
capability relates appropriately, in this case, if ρ is large enough. The difference
between the two theorems is, that here we chose to compare DLNC to lifting as it
is, without lifting taking any advantages.

The combined condition on ρ follows by the conditions ρ′ > 3− 2
drk,L

and ρ ≥ ρ′+ 2εA
drk,L

from the theorem, so that

ρ ≥ ρ′ +
2εA
drk,L

> 3− 2

drk,L

(1− εA). (5.8)

By the comparison of (4.11) on p. 50 and condition (5.8), we find that here ρ has
to be chosen higher than in Theorem 4.4.1 and the discrepancy is mainly depending
on the εA, i.e. the part defining the variation of rk (∆Ai). Regard that the higher
drk,L, the less impact εA has. The higher εA, the higher also ρ, but the easier it is
to fulfill Pr {rk (∆Ai) > εA} ≤ c.

64

5.2. Probabilistic Analysis

In the following we present some figures that contain the outcome of the theorem.
For these illustrations the following constraints must hold:

• d̂ > 2pB,

• 1
n

((
ρ
2
− 1
)
drk,L − 1

)
≤ 1, since the argument of the Kullback-Leibler diver-

gence must be a p-coin, i.e. ∈ [0, 1],

• the argument of the Lambert-W function must be greater than −e−1 for real
values,

• the minimum distance of DLNC must not exceed n, yielding ρd̂ ≤ 1 and

• r = 1− d̂+ 1
n
must be higher than rmin,2 =

ρmin+
ρmin−1

2τ
−1

ρmin+
ρmin−1

2τ
− 1

2

(derivarion see (4.12)

on p. 51) . Then the statements in the plot hold for n = m and RD ≥ RL.

Note that the figures are restricted most by the last bullet point.

In Figure 5.7 one can see the lower bound c of the difference of the failure prob-
abilities in the static case. For the plot several ρ were chosen and ρ′ calculated
by ρ′ = 3 + ρ−3

2
. Furthermore we chose pB = 0.05, α = 0.5 and a step width of

0.0001 between points on the abscissa. In all curves εA, which is the minimum of εA
calculated for the plot, resulted to 2. Roughly spoken, for larger d̂ (more precisely
d̂ departing from 2pB), respectively lower code rate r, the difference is smaller. Re-
call that the upper abscissa r(∞) is a lower bound on the rate for a given d̂ and
is derived in (4.10) on page 48. Again we see that if n is chosen larger than nmin,
the jumps get smaller. As before, the jumps can be attributed to the calculation of
Kullback-Leibler divergences and resulting n per step.

If the rate region shall be fixed, one can also derive restrictions for the parameters
of the channel deviation, as given in the subsequent corollary.

Corollary 5.2.8
Let R1, R2 ∼ Bin (n, pB) and define R+ := R1 + R2, as well as random variables A
and L. Let ρ > 3, ρ′ ∈ [3, ρ) and drk,L > 2npB. Further let c1 = DKL

(
drk,L

2n

∣∣∣∣pB

)
and

c2 = min
{

DKL

(
1
n

((
ρ′

2
− 1
)
drk,L + 1

) ∣∣∣∣pB

)
, c1 + e−1

α2

}
, c = α√

2n
e−nc1−e−nc2, where

α = Pr {L ≤ drk,L − 1} and n > 1
2(c1−c2)

W−1 (α2(c1 − c2)). With εA =
drk,L

2
(ρ − ρ′)

and random variable A fulfilling F−1
A (1− c) ≤ εA it is

Pr
{
R+ + L+ A ≥ ρ

2
drk,L

}
≤ Pr {2R2 + L ≥ drk,L} .

Proof:

65

5. Slowly Varying Networks

0.89 0.88 0.87 0.86 0.85 0.84 0.83 0.82 0.81
r(∞) = 1− d̂

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19
10−13

10−12

10−11

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

d̂

c
=

α √
2
n
e−

n
c 1
−

e−
n
c 2

ρ = 3.15, ρ′ = 3.075, n = nmin

ρ = 3.15, ρ′ = 3.075, n = nmin + 5
ρ = 3.25, ρ′ = 3.125, n = nmin

ρ = 3.25, ρ′ = 3.125, n = nmin + 5
ρ = 3.4, ρ′ = 3.2, n = nmin

ρ = 3.4, ρ′ = 3.2, n = nmin + 5

Figure 5.7.: Lower bound for ε according to Theorem 5.2.7 for several ρ.
Parameters: pB = 0.05, α = 0.5, ρ′ = 3 + (ρ− 3)/2,

nmin = d 1
2(c1−c2)

W−1 (α2(c1 − c2))e, c1 = DKL

(
d̂/2||pB

)
, c2 = DKL(d̂(ρ′/2− 1)||pB)

and step width between points of d̂ is 0.0001. The minimum of εA is 2 for all
curves, where εA = bρ−ρ′

2
bd̂ · ncc. r(∞) from equation (4.10) is a lower bound for

the code rate, as explained on page 48.

Since εA =
drk,L

2
(ρ − ρ′), it is ρ = ρ′ + 2

drk,L
εA ≥ 3 + 2

drk,L
εA > 3 − 2

drk,L
(1 − εA).

Moreover F−1
A (1 − c) ≤ εA ⇔ Pr {A > εA} ≤ c. Therefore we have all conditions

from Theorem 5.2.7 so that there is nothing left to prove. �

The crucial point of the corollary is that we can decide on a lower bound for the code
rate, say rL = kL/n, where DLNC shall be compared to lifting and find out how
much the channel is allowed to vary between generations. Under the presumption
RD ≥ RL, the respective ρ can be calculated from the fixed code rate by (4.13) on

66

5.2. Probabilistic Analysis

p.51. Note that one has to fix τ and f (defined in (3.21) on page 31) beforehand.
Having ρ, one can choose ρ′ ∈ [3, ρ), calculate εA, c1, c2 and finally c and can now
variate the parameters of rk (∆Ai) to find out, which suffice F−1

rk(∆Ai)
(1 − c) ≤ εA.

Note that drk,L (and with it τ) should be fixed in the beginning, but since we only
have a lower bound on n, this does not necessarily impair the rate.

0.89 0.88 0.87 0.86 0.85 0.84 0.83 0.82 0.81
r(∞) = 1− d̂

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19

10−10

10−8

10−6

10−4

10−2

100
R = 0.6
ρ = 3.4

d̂

E m
a
x
=
c
·ε

A

ρ = 3.15, ρ′ = 3.1154, εA = 1
ρ = 3.15, ρ′ = 3.06, εA = 9
ρ = 3.4, ρ′ = 3.3077, εA = 1
ρ = 3.4, ρ′ = 3.16, εA = 7
simulations

Figure 5.8.: Relation between the upper bound of the expected values of the RV of
the channel deviation for specified ρ and ρ′. εA can be calculated from ρ and ρ′ by
εA =

drk,L
2

(ρ− ρ′), here we calculated n for each step, therefore drk,L = bd̂ · nc. Note
that the Markov approximation was used for the calculation of Emax. Parameters:
pB = 0.05, α = 0.5, , n = nmin + 5 (calculation of nmin and c see Fig. 5.7) and a
step width of 0.001. εA varied with d̂, therefore we only print the minimum εA.

Using the Markov inequality (5.4), one can calculate the bound Emax = c · εA. Here
c is the lower bound of the failure probabilities in Theorem 5.2.7. In Figure 5.8
we chose pB = 0.05, α = 0.5, n = nmin + 5 and a step width of 0.001 to display
the relation to d̂. For each d̂ we calculated c1, c2, nmin and c for specified ρ and ρ′,
as given in Corollary 5.2.8. The upper bound of the (1 − c)-quantile of RV A is
calculated via

εA =

⌊
ρ− ρ′

2
bd̂ · nc

⌋
. (5.9)

Since εA varied with d̂, we only display the minimum εA for each curve. As expected
we get larger Emax for higher choices of ρ. On the other hand by increasing also ρ′,
which leads to relatively small εA, the curve also rises.

67

5. Slowly Varying Networks

3 3.25 3.5 3.75 4
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
R = 0.6
d̂ = 0.125

ρ

E m
a
x
=
c
·ε

A

εA = 1
εA =21
εA =72
simulations

0.800002 0.818184 0.833335 0.846156 0.857145

rρ (nonlinear scale)

Figure 5.9.: The upper bound Emax as a function of ρ, respectively the lower
bounded minimum code rate rρ from (4.12) on p. 51. ρ′ ∈ (3, ρ) is varied, from ρ
and ρ′ the quantile εA is calculated for every point in the plot, cf. (5.9), therefore
only the minimum εA is depicted. Parameters: pB = 0.05, d̂ = 0.125, α = 0.5,

n = nmin + 5 and a step width of 0.001. The calculation of c and nmin is given in
Fig. 5.7, approximate values for c can be read of the mentioned figure for d̂ = 0.125

and several ρ.

The bound Emax can also be regarded as function of ρ. This is portrayed in Fig-
ure 5.9. The upper abscissa rρ is calculated as in (4.12). In the plot we have
pB = 0.05, d̂ = 0.125, α = 0.5, n = nmin + 5 and a step width of 0.001. εA is
calculated for every point in the plot, therefore only the minimum εA is depicted.
Note that the simulations were executed above the curves, although d̂ coincides.
One can see that the larger εA, the smaller Emax, but this does not necessarily hold
for all regions of the picture. It is important to note, that the calculated nmin are
rather large, because of the proximity of d̂ to 2pB. d̂ must be chosen carefully for the
depicted window, since otherwise it can contradict the lower bound on the code rate
given by rmin,2. Note that there exist better bounds than the Markov bound. Using
tighter bounds, as e.g. the Chernoff bound, would yield better approximations for
the parameters.

68

6. Simulation

After the theoretical analysis, we proceed with more practical comparisons. We
define a block error as the incidence that in one generation a receive matrix can
not be decoded. By counting the number of decoding failures for a high number of
generations, we can calculate the Block Error Rate (BLER) for each scenario. The
number of generations that are carried out with the same starting channel matrix
is chosen to be 10. Since we have only a small number of generations, which are
dependent on each other, this procedure is a usual Monte-Carlo Simulation. In each
execution of a simulation a transmit matrix is generated for the respective mode,
these are Lifting or DLNC. In case of Lifting, the all zero codeword can be used
throughout all simulations, which saves the time of encoding in the Gabidulin code.
For the DLNC case it is not possible to use the same codeword for all simulations,
since the error depends on the codeword. Therefore random matrices are drawn
and encoded. Subsequently, the transmit matrix is sent via the channel. Its model
is implemented as described in Section 6.1. After the transmission it is checked,
whether decoding is possible.

6.1. Structure of the Implemented Channel Model

The simulation functions and scripts were implemented using SageMath [S+18], a
free open-source mathematics software system licensed under the GNU General Pub-
lic License. Further a library for coding theory in SageMath named “codinglib” [Ros]
by Johan Rosenkilde was used for parallel computing of the simulations and as base
for a library on Gabidulin codes that was provided by Sven Puchinger. The imple-
mentation allows computations in Fqm for q power of a prime and also m ∈ N and
arbitrary code lengths n ∈ N.1

All functions necessary for the channel were collected in a folder called rlnclib.
There one can find the following functions:

A = init_rlnc_channel(Fq,N,n,rkA=’x’) for the initialization of the RLNC chan-
1The only exception is the computation of the pseudoinverse for DLNC, where q = 2 and m > 1
must hold, due to its implementation in SageMath.

69

6. Simulation

nel, i.e. the generation of a channel matrix A over Fq of desired dimensions
N×n. It is possible to specify, whether A shall have full rank or not. x means
arbitrary, n gives full rank.

(Y,A) = rlnc_channel(A,X,p_B,numNodes,p_L,p_W,rkDelta=0,[...]) channel
model for RLNC, where Y= A · X +B with rk (B) ∼ Bin(n,p_B). rkDelta
decides whether A is changed before the calculation. If so, a number ` is ran-
domly chosen according to L ∼ Bin(numNodes,p_L) an then ` rank weights
wi, i ∈ {1, . . . , `} are chosen from the distribution Bin(numNodes,p_w) and
summed up. The resulting rank weight is then imprinted in ∆Ai, which is
chosen randomly with the constraint of the given rank. For more information
on properties of rk (∆Ai) and its distribution see Section 2.4.1 on p. 18.

X = lifting(S) realizes the lifting construction. X = [I | S] is returned, where I
is an identity matrix of size n× n, if n is the first dimension of S.

X_i = dlnc_modulation(X_imin1,S_i) modulates the information S_i on to the
previous state matrix X_imin1 by ordinary matrix multiplication, resulting in
the current transmit matrix X_i, i.e. X_i = X_imin1[:,0:n]*S_i, where n is
the first dimension of S_i, cf. Section 2.4.

Shat = dlnc_demodulation(Y_i,Y_imin1) implements the demodulation step of
DLNC according to [SCFH13], which is executed via

S_hat = weakpseudoinverse(Y_imin1[0:n,0:n]) * Y_i,

where n is the first dimension of Y_i.

Y_inv = weakpseudoinverse(Y) contains the calculation of the weak pseudoin-
verse, used for the demodulation of DLNC. The implementation of the algo-
rithm given in 6.3.1.

is_decodable(mode,*args) is a function checking if the decoding guarantee is
given for several modes, so far implemented are DLNC and Lifting. For more
informations on the check see Sections 6.2 and 6.3.

and some helper functions. The implementation of these functions is displayed in
Appendix B. During the execution of the simulations, these functions were called
in a function named simulate_rlnc(...), which generates the transmit matrices,
carries out transmissions for numGen generations in a row for a certain mode and
returns the number of decoding failures.

70

6.2. Decoding Guarantee for Lifted Gabidulin Codes

6.2. Decoding Guarantee for Lifted Gabidulin
Codes

The decoding step is omitted by checking if decoding can be guaranteed. Ensuing
Section 2.3.3 decoding is possible, if (2.13), see page 15, is fulfilled, i.e. if

ds(〈X〉, 〈Y 〉) = rk

[
X
Y

]
− rk (X)− rk (Y) ≤ drk − 1.

In the simulation environment X and Y are produced, so that the decoding con-
dition can be verified easily. drk is the minimum distance of the lifted Gabidulin
code.

6.3. Decoding Guarantee for Gabidulin Codes in
DLNC

For DLNC we use the demodulation introduced by [SCFH13], see also Section 2.4.2,
and, according to Theorem 2.4.3, we check if

rk
(
Ŝi − Si

)
≤
⌊
drk − 1

2

⌋
,

where drk is the minimum distance of the applied Gabidulin code. Ŝi is calculated as
given in equation (2.18) on p. 17. The demodulation is based on the pseudoinverse
of the receive matrix.

6.3.1. Calculation of the Pseudoinverse for DLNC

Let Y i be the received matrix (or in case it is not square of the front square part
of the received matrix) in generation i. Let Y i ∈ Fn×nq . Then its pseudoinverse Y +

i

must have full rank and fulfill

Y +
i · Y i = I + LI>U , (6.1)

where U is the set consisting of the positions pi ∈ {0, . . . , n} that are no leading
positions in the reduced row echelon form (RRE) of Y +

i · Y i and L is a matrix of
appropriate dimensions, i.e. n × |U|. All in all the product looks like an identity
matrix containing some arbitrary columns.

71

6. Simulation

In SageMath the built-in function mat.inverse(), where mat is a matrix object, is
suited for the computation of the desired pseudomatrix. For fields of characteristic 2
the function returns a full-rank matrix even for non-invertible matrices. A check of
the properties yields, that (if at all) only some rows have to be switched to get (6.1).

6.4. Simulation Results

This section comprises the results of the simulations, where lifting and DLNC are
compared in several scenarios, i.e. in static or slowly-varying networks and for differ-
ent rates. For one simulation scenario (next to other parameters) an overall rate R is
chosen and the dimensions of the codes computed accordingly, cf. (3.11) and (3.13)
on p. 28. The code used for lifting has a dimension of

kL = R · n · n+m

m
. (6.2)

The dimensions for DLNC were chosen by kD = b R·n
1− n

q(n+m)
c, although this contradicts

RD ≥ RL, because the difference between both overall rates is |RL−RD| < 0.001 for
the chosen parameters. These were q = 256, n = 40, as in [SCFH13], and m = 80,
which is a little smaller than it is chosen in [SCFH13].

6.4.1. Static Networks

Here we regard only channel deviations of zero rank, i.e. rk (∆Ai) = 0. We regarded
two different overall rates. The first one is RL = 0.45, which leads to kL = 27 and
kD = 18. Hence we have a relation of

δsim =
τD

τL

=
bn−kD

2
c

bn−kL
2
c = 1.83̄ (6.3)

between both error correction radii. Due to n = 40 and kL = 27, we are regarding
d̂ = n−kL

n
= 0.325. Theorem 4.4.1 helps to find, that for ρ = 3.15 (which corresponds

in our case to δ ≈ 3.33), we have nmin = 40. Note that this combination of ρ and d̂
does not offer the possibility to compare lifting and DLNC, because the minimum
distance drk,D = ρ(n− kL + 1) would be larger than n.

However with δ = 3.33 the minimum overall rate is

Rmin =
m

n+m
rmin,f

(3.22)
=

(3.21)

2

3

δ − 1

δ − m

M(1− n
qM)

δ=3.33≈ 0.5833. (6.4)

72

6.4. Simulation Results

5 · 10−2 7 · 10−2 9 · 10−2 0.11 0.13 0.15
10−4

10−3

10−2

10−1

100

pB

B
LE

R

Lifting: RL = 0.45, kL = 27
DLNC: RD = 0.449414, kD = 18

Figure 6.1.: Simulation result for the first scenario with R = 0.45,m = 80 in a
static network. The number of different simulated channel matrices varied between

80 and 26789. At least 40 decoding failures were simulated. Note that the
dimensions for DLNC was chosen to be kD = b R·n

1− n
q(n+m)

c because the difference
between both overall rates is |RL −RD| < 0.001.

The maximum rate, where the lifted Gabidulin code can be used, is due to the
parameter choices

Rmax
(3.12)
=

m

n+m
=

2

3
= 0.6̄. (6.5)

This reveals, that the overall rate we chose, is smaller than the rate, where the
statements from Chapter 4 hold. As it can be seen in Figure 6.1, DLNC performs
better nevertheless.

The second rate, that was chosen for simulations, is R = 0.6. The outcome is shown
in Figure 6.2. As we can see by comparing Figure 6.1 and 6.2, for higher rates, the
error performance of DLNC differs even more from the lifting procedure, i.e. it is
visible that the relation between the BLER of DLNC and lifting is larger for R = 0.6
and pB ≤ 0.1. Nevertheless, one can also see that the performance itself is worse
than in Fig. 6.1, due to the higher rate. Having kL = 36 (due to (6.2))and kD = 24,
we get δsim = 4, for the calculation see (6.3). The theoretical δ, that emanates
from the choice of kL = 36 and n = 40 is δ ≈ 5.41. Here the choices ρ = 4.53
and d̂ = 0.1 do not contradict the definition of the minimum distance drk,D. The
minimum overall rate for the chosen parameters yields a rate region

R ≥ Rmin

(6.4)≈
δ=5.41

0.62,

73

6. Simulation

5 · 10−2 7 · 10−2 9 · 10−2 0.11 0.13 0.15
10−4

10−3

10−2

10−1

100

pB

B
LE

R

Lifting: RL = 0.6, kL = 36
DLNC: RD = 0.599219, kD = 24

Figure 6.2.: Simulation result for a static network and parameters q = 256, n = 40,
m = 80. The number of different simulated channel matrices varied between 15

and 4879. At least 58 decoding failures were simulated. Note that the dimensions
for DLNC was chosen by kD = b R·n

1− n
q(n+m)

c because the difference between both
overall rates is |RL −RD| < 0.001.

which is again higher than the simulated overall rate. The upper bound is Rmax as
given in (6.5).

6.4.2. Slowly-Varying Networks

For the simulation of slowly-varying networks we fixed the parameters |N |, pw and
p∆N , as introduced in Section 2.4.1, additionally to the already determined parame-
ters q = 256, n = 40 and m = 80. Again we regarded the two overall rates R = 0.45
and R = 0.6 from before.

We chose |N | = 1000, and pw = 0.01 for both rates. For the number of nodes we
set a restriction |N | > 3n, because transmitter and receiver are connected to at
least n nodes and there should be at least n nodes in between. Since pw reflects
the interconnection of the network and we know that transmitter and receiver are
connected to n nodes we choose pw near the relation n

|N | = 40
1000

.

For the simulations with rate R = 0.45 we found that for p∆N = 10−5 the perfor-
mance of the DLNC scheme leaves lifting behind. This choice of p∆N leads, together
with the former parameter determinations, to an upper bound of the expected value
of the rank of the channel deviation EA = E

[
rk (∆Ai)

]
= 0.1, which means that

74

6.4. Simulation Results

in, on average, every tenth generation there is a change in the rank of one, i.e.
rk (∆Ai) = 1. The results are shown in Figure 6.3.

5 · 10−2 7 · 10−2 9 · 10−2 0.11 0.13 0.15
10−4

10−3

10−2

10−1

100

pB

B
LE

R

Lifting: RL = 0.45, kL = 27
DLNC: RD = 0.449414, kD = 18

Figure 6.3.: Varying network simulation result for q = 256, n = 40, m = 80. The
number of different simulated channel matrices varied between 50 and 15608. At
least 40 decoding failures were simulated. The expected value of the rank of the

channel deviation in this figure is E
[
rk (∆Ai)

]
= |N |2 · p∆n · pw = 0.1 with

|N | = 1000, p∆N = 0.00001 and pw = 0.01. Note that the dimensions for DLNC is
kD = b R·n

1− n
q(n+m)

c because the difference between both overall rates is
|RL −RD| < 0.001.

The other rate, R = 0.6, is simulated for p∆N = 10−4, then we have EA = 1. As
shown in Figure 5.8 and 5.9, this parameter choice is a point beyond the bounds
derived in Chapter 5, i.e. the theoretical analysis could not ensure that DLNC is
better than lifting for these parameters. In Figure 6.4 one can see the performance
of both schemes. Again it is shown, that the overall performance suffers due to the
higher rate, compared to R = 0.45. However we have a gain in the error correction
capability by using DLNC instead of lifting even for the higher choice of the expected
value for the channel deviation EA.

Comparing Figures 6.1 and 6.3 or respectively Fig. 6.2 and 6.4 shows that, as ex-
pected, the overall performance of the DLNC procedure worsens when channel vari-
ations occur, but nevertheless outperforms lifting in these kinds of slowly-varying
networks.

75

6. Simulation

5 · 10−2 7 · 10−2 9 · 10−2 0.11 0.13 0.15
10−4

10−3

10−2

10−1

100

pB

B
LE

R

Lifting: RL = 0.6, kL = 36
DLNC: RD = 0.599219, kD = 24

Figure 6.4.: Simulation result for a varying network and parameters q = 256,
n = 40, m = 80. The number of different simulated channel matrices varied

between 68 and 725. At least 64 decoding failures were simulated. The expected
value of the rank of the channel deviation in this figure is

EA = E [rk (∆Ai)] = |N |2 · pw · p∆N = 1 with |N | = 1000, p∆N = 0.0001 and
pw = 0.01. Note that the dimensions for DLNC was chosen as kD = b R·n

1− n
q(n+m)

c
because the difference between both overall rates is |RL −RD| < 0.001

76

7. Conclusion

In this work, after introducing the main concepts of rank-metric codes, Random
Linear Network Coding (RLNC), lifting and Differential Linear Network Coding
(DLNC) in Chapter 2, a probabilistic analysis of the procedures DLNC and lifting
has been carried out by comparing their failure probabilities in several steps in
Chapter 4. We started to consider an intuitive view on the scheme with double error
rank and double error correction radius for DLNC in static networks in Section 4.2.
In the subsequent section, a rough estimate for the error rank in a static network
was derived and an analog comparison conducted. In a last step in Section 4.4,
the tightest possible approximations were used to estimate the relation between the
failure probabilities of lifting and DLNC. The outcome of these comparisons were
lower bounds on the code length n, which means that for long enough codes DLNC
will outperform lifting in a certain rate region, if the network is static.

Facing varying networks in Chapter 5, we could reuse the results gained for static
networks and derive bounds for the variations, i.e. the parameters of the channel
deviation for a given rate region and vice versa. Furthermore, we introduced a
definition for slowly-varying channels and examined the restrictions for networks,
where DLNC shall give an advantage over lifting.

The simulations in Chapter 6 confirm the theoretical analysis, showing that DLNC
surpasses lifting even beyond the derived parameter bounds. This is due to the ap-
proximations that were necessary for the comparison. Note that for the simulations,
we made approximations that worsen the scenario, so it can be expected that in
reality the procedures (and particularly DLNC in the varying case) perform better.

This work offers a variety of starting points for further research. This could involve
investigations of full-rank Gabidulin codewords and their construction in order to
find a way to map information on codewords for the usage in a DLNC scenario.
Moreover, as suggested in [PCF+15], the usage of Partial Unit Memory (PUM) codes
could be combined with DLNC to gain better performance. Since (P)UM codes
are special convolutional codes constructed from block codes, they are particularly
suited to correct error peaks in a sequence of errors. Such error peaks occur in
DLNC if the network changes in only a few generations. Therefore, (P)UM codes
might admit a larger network variation compared to DLNC with ordinary rank-

77

7. Conclusion

metric codes, and also compared to (P)UM codes in a lifting construction. Similarly,
interleaved Gabidulin codes using DLNC could be compared to lifted interleaved
Gabidulin codes of the same size, as indicated in Section 3.3. Since Error Trapping
in combination with channel sounding exceeds lifted Gabidulin codes for large field
sizes according to [Cyr17, p. 106], it would be interesting to see how DLNC and
Error Trapping perform relative to each other.

Further bounds could be derived for the parameters of the channel deviation or its
quantiles by using e.g. the derived Probability Generating Function in addition to
the Chernoff bound.

In conclusion, DLNC seems to be a suitable improvement to the lifting construction
in slowly-varying networks, where RLNC is applied.

78

Acronyms

AMC Additive Matrix Channel

BLER Block Error Rate

CDF Cumulative Density Function

DLNC Differential Linear Network Coding

DPSK Differential Phase-Shift Keying

MAMC Multiplicative Additive Matrix Channel

MDS Maximum Distance Separable

MGF Moment Generating Function

MRD Maximum Rank Distance

NC Network Coding

PDF Probability Density Function

PGF Probability Generating Function

PMF Probability Mass Function

PSK Phase-Shift Keying

PUM Partial Unit Memory

RLNC Random Linear Network Coding

RRDM Receive Rank Deficiency Matrix

RRE reduced row echelon form

RS Reed Solomon

RV random variable

79

80

Notations

rk (·) Rank of a Matrix

〈·〉 Row Space of a Matrix
[
..
]
q

Gaussian coefficient

q Power of a prime

Fq Finite field of order q

Fqm Extension field of Fq of degree m

Fnqm Set of all row vectors over Fqm of length n

Fs×nqm Set of all s× n matrices over Fqm

n Number of transmitted packets in each generation

N Number of received packets in each generation

M = n+m Second dimension of sending matrix, m is the extension degree
of the Lifted Gabidulin Code

GLn(Fq) Set of invertible n× n matrices in Fq or general linear group

Pr {A} Probability of event A

E [X] Expected value of random variable X

X ∼ Bin (n, p) Random variable X is binomially distributed with n the num-
ber of trials and p the probability of a success

X ∼ Pois (λ) Random variable X is Poisson distributed with with parameter
λ as success rate

ln(x) Natural logarithm of x with basis e

R Overall rate of a transmission scheme

r = k
n

Code rate

81

82

A. Proofs

Here we present the remaining proofs from Chapter 4 and 5.

A.1. Proof of Theorem 4.3.3

Before proving Theorem 4.3.3, we state the theorem again.

Theorem 4.3.3
Let R1, R2 ∼ Bin (n, pB). Further δ > 3, 0 < εδ ≤ (δ− 3)τ/3, c1 := DKL

(
τ
n
||pB

)
and

c2 := min{DKL

(
τ+εδ
n
||pB

)
, c1 + 4e−1}.1 If n > W−1((c1−c2)/4)

2(c1−c2)
, then

Pr {R1 + 2R2 ≥ δτ} < Pr {R2 ≥ τ} .

Let R1 and R2 be the desired random variables, i.e. R1, R2 ∼ Bin (n, pB). Let
further 0 < εδ < (δ − 3) τ

3
, c1 := DKL

(
τ
n
||pB

)
, c2 := min{DKL

(
τ+εδ
n
||pB

)
, c1 + 4e−1}

and n > W−1((c1−c2)/4)
2(c1−c2)

as demanded in the theorem. By the law of total probability,
we get

Pr {R1 + 2R2 ≥ δτ} =
n∑

i=0

Pr {R1 = i}Pr {2R2 +R1 ≥ δτ |R1 = i}

=
n∑

i=0

Pr {R1 = i}Pr {R2 ≥ (δτ − i)/2} .

Regard the following partition

Pr {R1 + 2R2 ≥ δτ} =

τ+εδ∑

i=0

Pr {R1 = i}Pr

{
R2 ≥

δτ − i
2

}
+ (A.1)

+
∑

i>τ+εδ

Pr {R1 = i}Pr

{
R2 ≥

δτ − i
2

}
.

1The last definition guarantees c2 − c1 ≤ 4e−1.

83

A. Proofs

Then we can find an upper bound for the second addend by
∑

i>τ+εδ

Pr {R1 = i}Pr

{
R2 ≥

δτ − i
2

}

︸ ︷︷ ︸
≤1

≤ Pr {R1 ≥ τ + εδ} .

Since we assume εδ < (δ − 3) τ
3
, we get

εδ ≤ (δ − 3)
τ

3
(A.2)

⇐⇒ 3εδ ≤ (δ − 3)τ

⇐⇒ δτ − τ − εδ ≥ 2(τ + εδ)

⇐⇒ δτ − τ − εδ
2

≥ τ + εδ, (A.3)

In the sum of (A.1) it is

Pr

{
R2 ≥

δτ − i
2

}
≤ Pr

{
R2 ≥

δτ − τ − εδ
2

}
∀i ≤ τ + εδ, (A.4)

therefore we get

Pr {R1 + 2R2 > δτ} ≤
τ+εδ∑

i=0

Pr {R1 = i}Pr

{
R2 ≥

δτ − i
2

}

(A.4)
≤ Pr

{
R2 ≥

δτ − τ − εδ
2︸ ︷︷ ︸

(A.3)
≥ τ+εδ

} τ+εδ∑

i=0

Pr {R1 = i}
︸ ︷︷ ︸

≤1

+ Pr {R1 ≥ τ + εδ}

≤ Pr {R1 ≥ τ + εδ}+ Pr {R2 ≥ τ + εδ} .

Since R1 and R2 are independent and identically binomially distributed, we can use
the tailbound (<) for both random variables, yielding

Pr {R1 + 2R2 ≥ δτ} ≤ 2 exp

{
−nDKL

(
τ + εδ
n

∣∣∣∣pB

)}
.

Lemma 4.3.2 can be used, since all conditions are fulfilled, where we define α = 1
2

and npB < x1 := τ < x2 := τ + εδ. Then the result follows by

Pr {R1 + 2R2 ≥ δτ} ≤ 2 exp

{
−nDKL

(
τ + εδ
n

∣∣∣∣pB

)}

<2
1

2

1√
2n

exp
{
−nDKL

(τ
n

∣∣∣∣pB

)}

(>)
≤ Pr {R2 ≥ τ}

84

A.2. Proof of Theorem 4.4.1

for

n >
W−1(α2(c1 − c2))

2(c1 − c2)
=

W−1((c1 − c2)/4)

2(c1 − c2)
.

�

A.2. Proof of Theorem 4.4.1

For better readability we restate the theorem here.

Theorem 4.4.1
Let R+ = R1 + R2 be the sum of two binomially distributed random variables, i.e.
R1, R2 ∼ Bin (n, pB), where npB <

drk,L
2

<
(
ρ
2
− 1
)
drk,L +1. Let rk

(
LI>U

)
be another

random variable and α = Pr
{

rk
(
LI>U

)
≤ drk,L − 1

}
. Further c1 := DKL

(
drk,L

2n

∣∣∣∣pB

)
,

c2 := min
{

DKL

(
1
n

((
ρ
2
− 1
)
drk,L + 1

) ∣∣∣∣pB

)
, c1 + e−1

α2

}
and n > W−1(α2(c1−c2))

2(c1−c2)
. Then

Pr
{
R+ + rk

(
LI>U

)
≥ ρ

2
drk,L

}
< Pr

{
2R2 + rk

(
LI>U

)
≥ drk,L

}
.

Let the variables and conditions given as defined and stated in the theorem. At first
we separate the random variables by the law of total probability like in the proof
for Theorem 4.3.3. For the lower bound of the right side of (4.9) we obtain the
following:

Pr{2R2 + rk
(
LI>U

)
≥ drk,L} =

n∑

i=0

Pr
{

rk
(
LI>U

)
= i
}

Pr

{
R2 ≥

drk,L − i
2

}

︸ ︷︷ ︸
=1⇔i≥drk,L

(A.5)

=

drk,L−1∑

i=0

Pr
{

rk
(
LI>U

)
= i
}

Pr

{
R2 ≥

drk,L − i
2

}

︸ ︷︷ ︸
≥Pr

{
R2≥

drk,L
2

}
+

+ Pr
{

rk
(
LI>U

)
≥ drk,L

}

≥ Pr
{

rk
(
LI>U

)
≤ drk,L − 1

}
Pr

{
R2 ≥

drk,L

2

}
+

(A.6)

+ Pr
{

rk
(
LI>U

)
> drk,L − 1

}
.

85

A. Proofs

The upper bound of the other side calculates accordingly:

Pr{R++ rk
(
LI>U

)
≥ ρ

2
drk,L}

≤
drk,L−1∑

i=0

Pr
{

rk
(
LI>U

)
= i
}

Pr
{
R+ ≥

ρ

2
drk,L − i

}
+ (A.7)

+ Pr
{

rk
(
LI>U

)
> drk,L − 1

}

≤ Pr
{
R+ ≥

(ρ
2
− 1
)
drk,L + 1

}
+ Pr

{
rk
(
LI>U

)
> drk,L − 1

}
(A.8)

It remains to be shown that

Pr
{
R+ ≥

(ρ
2
− 1
)
drk,L + 1

}
< Pr

{
rk
(
LI>U

)
≤ drk,L − 1

}
Pr

{
R2 ≥

drk,L

2

}
,

(A.9)

which is almost the same as we have done before, except for the multiplicative term
Pr
{

rk
(
LI>U

)
≤ drk,L − 1

}
, which is quite hard to approximate. But we can be sure,

that the term is close to 1 (cf. Section 3.1.1 (starting on page 24) and Figure 4.12 on
p. 50). We use this as constant α from Lemma 4.3.2 (see p. 44), because it is ∈ (0, 1].
Since we demand

(
ρ
2
− 1
)
drk,L + 1 >

drk,L
2

, we can use Lemma 4.3.2 by choosing
x2 =

(
ρ
2
− 1
)
drk,L + 1 and x1 =

drk,L
2

, which yields together with the definitions of
c1 and c2 as given in the theorem the constraint n > 1

2
W−1(α2(c1− c2))/(c1− c2).�

A.3. Proof of Theorem 5.2.5

Before the proof, we recapitulate the theorem.

Theorem 5.2.5
Let R1, R2 ∼ Bin (n, pB), let A be a random variable with the PGF given in (5.1).2
Further let npB < τ < n, δ′ > 3, 0 < εδ ≤ (δ′ − 3)τ/3, c1 := DKL

(
τ
n

∣∣∣∣pB

)
and

c2 := min
{

DKL

(
τ+εδ
n

∣∣∣∣pB

)
, c1 + 4e−1

}
. It must be n > 1

2(c1−c2)
W−1

(
1
4
(c1 − c2)

)
(as

in Theorem 4.3.3). Further let c := 1√
2n

e−nc1 − 2e−nc2 and εA = F−1
A (1 − c), where

F−1
A : [0, 1]→ R is the quantile function of RV A, and δ = δ′ + εA

τ
. Then

Pr {R1 + 2R2 + A ≥ δτ} ≤ Pr {R2 ≥ τ} .

Let A := rk (∆Ai) be specified by the parameters p∆N , pw and |N | and the PGF
in (5.1). Further let npB < τ < n, 0 < εδ ≤ (δ′ − 3)τ/3, c1 := DKL

(
τ
n

∣∣∣∣pB

)
,

2i.e. specified by parameters |N |, pw and p∆N

86

A.3. Proof of Theorem 5.2.5

c2 := min
{

DKL

(
τ+εδ
n

∣∣∣∣pB

)
, c1 + 4e−1

}
and n > 1

2(c1−c2)
W−1

(
1
4
(c1 − c2)

)
(as in The-

orem 4.3.3). Moreover we need c := 1√
2n

e−nc1 − 2e−nc2 and εA = F−1
A (1− c).

Using R1, R2 ∼ Bin (n, p), we can use the law of total probability to get

Pr {R1 + 2R2 + A ≥ δτ} =
n∑

i=0

Pr {A = i}Pr {R1 + 2R2 ≥ δτ − i} . (A.10)

We split the sum as follows

Pr {R1 + 2R2 + A ≥ δτ} =

εA∑

i=0

Pr {A = i}Pr {R1 + 2R2 ≥ δτ − i}︸ ︷︷ ︸
≤Pr{R1+2R2≥δτ−εA}

+

+
∑

i>εA

Pr {A = i}Pr {R1 + 2R2 ≥ δτ − i}︸ ︷︷ ︸
≤1

and upper bound as already indicated:

Pr {R1 + 2R2 + A ≥ δτ} ≤ Pr {R1 + 2R2 ≥ δτ − εA}︸ ︷︷ ︸
=Pr{R1+2R2≥δ′τ}

εA∑

i=0

Pr {A = i}
︸ ︷︷ ︸

≤1

+ (A.11)

+ Pr {A > εA}

≤
n∑

i=0

Pr {R1 = i}Pr

{
R2 ≥

δ′τ − i
2

}
+ (A.12)

+ Pr {A > εA} .

For (A.12) we again use the law of total probability. In the next step we use εδ to
part the sum once more

Pr {R1 + 2R2 + A ≥ δτ} =

τ+εδ∑

i=0

Pr {R1 = i}Pr

{
R2 ≥

δ′τ − i
2

}
+ (A.13)

+
∑

i>τ+εδ

Pr {R1 = i}Pr

{
R2 ≥

δ′τ − i
2

}

︸ ︷︷ ︸
≤1

+

+ Pr {A > εA}

≤ Pr

{
R2 ≥

(δ′ − 1)τ − εδ
2

}
+ (A.14)

+ Pr {R1 > τ + εδ}+ Pr {A > εA} .

87

A. Proofs

Analogous to the proof of Theorem 4.3.3 we can due to εδ ≤ (δ′− 3) τ
3
further upper

bound the left side as follows

Pr

{
R2 ≥

(δ′ − 1)τ − εδ
2︸ ︷︷ ︸

≥τ+εδ

}
≤ Pr {R2 ≥ τ + εδ} .

Since R1 and R2 are identically distributed we can write

Pr {R1 + 2R2 + A ≥ δτ} ≤ 2 Pr {R2 ≥ τ + εδ}+ Pr {A > εA} .

From εA = F−1
A (1− c) we get

Pr {A ≤ εA} ≥ 1− c
⇐⇒ 1− Pr {A > εA} ≥ 1− c
⇐⇒ Pr {A > εA} ≤ c.

By the estimations (<) and (>), which were used frequently before, we can upper
bound the difference c = 1√

2n
e−nc1 − 2e−nc2 by

1√
2n

e−nc1 − 2e−nc2 ≤ Pr {R2 ≥ τ} − 2 Pr {R2 ≥ τ + εδ} (A.15)

and the claim follows. �

A.4. Proof of Theorem 5.2.7

We repeat Theorem 5.2.7 before proving it.

Theorem 5.2.7
Let R1, R2 ∼ Bin (n, pB), A another random variable with the PGF given in (5.1) ,
α = Pr

{
rk
(
LI>U

)
≤ drk,L − 1

}
, 2npB < drk,L and ρ′ > 3− 2

drk,L
, c1 = DKL

(
drk,L

2n

∣∣∣∣pB

)

and c2 = min

{
DKL

((
ρ′
2
−1
)
drk,L+1

n

∣∣∣∣pB

)
, c1 + e−1

α2

}
and n > 1

2(c1−c2)
W−1 (α2(c1 − c2))

as in Theorem 4.4.1. Further let c := α√
2n

e−nc1 − e−nc2, εA = F−1
A (1 − c), where

F−1
A : [0, 1]→ R is the quantile function of RV A, and ρ ≥ ρ′ + 2εA

drk,L
. Then

Pr
{
R+ + rk

(
LI>U

)
+ A ≥ ρ

2
drk,L

}
≤ Pr

{
2R2 + rk

(
LI>U

)
≥ drk,L

}
.

Like in the theorem before we have R1, R2 ∼ Bin (n, pB) and A a random variable
with the PGF given in (5.1) on p. 53. We define α = Pr

{
rk
(
LI>U

)
≤ drk,L − 1

}
.

88

A.4. Proof of Theorem 5.2.7

Further let 2npB < drk,L and ρ′ > 3 − 2
drk,L

, c1 and c2 as defined in the theorem
and n > 1

2(c1−c2)
W−1 (α2(c1 − c2)) as in Theorem 4.4.1. In addition we require

c := α√
2n

e−nc1 − e−nc2 , εA = F−1
A (1− c) and ρ > 3− 2

drk,L
(1− εA).

As before (cf. (A.10)- (A.14)) we use the law of total probability to separate the
random variables.

Pr

{
R+ + rk

(
LI>U

)
+ A ≥ ρ

2
drk,L

}

=
n∑

i=0

Pr {A = i}Pr
{
R+ + rk

(
LI>U

)
≥ ρ

2
drk,L − i

}

=

εA∑

i=0

Pr {A = i}Pr
{
R+ + rk

(
LI>U

)
≥ ρ

2
drk,L − i

}

︸ ︷︷ ︸
≤Pr{R++rk(LI>U)≥ρdrk,L/2−εA}

+
∑

i>εA

Pr {A = i}Pr
{
R+ + rk

(
LI>U

)
≥ ρ

2
drk,L − i

}

︸ ︷︷ ︸
≤1

≤ Pr
{
R+ + rk

(
LI>U

)
≥ ρdrk,L/2− εA

} εA∑

i=0

Pr {A = i}
︸ ︷︷ ︸

≤1

+

+ Pr {A > εA}

≤ Pr

{
R+ + rk

(
LI>U

)
≥ ρ′

2
drk,L

}
+ Pr {A > εA} ,

where ρ′ ≤ ρ− 2εA
drk,L

. We can further separate the RV similar to (A.7) and (A.8).

Pr

{
R+ + rk

(
LI>U

)
≥ ρ′

2
drk,L

}
≤ Pr

{
R+ ≤

(
ρ′

2
− 1

)
drk,L + 1

}
+

+ Pr
{

rk
(
LI>U

)
> drk,L − 1

}
.

Analogous to the proof before we can upper bound Pr {A > εA} by c due to the

definition of εA = F−1
A (1−c), where c = α√

2n
e−nc1−e

−nDKL

(
1
n

((
ρ′
2
−1
)

drk,L+1
)∣∣∣∣pB

)
, i.e.

Pr {A > εA} ≤
α√
2n

e−nc1 − e
−nDKL

(
1
n

((
ρ′
2
−1
)

drk,L+1
)∣∣∣∣pB

)
(A.16)

≤αPr

{
R2 ≥

drk,L

2

}
− Pr

{
R+ ≤

(
ρ′

2
− 1

)
drk,L + 1

}

89

A. Proofs

(c1 as defined above) and therefore

Pr
{
R++A+ rk

(
LI>U

)
≥ ρ

2
drk,L

}

≤ Pr

{
R+ ≤

(
ρ′

2
− 1

)
drk,L + 1

}
+ Pr

{
rk
(
LI>U

)
> drk,L − 1

}
+

+ Pr {A > εA}
(A.16)
≤ Pr

{
rk
(
LI>U

)
> drk,L − 1

}
+ αPr

{
R2 ≥

drk,L

2

}

(A.5)-(A.6)
≤ Pr

{
2R2 + rk

(
LI>U

)
≥ drk,L

}
,

since the right part of the inequality stated in this theorem can be lower bounded
as in the Proof of Theorem 4.4.1, where ρ′ takes on the role of ρ. �

90

B. Implementation of the RLNC
Library

The code of the RLNC channel, (de-)modulation of DLNC and other functions,
which are used in the simulations, is provided in this chapter.

The RLNC Channel Model (including initialization of the channel):
1 # necessary imports
import scipy.stats # for random variables

3

def init_rlnc_channel(Fq ,N,n,rkA=’x’):
5 """

Generate a random channel matrix A with dimensions Nxn
7 input variables:

Fq finite field of order q
9 N first dimension of channel matrix A

n second dimension of channel matrix A
11 rkA defines whether channel matrix A shall

have full rank (option ’n’) or an
13 arbitrary rank (option ’x’ or anything else

than ’n ’)
15 output:

A channel matrix Nxn -matrix , (uniformly) randomly
17 chosen from all (or regular) matrices

"""
19

MS = MatrixSpace(Fq,N,n);
21

if rkA == ’n’:
23 A = matrix.random_echelonizable(MS,rank=min(n,N));

else:
25 A = MS.random_element ();

27 return A

29 def rlnc_channel(A,X,p_B ,numNodes ,p_L ,p_W ,rkDelta=0,debug=False):
"""

31 Realisation of an RLNC Channel
input:

33 A is the channel matrix of dimension N x n

91

B. Implementation of the RLNC Library

X is the sending matrix of dimension n x M
35 p_B is the probability for the Bin(n,p_B)

distributed error matrix B
37 numNodes number of nodes in the network ,

numNodes >> n must hold
39 p_L probability for number of leaving nodes

L~Bin(numNodes ,p_L)
41 p_W probability for node weight W~Bin(numNodes ,p_W)

rkDelta decides whether to change channel matrix
43 rkDelta = 0: no change

45 output:
Y = A*X + B is the receive matrix

47 A is the perhaps changed channel matrix

49 components of Y:
B is an nx(n+m)-matrix , s.t.

51

rank(B) = t ~ Bin(n,p_B),
53

DeltaA is an Nxn -matrix , s.t.
55

rank(DeltaA) <= sum_{i=1}^L W(v_i),
57

where L~Bin(numNodes ,p_L), W~Bin(numNodes ,p_W)
59

Source for the calculation of the channel
61 deviation (DeltaA): Puchinger , Cyran:

"Error Correction for Differential Linear Network
63 Coding in Slowly -Varying Networks"

"""
65

check dimensions
67 if A.dimensions ()[1] != X.dimensions ()[0]:

raise ValueError("dimensions of A and X don’t fit.")
69

Definitions
71 N = A.dimensions ()[0];

n = X.dimensions ()[0];
73 M = X.dimensions ()[1];

Fq = X.parent ().base();
75

change channel matrix if desired
77 if rkDelta == 0:

DeltaA = zero_matrix(Fq,N,n); # zero matrix
79 else: # rk(DeltaA) <= sum_i =1^L W(v_i), see source above

define random variable L:
81 rvL = scipy.stats.binom(numNodes ,p_L);

l = rvL.rvs(1) [0];# generate random number
83 # define random variable W:

92

rvW = scipy.stats.binom(numNodes ,p_W);
85 rk = sum(rvW.rvs(l));# rk(DeltaA)

if rk > min(n,N):
87 rk = min(n,N);

if debug:
89 print ’rk(DeltaA) = ’, rk

DeltaA = random_matrix(Fq,N,n,algorithm =\
91 ’echelonizable ’,rank=rk);

A = A + DeltaA;
93

choose error rank t randomly from Bin(n,p_B)
95 # define random variable for tau:

rvt = scipy.stats.binom(n,p_B);
97 t = rvt.rvs(1) [0];# generate random number

99 # error matrix B with rank t
B = random_matrix(Fq ,N,M,algorithm=’echelonizable ’,rank=t);

101

return (A*X + B, A)

The Lifting Construction:
def lifting(S):

2 """
Perform lifting construction for an information matrix S

4 Reference: Silva , Kschischang , Kötter:
"A Rank -Metric Approach to Error Control in

6 Random Network Coding"
"""

8

n = S.dimensions ()[0];
10 Fq = S.parent ().base();

return block_matrix (1,2,[identity_matrix(Fq,n),S])

93

B. Implementation of the RLNC Library

The implementations of DLNC modulation, demodulation and necessary functions:
1 def dlnc_modulation(X_imin1 ,S_i):

"""
3 Modulation of differentially encoded matrix X,

i.e. X_i = [X_{i-1}]_n * S_i
5 S_i is the information as in Seidl’s Paper:

"A Differential Encoding Approach to
7 Random Linear Network Coding"

input:
9 X_imin1 transmit matrix from previous step ,

size nx(n+m)
11 S_i information matrix , size nx(n+m)

13 output:
X_i current transmit matrix

15 """

17 # first dimension of X_i
n = X_imin1.dimensions ()[0];

19

check dimensions
21 if n > X_imin1.dimensions ()[1]:

raise ValueError("X_imin1 must be a fat or square matrix.")
;

23 if n != S_i.dimensions ()[0]:
raise ValueError("Dimensions must fit.");

25

return X_imin1 [:,0:n]*S_i
27

def dlnc_mod(X_imin1 ,S_i):
29 return dlnc_modulation(X_imin1 ,S_i);

31 def dlnc_demodulation(Y_i ,Y_imin1):
"""

33 Demodulation of differentially encoded matrix X_i ,
i.e. X_i = [X_i]_n * S_i

35 S_i is the information as in Seidl’s Paper:
"A Differential Encoding Approach to

37 Random Linear Network Coding"
the demodulation works as follows:

39

S_hat = (Y_imin1)_[n]^+ * Y_i
41

where (Y_imin1)_[n]^+ is the pseudoinverse
43 of the first n columns of Y_imin1 , fulfilling

45 (Y_imin1)_[n]^+ * (Y_imin1)_[n] = I_n + L*I_U^T,

47 where I_U^T*L = -I_|U|x|U| (cf. function weakpseudoinverse ())
input:

94

49 Y_i received matrix in step i
with dimensions nx(n+m)

51 Y_imin1 received matrix of previous step i-1
with dimensions nx(n+m)

53

output:
55 S_hat demodulated matrix , i.e. estimate for

information matrix (coded or uncoded)
57 """

59 # first dimension of Y_i
n = Y_i.dimensions ()[0];

61

Remark: Y_imin1_inv ’s dimensions are chosen s.t.
63 # they fit Y_i’s

Y_imin1_inv = weakpseudoinverse(Y_imin1 [0:n,0:n]);
65 return Y_imin1_inv*Y_i

67 def dlnc_demod(Y_i ,Y_imin1):
return dlnc_demodulation(Y_i ,Y_imin1);

69

def weakpseudoinverse(Y,debug=False):
71 """

Compute (weak) pseudoinverse of Y according to
73 Seidl et. al.:

"A Differential Encoding Approach to
75 Random Linear Network Coding"

and Silva et. al.:
77 "A Rank -Metric Approach to Error Control

in Random Network Coding"
79

input:
81 Y square matrix of dimensions nxn

output:
83 Y_pinv square matrix of dimensions nxn ,

satisfying
85

Y_pinv*Y = I + L*I_U^T
87

where I is an nxn -identity matrix , U is a subset of
89 the columns of I and L satisfies

91 I_U^T * L = -I_|U|x|U|

93 Remark: Currently this only works for matrices over
GF(2^l) for any l>1

95 """

97 # Definitions and checks
Fq = Y.parent ().base();

95

B. Implementation of the RLNC Library

99 if Fq.characteristic () != 2 or Fq.cardinality () == 2:
raise ValueError("Matrix must be defined over Field of

characteristic 2 but not GF(2).");
101

n1 ,n2 = Y.dimensions ();
103 if n1 != n2:

raise ValueError("Input matrix must be square.")
105

calculate inverse
107 Y_pinv = Y.inverse ();

109 # if Y is invertible , the pseudoinverse is unambigious ,
i.e. the same as the actual inverse

111 if Y.is_invertible ():
return Y_pinv

113

#check if inverse is suitable
115 I_L = Y_pinv*Y;

W = I_L.rref();
117 U,U_c = find_leading_positions(W,n1);

W = W[0:W.rank()]; # remove zero rows
119 I_U = identity_matrix(Fq ,n1)[:,U];

I_U_c = identity_matrix(Fq,n1)[:,U_c];
121 L = -I_U + I_U_c * W * I_U;

I_UxU = identity_matrix(Fq,len(U));
123 if I_L != identity_matrix(Fq,n1) + L*I_U.transpose () \

or I_U.transpose ()*L != -I_UxU:
125 if debug:

print "inverse does not fulfill conditions --> swap
rows"

127 for i in U_c: # go through diagonal of Y_p*Y = I_L
if I_L[i,i] != 1:

129 for j in xrange(n1): # go through column
if I_L[j,i] == 1:

131 Y_pinv.swap_rows(i,j);
I_L = Y_pinv*Y;

133 break;

135 if Y_pinv.rank() < n1 \
or I_L != identity_matrix(Fq,n1) + L*I_U.transpose () \

137 or I_U.transpose ()*L != -I_UxU:
raise ValueError (\

139 "Could not find pseudoinverse with desired properties.")

141 return Y_pinv

143 def find_leading_positions(A,n):
"""

145 Find the positions of the leading coefficients of the
reduced row echelon form of matrix A

96

147 input:
A matrix of dimensions s x l

149 (A must be a fat or square matrix)
n defines the set {1,...,n}

151 output:
U_c set consisting of the positions of the

153 leading coefficients in {1,...,n}
U set U = {1,...,n}\U_c

155 Remark: U ist returned first
"""

157

sanity checks
159 n1,n2 = A.dimensions ()

if n1 > n2:
161 raise ValueError("A must be a fat or square matrix.");

if n > n2:
163 raise ValueError (\

"n must be smaller or equal the second dimension of A.");
165

A = A.rref();
167 U_c = [];

for r in xrange(min(n,A.rank())): # go through rows
169 for c in xrange(r,n): # go through row r

if A[r,c] == 1:
171 U_c.append(c); # found leading position

break;
173

U = [x for x in xrange(n) if x not in U_c];
175 return U,U_c;

Functions for the check of decodability:

1 def is_decodable(mode ,*args):
"""

3 Function that checks the decoding condition for an
encoding scheme specified by "mode"

5 options for "mode":
*"DLNC" : check if the rank of the effective error

7 matrix of a differentially encoded matrix
is small enough , i.e. if

9

2*rk(S_hat - S) <= d-1
11

requires the following input parameters:
13 S information matrix , dimensions: nx(n+m)

Y_i current received matrix , dimensions: nx(n+m)
15 Y_imin1 current error matrix , dimensions: nx(n+m)

d minimum distance of the used rank -metric code
17

*" Lifting ": checks if one can guarantee a decoding

97

B. Implementation of the RLNC Library

19 success for the received matrix corresponding
to a lifted codeword , i.e. if

21 _ _
| |

23 | X |
2rk | | - rk (X) - rk(Y) <= d-1

25 | Y |
|_ _|

27

source: Silva ,Kschischang , Kötter:
29 "A Rank -Metric Approach to Error Control in

Random Network Coding"
31 input:

X transmit matrix , dimensions: nx(n+m)
33 Y received matrix , dimensions: N x (n+m)

d minimum distance of the applied rank -metric code
35 return: boolean True if decodable , False if not

"""
37 if mode == "DLNC":

return is_dlncdecodable (*args);
39 if mode == "Lifting":

return is_liftdecodable (*args);
41 else:

raise AttributeError("Specify mode.");
43

def is_dlncdecodable (*args):
45 """

Function validates decoding condition for DLNC to
47 check if the rank of the effective error matrix of

a differentially encoded matrix is small enough ,
49 i.e. if

51 2*rk(S_hat -S) <= d-1

53 input:
S information matrix , dimensions: nx(n+m)

55 Y_i current received matrix , dimensions: nx(n+m)
Y_imin1 current error matrix , dimensions: nx(n+m)

57 d minimum distance of the rank -metric code
return: boolean True if decodable , False if not

59 """

61 # check number of input arguments
numargs = 4;

63 if len(args) != numargs:
raise ValueError("Number of arguments must be " +\

65 str(numargs)+ " not " +\
str(len(args)))

67

extract parameters

98

69 S = args [0];
Y_i = args [1];

71 Y_imin1 = args [2];
d = args [3];

73

check parameter dimensions e.g. d must be scalar
75 if isinstance(d, (list ,str ,unicode)):

raise TypeError("d should be scalar.");
77

if S.dimensions ()[0] != Y_i.dimensions ()[0]:
79 raise ValueError (\

"S and Y must have the same first dimension");
81

demodulate DLNC
83 S_hat = dlnc_demod(Y_i ,Y_imin1);

85 # check if 2rk(E_i) = 2rk(S_hat - S) <= d-1
if 2*(S_hat -S).rank() <= d-1:

87 return True;
else:

89 return False;

91 def is_liftdecodable (*args):
"""

93 Function validates decoding condition for Lifting
construction , it checks if one can guarantee a

95 decoding success for the received matrix corresponding
to a lifted codeword , i.e. if

97 _ _
| |

99 | X |
2rk | | - rk (X) - rk(Y) <= d-1

101 | Y |
|_ _|

103

source: Silva ,Kschischang , Kötter:
105 "A Rank -Metric Approach to Error Control in

Random Network Coding"
107 input:

X transmit matrix , dimensions: nx(n+m)
109 Y received matrix , dimensions: N x (n+m)

d minimum distance of the applied rank -metric code
111 return: boolean True if decodable , False if not

"""
113

check number of input arguments
115 numargs = 3;

if len(args) != numargs:
117 raise ValueError("Number of arguments must be " +\

str(numargs));

99

B. Implementation of the RLNC Library

119

extract parameters
121 X = args [0];

Y = args [1];
123 d = args [2];

125 # check parameter dimensions e.g. d must be scalar
if isinstance(d, (list ,str ,unicode)):

127 raise TypeError("d should be scalar.");

129 if X.dimensions ()[1] != Y.dimensions ()[1]:
raise ValueError("Dimensions do not fit.");

131

if 2* block_matrix ([[X],[Y]]).rank()-X.rank()-Y.rank()<d:
133 return True;

else:
135 return False;

100

Bibliography

[ACLY00] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Ye-
ung. Network Information Flow. IEEE Transactions on Information
Theory, 46:1204 – 1216, July 2000.

[Ash67] Robert. B. Ash. Information Theory. Number 19 in Interscience Tracts
in Pure and Applied Mathematics. Interscience Publishers, 1967.

[Bos13] Martin Bossert. Kanalcodierung. Oldenbourg Verlag München, 3rd edi-
tion, 2013.

[CGH+96] Robert M. Corless, Gaston H. Gonnet, D. E. G. Hare, David J. Jef-
frey, and Donald E. Knuth. On the Lambert W Function. Advances in
Computational Mathematics, 2:329–359, 1996.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 3rd edition, 2009.

[CX02] K. P. Choi and Aihua Xia. Approximating the number of successes
in independent trials: Binomial versus poisson. Ann. Appl. Probab.,
12(4):1139–1148, November 2002.

[Cyr17] Michael Cyran. Channel Coding and Precoding for Linear Network Cod-
ing. doctoralthesis, Friedrich-Alexander-Universität Erlangen-Nürnberg
(FAU), 2017.

[Del78] Philippe Delsarte. Bilinear Forms over a Finite Field, with Applications
to Coding Theory. Journal of Combinatorial Theory, Series A, 25(3):226
– 241, 1978.

[Eul83] Leonard Euler. De serie lambertina plurimisque eius insignibus propri-
etatibus. Acta Acad. Scient. Petropol., 2:29–51, 1783. Reprinted in Eu-
ler, L. Opera Omnia, Series Prima, Vol. 6: Commentationes Algebraicae.
Leipzig, Germany: Teubner, pp. 350–369, 1921.

[FS07] Christina Fragouli and Emina Soljanin. Network Coding Fundamentals.
In Foundations and Trends in Networking, 2007.

101

Bibliography

[Gab85] Ernst M. Gabidulin. Theory of Codes with Maximum Rank Distance.
Probl. Peredachi Inf., 21(1):3–16, 1985.

[HL08] Tracey Ho and Desmond Lun. Network Coding: An Introduction. Cam-
bridge University Press, 2008.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–
30, 1963.

[KK08] Ralf Kötter and Frank R. Kschischang. Coding for Errors and Erasures
in Random Network Coding. IEEE Transactions on Information Theory,
54(8):3579–3591, August 2008.

[KL51] Solomon Kullback and Richard A. Leibler. On Information and Suffi-
ciency. Ann. Math. Statist., 22(1):79–86, March 1951.

[KRH+06] Sachin Katti, Hariharan Rahul, Wenjun Hu, Dina Katabi, Muriel Mé-
dard, and Jon Crowcroft. XORs in The Air: Practical Wireless Network
Coding. SIGCOMM, 2006.

[KS98] Roelof Koekoek and René F. Swarttouw. The askey-scheme of hyperge-
ometric orthogonal polynomials and its q-analogue, 1998.

[Lam58] Johann Heinrich Lambert. Observationes Variea in Mathesin Puram.
Acta Helvetica, physico-mathematico-anatomico-botanico-medica, pages
128–168, 1758.

[LN83] Rudolf Lidl and Harald Niederreiter. Finite Fields (Encyclopedia of
Mathematics), volume 20. Addison-Wesley, 1983.

[Mey00] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. 2000.

[Ore33] Oystein Ore. On a special class of polynomials. Trans. Amer. Math.
Soc., 35:559–58, 1933.

[Ove07] Raphael Overbeck. Public Key Cryptography based on Coding Theory.
PhD thesis, Technische Universität Darmstadt, 2007.

[PCF+15] Sven Puchinger, Michael Cyran, Robert F. H. Fischer, Martin Bossert,
and Johannes B. Huber. Error Correction for Differential Linear Network
Coding in Slowly-Varying Networks. In SCC 2015; 10th International
ITG Conference on Systems, Communications and Coding, pages 1–6,
February 2015.

102

Bibliography

[Ros] Johan Rosenkilde. Codinglib. https://bitbucket.org/jsrn/codinglib.

[Rot91] Ron M. Roth. Maximum-Rank Array Codes and the Their Application
to Crisscross Error Correction. 37(2):328 – 336, April 1991.

[S+18] William A. Stein et al. SageMath Software Version 7.6. The Sage De-
velopers, 2018. http://www.sagemath.org.

[SCFH13] Mathis Seidl, Michael Cyran, Robert F. H. Fischer, and Johannes B.
Huber. A Differential Encoding Approach to Random Linear Network
Coding. In SCC 2013; 9th International ITG Conference on Systems,
Communication and Coding, pages 1–6, January 2013.

[Sha48] Claude E. Shannon. A Mathematical Theory of Communication. The
Bell system technical journal, 27:379–423, July 1948.

[SKK08] Danilo Silva, Frank R. Kschischang, and Ralf Kötter. A Rank-Metric
Approach to Error Control in Random Network Coding. (published in)
IEEE Transactions of Information Theory, 54, September 2008.

[Spo14] Evgeny Spodarev. Wahrscheinlichkeitsrechnung. Vorlesungsskript Uni
Ulm, 2014.

[vLW01] Jacobus H. van Lint and Richard M. Wilson. A Course in Combinatorics.
Cambridge University Press, November 2001.

[Wac13] Antonia Wachter-Zeh. Decoding of Block and Convolutional Codes in
Rank Metric. doctoralthesis, Ulm University, March 2013.

103

