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Abstract—Lattice-reduction-aided preequalization (LRA PE) is
a powerful technique for interference handling on the multi-user
multiple-input/multiple-output (MIMO) broadcast channel. How-
ever, recent advantages in the strongly related field of compute-
and-forward and integer-forcing equalization have raised the
question, if the factorization task present in LRA PE is really
solved in an optimum way. In this paper, advanced factorization
strategies are presented, significantly increasing the transmission
performance. Specifically, the signal constellation and its related
lattice as well as the factorization task/strategy are discussed.
The impact of dropping the common unimodularity constraint
in LRA PE is studied. Numerical simulations are given to show
the effectiveness of all presented strategies.

I. INTRODUCTION

Multiple-input/multiple-output (MIMO) transmission has be-
come one of the most important approaches in state-of-the-art
digital communication systems. In research, a special interest
is still on multi-user MIMO techniques. Thereby, in downlink
transmission several users are simultaneously supplied by a
joint transmitter. This is known as MIMO broadcast channel.

In order to cope with the interference present on the
MIMO broadcast channel, well-known schemes like linear pre-
equalization or Tomlinson-Harashima precoding (THP) have
initially been applied. However, alternative strategies had to
be found in order to overcome the limitation to diversity
order one. Since it achieves the MIMO channel’s diversity
[15], lattice-reduction-aided equalization [19] has soon be-
come popular—first for receiver-side equalization (uplink).
Via uplink-downlink duality [17], the related transmitter-
side techniques lattice-reduction-aided preequalization (LRA
PE) and precoding could be derived [18], [13]. In LRA
(pre)equalization, the inversion of the channel matrix is per-
formed in a suited basis. This basis is usually achieved by a
decomposition of the channel matrix into a reduced one and an
unimodular (complex) integer matrix via the Lenstra-Lenstra-
Lovász (LLL) algorithm (shortest basis problem).

Advantages in the similar field of compute-and-forward
(CF) [8] and integer-forcing (IF) (pre)equalization [20], [7]
have recently found their way into LRA equalization: when
instead solving the shortest independent vector problem as in
IF, the usually requested unimodularity of the integer matrix
is dropped. For LRA equalization on the multiple-access
channel, this may result in a gain [5]. In [12], this strategy has
been adapted to LRA PE, however, with a restriction to special
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algebraic signal constellations not suited for direct mapping
from bits to signal points (as, e.g., for square-QAM ones).

In this paper, advanced factorization strategies suitable for
conventional LRA PE are presented, i.e., a direct bit-mapping
to 2m-ary signal constellations is possible (m ∈ N). In par-
ticular, constellations over the (complex) hexagonal lattice are
contrasted to equivalent square-QAM ones w.r.t. the channel
factorization. Different factorization strategies are reviewed
and/or dualized from receiver-side LRA equalization. The
effect on (non-algebraic) constellations when dropping the
unimodularity constraint in LRA PE is studied and the relation
of the related factorization task to the shortest independent
vector problem is enlightened. The presented strategies are
covered by means of numerical simulations.

The paper is structured as follows: In Sec. II, the system
model for LRA PE is specified. Advanced factorization strate-
gies are both reviewed and proposed in Sec. III. Sec. IV
provides numerical performance evaluations. A summary of
the paper’s content and conclusions are given in Sec. V.

II. SYSTEM MODEL

In LRA (pre)equalization—contrary to IF—channel coding
and equalization can be completely decoupled, i.e., channel
coding can be applied on top of channel equalization. Hence,
we concentrate on the handling of the multi-user interference,
which is equivalent to treating an uncoded system. As usual, a
discrete-time complex-baseband transmission over the MIMO
broadcast channel is considered: a joint transmitter (N anten-
nas) is assumed to supply K single-antenna non-cooperating
receivers (N ≥ K). The related system model, depicted in
Fig. 1, is detailed in the following.1

A. Transmitter-Side Processing

Independent streams of binary source symbols (bits) have
to be transmitted to their assigned user k = 1, . . . ,K. In each
modulation step, blocks of bits qk = [qk,1, . . . , qk,log2(M)] are
mapped to data symbols a1, . . . , aK of a zero-mean signal
constellation A with cardinality M

def
= |A| (mapping M). In

order to enable a joint LRA PE, the users’ data symbols are
combined into the vector a = [a1. . . . , aK ]T.

1Notation: E{·} denotes expectation. AT is the transpose and AH the
Hermitian of matrix A; I the identity matrix. A+ = AH(AAH)−1 denotes
the right pseudoinverse of A.



y1

yK

x1

xN

HF /gZ−1

g

g

ǎK
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Fig. 1. System model for lattice-reduction-aided preequalization: joint transmitter-side processing, MIMO channel and separated receiver-side processing.

The basic idea of LRA PE is to equalize not the channel
itself, but a more suited representation of it. This is achieved
by a factorization H = ZHr, where H is the K×N MIMO
channel matrix and Hr the reduced channel matrix of same
dimensions which is conventionally (pre)equalized instead of
H . The integer matrix Z ∈ ΛK×K

a consists of elements from
the signal-point lattice Λa [3], i.e., the lattice the data symbols
are drawn from (A ⊂ Λa).

In the first step of LRA PE, the integer part of the inter-
ference is canceled via the inverse integer matrix resulting
in a vector of preequalized symbols ã = Z−1a. Following
this, each preequalized symbol is modulo-reduced to precoded
symbols x̃k = modΛp

(ãk)
def
= ãk − QΛp

(ãk), where QΛp
(·)

denotes the quantization to the precoding lattice Λp [3]. Shar-
ing the philosophy of THP by applying a modulo operation
to limit the transmit power, the signal constellation A has
to be periodically extendable. The choice of both signal and
precoding lattice will be discussed in the following section.

As a final step, the residual non-integer interference (w.r.t.
Hr) is equalized via the N × K matrix F . The transmit
symbols [x1, . . . , xN ]T = x = g−1F x̃ to be radiated from
the antennas are scaled by the scalar 1/g to keep the transmit
power fixed to Nσ2

x = Kσ2
a for each channel realization. The

variances of data and transmit symbols are defined by σ2
x

def
=

E
{
|xl|2

}
, l = 1, . . . , N , and σ2

a
def
= E

{
|ak|2

}
, k = 1, . . . ,K.

B. Channel Model

A flat-fading MIMO broadcast channel is considered, where
the K × N channel matrix H is constant over a block of
symbols (block fading). The system equation is given by

y = Hx + n . (1)

The coefficients of H are assumed to be i.i.d. zero-mean unit-
variance complex Gaussian. The vector n = [n1, . . . , nK ]T

denotes zero-mean additive white complex Gaussian noise
present at receiver k = 1, . . . ,K, also assumed to be i.i.d.
with variance σ2

n
def
= E

{
|nk|2

}
per component. The receive

symbols are combined into the vector y = [y1, . . . , yK ]T.

C. Receiver-Side Processing

At each of the K receivers, the following operations are
performed: First, the transmitter-side scaling is reversed by a
multiplication with g. Then, in coded transmission, channel de-
coding is performed. In the uncoded case, this corresponds to a
quantization of the noisy symbols w.r.t. the signal-point lattice

Λa, leading to estimated receive symbols ǎk = QΛa
(g yk),

k = 1, . . . ,K. From these modulo-congruent estimated re-
ceive symbols, estimated data symbols â1, . . . , âK ∈ A can be
obtained by the modulo operation âk = modΛp

(ǎk). Applying
the inverse mapping M−1 results in the estimated blocks of
log2(M) bits, denoted as q̂k = [q̂k,1, . . . , q̂k,log2(M)].

III. ADVANCED FACTORIZATION STRATEGIES

In this section, advanced factorization strategies are presented
and their advantages in comparison to state-of-the-art ap-
proaches are enlightened. This includes a discussion on the
signal-point lattice and the factorization strategy/algorithm.

A. Choice of the Signal-Point Lattice and Constellation

Usually, the signal-point lattice is given by the Gaussian
integers G = Z + jZ, i.e., the integer lattice in the complex
plane. The conventional approach is to choose the precod-
ing lattice as a scaled version of Λa = G. Defining the
constellation as A = RV(Λp) ∩ Λa [3], where RV(Λp) is
the Voronoi region of the precoding lattice, the choice of
Λp =

√
MG,

√
M ∈ N, results in an M -ary square-QAM

constellation.2 A direct mapping from bits to signal points
(i.e., M = 2m, m ∈ N) is possible. In Fig. 2 (left), a 16QAM
one (A = RV(4G)∩ (G+o)) including Gray labeling for bit
mapping is exemplarily shown.

An alternative strategy is to choose the Eisenstein lattice
E = Z+ωZ (Eisenstein unit ω = ej2/3π) which represents the
hexagonal lattice in the complex plane.3 As above, the prin-
ciple of nested lattices can be applied: taking the signal point
lattice Λa = E and a related precoding lattice Λp =

√
ME

(hexagonal shaping region), an M -ary periodically extendable
signal constellation is defined by A = RV(

√
ME) ∩ E.

For
√
M ∈ N, these constellations are always zero-mean. A

hexagonal quantizer QE(·) is efficiently implementable on the
basis of a Gaussian one QG(·) [14]. In Fig. 2 (right), the
respective 16-ary Eisenstein constellation is illustrated.

A disadvantage of the Eisenstein lattice is the increase of
a signal point’s nearest neighbors from 4 to 6 in comparison
to G. As a consequence, a Gray labeling is not possible any
more. Nevertheless, optimal labelings can be given, where the

2In order to obtain a zero-mean constellation, for
√
M even, the signal-point

lattice has to be shifted by the offset o = (1+ j)/2. The signal constellation
is hence given as A = RV(

√
MG) ∩ (G + o) and the quantization in the

receivers is performed w.r.t. G+ o; all other operations stay the same.
3Noteworthy, G is isomorphic to the lattice Z2 and E to the lattice A2 [1].
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Fig. 2. 16-ary Gaussian integer (left) and Eisenstein integer (right) constel-
lations defined by A = RV(Λp) ∩ Λa. Some points of the constellations’
periodical extensions and a suited mapping from bits to symbols are shown.

average number of distinct bits is 1.5 (as, e.g., in Fig. 2).
In contrast, the lowered variance of the constellation4 is
advantageous. It is induced by a packing gain due to the
densest (and hence optimum) packing in two dimensions [1],
as well as the shaping gain of the hexagonal boundary region.
Most important, regarding LRA PE, a factorization gain is
present: due to the higher packing density of the Eisenstein
integers, the choice of the integer matrix’ elements is more
flexible (Z ∈ EK×K vs. Z ∈ GK×K ; cf. [12]).

In CF/IF, periodically extendable constellations are not
sufficient. There, p-ary constellations, p a prime, have to be
employed and a match between the arithmetic in the complex
and finite-field domain has to be guaranteed [8], [16]. A direct
mapping from bits to signal points is no longer possible [12].

B. Choice of the Factorization Strategy

To solve the factorization task for LRA PE, different ap-
proaches have either directly been given in literature or can
be dualized from receiver-side LRA equalization. This—in the
first step—concerns the choice of the matrix that has to be
factorized into an integer and residual non-integer part.

1) Classical Approach: In the initial papers on LRA pre-
equalization/precoding [18], [13], the factorization task

H = ZHr (2)

is solved. The factorization is consequently directly applied
on the channel matrix H . The reduced channel matrix reads
Hr = Z−1H and, employing the zero-forcing (ZF) criterion,
the residual equalization is performed by F = H+

r .
2) Advanced Approaches: Applying the minimum mean-

square error (MMSE) instead of the ZF criterion/solution [4],
the transmission performance can be increased. In this case,
the K × (N +K) augmented channel matrix H def

= [H,
√
ζI]

with parameter ζ = σ2
n/σ

2
a is factorized.The matrix for MMSE

linear (residual) preequalization is the N ×K upper part F =
HH

r (HrH
H
r + ζZ−1Z−H)−1 of its (N +K)×K augmented

variant F = H+
r = ([Z−1H,

√
ζZ−1])+.

Another strategy is the factorization of (H+)H, i.e., the Her-
mitian of the pseudoinverse of H instead of the channel matrix
itself [15]. This incorporates the fact that the transmission

416QAM: σ2
a = 2.5; 16-ary Eisenstein constellation: σ2

a = 2.25.

TABLE I
FACTORIZATION STRATEGIES DUALIZED TO LRA PE (CF. [5]).

based on H (ZF solution) H (MMSE solution)

H H = ZHr H = ZHr

(H+)H (H+)H = Z−HF H (H+)H = Z−HFH

performance does not directly depend on Hr but on its inverse
F = H+

r used to equalize the reduced channel [5]. Dual-
izing this approach to LRA PE, the factorization task reads
(H+)H = Z−HF H. The ZF linear residual equalization matrix
is straightly given by F = (F H)H, and Z−1 = (Z−H)H.

Combining the advantages of both MMSE solution and
factorization of (H+)H, the factorization of the Hermitian of
the inverse augmented channel matrix (cf. dual variant in [5])

(H+)H = Z−HFH (3)

is suited to minimize the mean-square error directly.5 The
equalization matrix F is immediately the N ×K upper part
of F = H+

r = ([(Z−H)HH,
√
ζ(Z−H)H])+.

In CF/IF (transmitter-side) schemes, e.g., [8], the optimiza-
tion of Z is performed on the K ×K square-root L of

LLH = (HHH + ζI)−1 . (4)

Thereby, L can be any square-root, e.g., a Cholesky factor.
This approach is, however, equivalent to (3): Since HHH =
HHH + ζI , another possible square-root of (HHH + ζI)−1

is L = (H+)H, as6 LLH = (H+)HH+ = (HHH + ζI)−1.
The different approaches are listed in terms of their prop-

erties in Table I. It is the dual variant of the overview in [5].

C. Choice of the Factorization Task and Algorithm

To solve the abovementioned factorization approaches—in
principle—any lattice-reduction algorithm can be employed.
The factorization then results in an unimodular integer matrix
(|det(Z)| = 1) with integer inverse Z−1 ∈ ΛK×K

a . The
reduced channel Hr constitutes a suited basis of the lattice
spanned by H , where Z describes the change of basis. The
related factorization criterion may, e.g., be the minimization
of the maximum squared Euclidean norm of the basis vectors
(shortest basis problem). Most often, the LLL algorithm (here:
its complex-valued variant [6]) is applied for lattice basis
reduction, efficiently computing a near-optimum short basis.7

Recently, inspired by integer-forcing schemes, e.g., [20],
the unimodularity constraint in LRA (receiver-side) equaliza-
tion has been queried [5]. In IF, the restriction to algebraic

5The minimization of the (receiver-side) mean-square error can also be
found in MMSE vector precoding [11].

6Proof: LLH = (H+)HH+ = ((HHH)−HHHH(HHH)−1)H =
(HHH)−H = (HHH + ζI)−H = (HHH + ζI)−1, since HHH + ζI is
a Hermitian matrix.

7For the Eisenstein lattice, an adapted definition of LLL reduction can be
given [9]. Then, in the LLL algorithm, the condition for size reduction [6,
Eq. (5)] and the quantization [6, Line 1 in Alg. 2] are adapted to RV(E).
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signal constellations allows interference cancellation over p-
ary finite fields (cf. [5]). This approach relaxes the shortest
basis problem to the so-called shortest independent vector
problem (SIVP), where the unimodularity constraint on Z is
dropped8 (|det(Z)| ≥ 1, i.e., rank(Z) = K). Transferring
this philosophy to (conventional) LRA PE, a non-unimodular
Z results in a Z−1 ∈ (δΛa)K×K , with δ = det(Z)−1 < 1.
The preequalized symbols ã = Z−1a (cf. Fig. 1) are not
drawn from Λa any more, but are elements of a scaled lattice
δΛa. Periodical extensibility of these signal points is, however,
kept as det(Z) ∈ Λa, and hence Λa ⊂ δΛa. After the modulo
operation the symbols are merely—similar to THP—more
uniformly distributed over the shaping region. This scaling
is automatically reversed by the channel H = ZHr, i.e.,
ǎk ∈ det(Z)δΛa = δ−1δΛa = Λa. In contrast to IF,
a restriction to algebraic constellations is not needed when
applying a (more flexible) factorization according to the SIVP.

In LRA PE, the channel-dependent scaling factor g−1

compensates the enhancement of transmit power induced by
the non-integer equalization via F . This, however, results in
a performance-decreasing enhancement of the receiver-side
noise variance by the factor g2 (inverse scaling by g). Thereby,
g2 =

∑N
l=1 ||f

H
l ||2/N = ||F ||2F/N , where fH

l is the lth row of
F = [f1, . . . ,fN ]H, and || · ||F denotes the Frobenius norm.9

8Since in IF Z is substituted by a finite-field variant ZF of it, a (finite-field)
integer inverse always exists if rank(ZF) = K, cf. [5]. A similar finite-field
approach for LRA preequalization has been proposed in [12].

9The Frobenius norm of a U × V matrix A = [ au,v ] is defined as

||A||F = ||AH||F
def
=

√∑U
u=1

∑V
v=1 |au,v |2.
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The combination of the minimization of g2, the factorization
approach (3), and the relaxation to |det(Z)| ≥ 1, results in
the sum-mean-square-error minimization

ZH = argmin
Z∈ΛK×K

a ,
rank(Z)=K

∑K

k=1
||zH

kL||2 = argmin
Z∈ΛK×K

a ,
rank(Z)=K

||ZHL||2F . (5)

The kth row of ZH = [z1, . . . ,zK ]H is denoted as zH
k and

L = (H+)H is a square root of LLH = (HHH + ζI)−1.
The factorization task (5) is similar to the optimum one

for LRA/IF receiver-side equalization according to the SIVP,
where maxk ||LHzk||2 = maxk ||zH

kL||2 has to be minimized
[5]. However, the algorithms in [2], [5] additionally solve the
successive minima problem (SMP) [2], where not only the
maximum norm but all of them have to be as small as possible.
Thus, the solution to the successive minima problem also
minimizes the sum of the norms and the (dualized) algorithms
find an optimum solution for (5). Noteworthy, the algorithm
in [5] can easily be adapted to Λa = E.

IV. NUMERICAL RESULTS

Numerical simulations have been performed to assess the fac-
torization approaches. The results are averaged over all users
and a large number of channel realizations. The signal-to-noise
ratio (SNR) is expressed as Eb,TX/N0 = σ2

a/(log2(M)σ2
n),

i.e., as TX energy per bit over the noise power spectral density.
In Fig. 3, the bit-error rate (BER) of LRA PE is depicted

over the SNR for a 16QAM transmission (Λa = G). A lattice
basis reduction via (complex) LLL algorithm has been applied
for all approaches; linear residual equalization has been chosen
in accordance (ZF/MMSE). In addition, a factorization w.r.t.
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the SMP is employed to solve (5) in an optimal way (ZF
solution: ζ = 0). Regarding the case N = K = 4 (top),
the choice of either the ZF or the MMSE solution mainly
influences the performance. Factorizing (H+)H or (H+)H,
respectively, most often results in the same Z compared to
H or H; instead a major gain in performance is induced by
the MMSE residual linear equalization in lieu of the ZF one.
Solving the SMP results in minor additional gains; the vast
majority of integer matrices is still unimodular (cf. [5]). An
increase in dimension to N = K = 8 (Fig. 3 bottom) changes
the situation: When factorizing (H+)H or (H+)H instead of
H or H via the LLL, better solutions for Z are found; a gain
of about 1 dB is present (high-SNR regime). Solving the SMP
instead results in 1 dB additional gain; a significant number
of integer matrices is now non-unimodular. Besides, for both
ZF and MMSE (non-LRA) linear preequalization (LPE) only
diversity order one can be achieved in any case.

Fig. 4 illustrates the results when the 16QAM constellation
is substituted by a 16-ary Eisenstein one (Λa = E). Basically,
the same behavior as in the QAM case is visible. Performance
is, however, generally increased due to the constellation’s
packing and shaping gain, and especially due the factorization
gain of the Eisenstein lattice. Considering the MMSE solutions
in the high-SNR range, the same BER as for QAM is achieved
for an approximately 1 dB lower SNR. Combining all ad-
vanced strategies (factorization of (H+)H, SMP, Λa = E), for
N = K = 8, a gain of more than 4 dB is possible compared
to the naive approach (factorization of H , LLL, Λa = G).

The illustration of the expectation of g in Fig. 5 for
N = K = 2, . . . , 8 complements the theoretical deriva-
tions. Restricting to LLL factorization, the best-performing
factorization/equalization approach ((H+)H, MMSE) lowers
the value of g mainly independently from the dimensions.
As the computational effort is not increased in comparison to
the naive approach (H , ZF) this strategy is always advisable.
In contrast, a factorization according to the SMP only has
relevance for K ≥ 4. Eisenstein signal constellations (dashed)
show a significant gain compared to QAM ones (solid). As
a consequence, a positive impact on the BER performance is
present even though a Gray labeling is not possible.

V. SUMMARY AND CONCLUSIONS

Advanced factorization approaches for LRA PE have been
presented and assessed. Eisenstein-based signal constellations,
the sum-mean-square-error approach, and the factorization
according to the SMP (a stricter version of the SIVP) instead
of the shortest basis problem have been discussed. Numerical
simulations have revealed that even for conventional LLL
reduction, the right choice of both the signal point lattice and
the factorization approach allows considerable gains. For the
high-diversity case, algorithms solving the SMP can further
increase performance. Noteworthy, an extension to (THP-type)
precoding can directly be performed, cf. [10].
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