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Abstract—We present a new approach for assessing the in-
stantaneous power distributions of the continuous-time transmit
signal (i.e., after pulse shaping) in single- and multi-carrier
transmission schemes. On the one hand, an efficient calculation
of the distribution for single-carrier signals via the fast Fourier
transform (FFT) is given. On the other hand, tight approx-
imations for multi-carrier transmission based on orthogonal
frequency-division multiplexing (OFDM) are reviewed. Thereby,
the effect of non-modulated carriers (guard bands) is taken into
account. The impact of the roll-off factor of root-raised-cosine
pulse shaping is analyzed and its converse influence on the
peak-to-average power behavior of both modulation strategies
is discussed. All theoretical derivations match very well with
numerical results obtained from Monte–Carlo simulations.

I. INTRODUCTION

The peak-to-average power ratio (PAR) behavior of a mod-
ulation scheme is an important parameter in the design of
digital communication systems, since the PAR significantly
affects the implementation of the power amplifier in the radio
frontend. Consequently, an efficient and accurate assessment of
different modulation formats is highly desirable. In particular,
the statistical properties of the instantaneous power (squared
envelope) of the transmit signal are of interest.

Unfortunately, up to now, no final solutions to the problem
at hand have been presented in the literature. In case of single-
carrier modulation employing amplitude shift-keying (ASK)
or quadrature-amplitude modulation (QAM) signal constel-
lations, only upper and lower bounds on the distribution of
the instantaneous power were known [12], [13]. Besides this,
theoretical considerations on the maximum possible PAR were
carried out in [2]. Recently, an approach that enables a precise
calculation of the distribution of instantaneous power for QAM
was proposed [7], however, at the cost of high computational
complexity.

For multi-carrier modulation schemes, particularly orthog-
onal frequency-division multiplexing (OFDM), tight approxi-
mations for the PAR behavior already exist for a long time
(e.g., [5], [6], [14]). However, in these publications, either
the behavior of the discrete-time transmit symbols is studied,
or that of the continuous-time signal assuming ideal low-
pass filtering. Both cases are not suited for performing a fair
comparison with single-carrier transmissions. Consequently,
we present a new approach for an efficient assessment of
the instantaneous power distribution for single- and multi-
carrier schemes. Based thereon, a meaningful comparison and
discussion on the different behaviors is possible.

The paper is organized as follows: First, in Section II, we
describe the theoretical derivation of the PAR statistics for

ASK and QAM signaling and give an efficient numerical im-
plementation. The usual, well-suited approximation for OFDM
is reviewed in Section III. The effect of oversampling, usually
employed in practice, is discussed from the PAR perspective.
Finally, in Section IV, a comparison of the different statistical
properties of single- and multi-carrier signals is drawn. The
paper closes with a brief conclusion (Section V).

II. SINGLE-CARRIER SIGNALS

A. System Model

In this paper, we consider single-carrier pulse-amplitude mod-
ulation (PAM). The block diagram of the transmitter is de-
picted in Fig. 1. First, the redundancy-free sequence of binary
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Fig. 1. Transmitter model of single-carrier PAM transmission.

source symbols Q[l] ∈ {0, 1} (bits) is mapped to amplitude
coefficients of a given signal constellation A with cardinality
M = |A|. By this, we obtain a sequence of independent and
identically distributed random variables1 A[k], k ∈ Z. Then,
the transmit signal in the equivalent complex baseband (ECB)
[3], [9] is formed via

S(t) =
∑∞

k=−∞
A[k] g(t− kT ) , (1)

where T is the symbol interval and g(t) denotes the impulse
response of transmit filer (i.e., basic pulse shape).

We examine two possible choices of the signal constellation:
In the case of bipolar ASK, we restrict to real-valued random
variables A[k] ∈ R, drawn from the constellation

AASK
def=
{
c · (2m− (M + 1))︸ ︷︷ ︸

am

| m ∈ {1, 2, . . . ,M}
}
. (2)

When employing square QAM constellations (i.e.,
√
M ∈ N),

we have A[k] = AI[k]+ jAQ[k], where AI = AQ = AASK =
{a1, a2, . . . , a√M}. The normalization constants are set to
cASK = 1/

√
(M2 − 1)/3 and cQAM = 1/

√
2(M − 1)/3,

respectively, leading to σ2
A

def= E{|A[k]|2} = 1. As we assume
a redundancy-free sequence of source symbols, the amplitude
coefficients are uniformly distributed with probability 1/M .

1Notation: Random variables are typeset in capitals, realizations thereof
in lowercase letters. E{·} denotes expectation; si(x) def=

sin(x)
x

is the sinc
function. inf{·} denotes the infimum operator.



Throughout the paper, we consider a real-valued square-root
raised-cosine (RRC) pulse-shaping filter g(t) with some roll-
off factor α ∈ [0, 1] and energy Eg [9, p. 675]. This choice,
together with the receiver-side matched filter, guarantees inter-
symbol interference-free detection instances. In practice, the
impulse response has to be limited to a finite length2 L = KT ,
i.e., g(t) = 0, ∀t /∈

[
−K2 T,

K
2 T
)
, with K ∈ N and K even.

Since the ECB transmit signal S(t) is a cyclostationary
random process [4] its statistical characteristics vary periodi-
cally over time with period T . Consequently, w.l.o.g., we can
restrict the assessment to the interval t ∈ [0, T ). Similar to the
procedure in [7], [12], we substitute the random variables in
(1) by new random variables Aκ

def= A[κ−K/2] and the filter
coefficients by gκ(t)

def= g(t − (κ − K/2)T ) with new index
κ ∈ {1, 2, . . . ,K}. As a result, we obtain

S(t) =
∑K

κ=1
gκ(t)Aκ , t ∈ [0, T ) . (3)

From (3), we see that the ECB signal’s value at a certain time
instant is given by the addition of products

Sκ(t)
def= gκ(t)Aκ , (4)

i.e., S(t) is the sum of random amplitude coefficients, each
weighted by a filter coefficient, dependent on the observation
time.

B. Statistical Description of Instantaneous Power

We are interested in assessing the statistical distributions of
the instantaneous power (IP) P (t) def= |S(t)|2. It is convenient
to normalize this quantity to the average power. Since we have
σ2
A = 1, the normalized instantaneous power is given as

Pn(t)
def=

P (t)

Eg/T
. (5)

The complementary cumulative distribution function (ccdf)

ΓPn(t)(pn)
def= Pr{Pn(t) ≥ pn} = 1− FPn(t)(pn) , (6)

where FPn(t)(pn) is the cumulative distribution function (cdf),
is well-suited for characterizing the occurrence of large instan-
taneous powers.

The cyclostationarity of the process Pn(t) is usually taken
into account by considering time-averaged distributions, spe-
cifically, the average ccdf3

ΓP̄n
(pn) =

1

T

∫ T

0

ΓPn(t)(pn) dt . (7)

As we want to assess the PAR behavior of different mod-
ulation formats, our goal is to obtain the particular values of
the IP that are exceeded with a certain probability ψ ∈ [0, 1],
e.g., ψ = 10−5. It is well-known, that such an approach is

2By choosing K = 2000, we can ensure that—even in the case of α = 0
(ideal low-pass filter)—more than 99.99 percent of the pulse shape’s total
energy are gathered. In [12], it was shown that 99.9 percent of total energy
are enough, so that further increases of K do not have relevant impacts on
the distribution of instantaneous power.

3In case of a symmetric impulse response g(t), as stated in [7], one take
advantage of the statistic properties’ symmetry wrt. t = T/2.

much more relevant than considering the maximum possible
values. Hence, we study the inverse ccdf (iccdf)

Γ−1
P̄n

(ψ) def= inf{pn ∈ R+
0 | ΓP̄n

(pn) ≤ ψ} . (8)

C. Efficient Assessment of Distributions for ASK
In this section, we present a strategy based on characteristic
functions which enables an exact computation of the IP distri-
bution. In contrast to the approach in [7], where characteristic
functions using polar coordinates are applied, we resort to
Cartesian coordinates.

The characteristic function of a random variable X is the
(inverse) Fourier transform of the probability density function
(pdf) fX(x) [8]

ϕX(ω) def= E{ejωX} =
∫ ∞
−∞

fX(x) · ejωx dx . (9)

For uniform M -ary ASK, the characteristic function is readily
determined as

ϕSκ(t)(ω) =
2

M

∑M/2

m=1
cos(ωgκ(t)amcASK) . (10)

In case of M →∞, the coefficients are uniformly distributed
within the interval [−

√
3,
√
3] [12], and the characteristic

function is given as

ϕSκ(t)(ω) = si(ωgκ(t)
√
3) . (11)

Since the addition of independent random variables results
in the multiplication of their characteristic functions [8], we
obtain the characteristic function of S(t) as

ϕS(t)(ω) =
∏K

κ=1
ϕSκ(t)(ω) . (12)

Because the Fourier transform of ϕS(t)(ω) yields the corre-
sponding pdf fS(t)(s), the requested ccdf calculates to

ΓS(t)(s) =

∫ ∞
s

fS(t)(ξ) dξ . (13)

Finally, using the symmetry of bipolar ASK, the ccdf of nor-
malized IP results from ΓPn(t)(pn) = 2ΓS(t)(

√
pn(Eg/T )).

The main advantage of this (analytically correct) approach
is the feasibility of an efficient numerical implementation
employing a fast Fourier transform (FFT). After calculating
the characteristic functions (10) and (12), one single FFT
operation is sufficient to obtain (a sampled version of) the
pdf fS(t)(s).

Fig. 2 shows the time-averaged ccdf for various values of M
and α, each of them computed with the presented approach.4

Additionally, the results of Monte–Carlo simulations are de-
picted. As one can see, the numerically calculated curves are
well in accordance with the ones obtained by simulation.

Fig. 3 compares the (time-averaged) iccdf (probability
ψ = 10−5) for different cardinalities M over the roll-off
factor α. As already supposed on the basis of approximations

4The characteristic functions were represented by 221 samples within the
interval s ∈ (−32, 32] (here: s dimensionless quantity) in order to minimize
effects that are associated with the FFT (leakage, cyclic convolution). The
integral in (7) was evaluated numerically using equidistant (∆t = T/β with
β = 128) sampling, i.e., β different distributions have been averaged, cf. [7],
[12].
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Fig. 2. Time-averaged ccdf of the normalized instantaneous power for ASK
obtained by numerical calculation using FFT. For comparison, the results from
Monte–Carlo simulation are shown.
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Fig. 3. Time-averaged iccdf of the normalized instantaneous power for ASK
over the roll-off factor α of the basic pulse g(t).

or simulations in [12], the PAR behavior gets worse with
increasing cardinality of the signal constellation. However,
the influence of the roll-off factor is not monotonous—best
performance is achieved for α between 0.4 and 0.5. This effect
is caused as the characteristics of the cyclostationarity change
with α. A detailed discussion is given in Section IV.

D. Extension to QAM

The strategy presented in the previous section can easily be
extended to square QAM constellations, where real and imag-
inary part are drawn independently. If g(t) is real valued, the
ECB transmit signal can be written as S(t) = SI(t)+ jSQ(t),
each quadrature component originating from the coefficients
AI[k] and AQ[k], respectively. Since fSI(t)(s) = fSQ(t)(s)

def=
fS×(t)(s), the corresponding characteristic function reads

ϕS×(t)(ω) =
∏K

κ=1

(
2√
M

∑√
M/2

m=1
cos(ωgκ(t)amcQAM)

)
,

(14)
or in the case of M →∞ as

ϕS×(t)(ω) =
∏K

κ=1
si(ωgκ(t)

√
3/2) . (15)
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Fig. 4. Time-averaged ccdf of the normalized instantaneous power for QAM
obtained by numerical calculation using FFT. For comparison, the results from
Monte–Carlo simulation are shown.
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Fig. 5. Time-averaged iccdf of the normalized instantaneous power for QAM
over the roll-off factor α of the basic pulse g(t).

Due to independence, the characteristic function of P (t) =
S2

I (t) + S2
Q(t) is obtained by

ϕP (t)(ω) = (ϕS2
×(t)(ω))

2 . (16)

Hence, after Fourier transform, normalization and time averag-
ing are performed just like in the real-valued case to obtain the
requested average pdf of the normalized instantaneous power.5

Fig. 4 compares the numerical results6 for the time-averaged
ccdf with that obtained from numerical simulations. For all

5Although the numerical calculation of ϕS×(t)(ω) does not differ from the
one-dimensional case in principle, the present approach raises the problem of
obtaining the characteristic function ϕS2×(t)(ω) from ϕS×(t)(ω). Unfortu-
nately, this cannot be done directly. Instead, we first have to compute the pdf
fS×(t)(s) via FFT. As a discrete representation of fS2×(t)(p) with equidistant
samples is desired, each sample of fS×(t)(s) is mapped to the corresponding
nearest position p = s2 of fS2×(t)(p). Even though this is a lossy (quantized)
transformation, the inaccuracies are negligible if a large amount of samples
is used. Once we have obtained fS2×(t)(p), the desired pdf fP (t)(p) can
be computed via fast convolution, which is an efficient (FFT-based) practical
implementation of (16).

6Here, fS×(t)(s) was represented via 219 samples within s ∈ [−16, 16]
and fS2×(t)(p) via 221 samples within p ∈ [0, 64]. β = 128 time positions
were used.



values of the parameters α and M , the theoretical curves match
very well with the results of Monte–Carlo simulations.

Fig. 5 shows the iccdf (probability ψ = 10−5) for different
cardinalities M over the roll-off factor α. For QAM, the same
characteristics as in the case of ASK transmission are present.
However, in general, a somewhat better behavior of the PAR
can be observed.

III. MULTI-CARRIER SIGNALS

A. System Model

In this section, we consider multi-carrier transmission via
OFDM. The assumed system model is depicted in Fig. 6.
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Fig. 6. Transmitter model of OFDM multi-carrier transmission.

The redundancy-free sequence of source symbols is de-
multiplexed into D parallel bitstreams by serial-to-parallel
conversion. Each is mapped to signal points drawn from the
same constellation A, forming a frame of symbols A[kf ]

def=
[A0[kf ], . . . , AD−1[kf ]] in frequency domain, where kf denotes
the frame index. The frame X[kf ]

def= [X0[kf ], . . . , XD−1[kf ]]
of corresponding time-domain symbols is calculated using an
inverse discrete Fourier transform (IDFT)

Xl[kf ] =
1√
D

∑D−1

j=0
Aj [kf ] · ej 2πD jl , l ∈ {0, . . . , D − 1} .

(17)
Via parallel-to-serial-conversion, a sequence of (complex-
valued) time-domain symbols X[k] is obtained, which consti-
tute the amplitude coefficients for RRC pulse shaping accord-
ing to (1) to generate the continuous-time ECB transmit signal
S(t). Hence, for the generation of the transmit signal, OFDM
can simply be seen as single-carrier transmission, where the
amplitude coefficients are not directly drawn from a QAM
alphabet but are generated by some means of preprocessing.
As usual in the literature, the OFDM guard interval [1] is
neglected in the subsequent analysis.

B. Efficient Assessment of Distributions for OFDM

For the moment, we assume that all elements of the frame
A[kf ] are independently drawn from the same (square) QAM
constellation (independent real and imaginary part) with zero
mean and variance σ2

A = 1. Hence, the (stationary) discrete-
time process X[k] possesses a constant power spectral den-
sity (PSD) ΦXX(ej2πfT ), which corresponds to uncorrelated
samples in time-domain (all of them with uncorrelated real
and imaginary parts [10]). As a consequence—and exactly

the same as in case of single-carrier PAM transmissions—
the average PSD Φ̄SS(f) of the process S(t) is simply
proportional to the energy spectrum |G(f)|2 of the basic pulse
shape. This fact is illustrated in the top plot of Fig. 7.
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Fig. 7. Visualization of the power spectral densities of single-carrier PAM
transmission and OFDM transmission without/with guard bands. Top: PSD
of processes X[k] and S(t) for OFDM transmissions without guard bands,
identical to single-carrier PAM transmissions (where X[k] = A[k]). RRC
pulse shape with roll-off factor α = 0.5. Bottom: PSD of processes X[k]
and S(t) for OFDM transmissions with guard bands (oversampling, here by
a factor of D/Du = 2). RRC pulse shape with α = 0.5 (relative to Tgb).

Even though single- and multi-carrier modulation may pos-
sess the same PSD, the pdfs of the transmit symbols differ
significantly. Due to the addition of independent, identically
distributed random variables in (17), according to the central
limit theorem [8], for typical numbers of subcarriers (e.g.,
D ≥ 128) the distribution of the time-domain symbols X[k]
(at the input of the transmit filter) is well approximated by a
complex Gaussian distribution [11].

Since, in the case of Gaussian distributions, uncorrelated
random variables are equivalent to independent variables,
the time-domain samples are (well approximated to be) in-
dependent, each with independent components. Hence, for
assessing the peak-power behavior, OFDM can be simply
regarded as single-carrier modulation with (complex-valued)
Gaussian amplitude coefficients. As a result, |S(t)| is Rayleigh
distributed [8] with the filter-dependent scale parameter σ2

r =
1/2 ·

∑K
κ=1 g

2
κ(t), which gives the variance of SI(t) and

SQ(t) at a particular time instant. Consequently, P (t) is
exponentially distributed (cf. [5]) and its ccdf is given as

ΓP (t)(p) = exp
(
− p

2σ2
r

)
= exp

(
− p∑K

κ=1 g
2
κ(t)

)
. (18)

In this way, the PAR behavior of OFDM transmissions can
efficiently be approximated by an analytical expression. Fig. 8
shows the time-averaged ccdf curves that were obtained by
evaluating (18). Additionally, (except for α = 0; the curve
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Fig. 8. Time-averaged ccdf of normalized instantaneous power of OFDM
transmission for complex-valued Gaussian coefficients (analytic solution) and
Monte–Carlo simulations.

labeled “with g.b.” will be explained subsequently) numer-
ical results from Monte–Carlo simulations of OFDM with
D = 512 and 16QAM symbols are shown. On the one hand,
the perfect match between simulations and approximation can
be seen. On the other hand, the impact of the roll-off factor
α is surprising: contrary to single-carrier transmission, the
PAR gets worse when increasing α. This effect is caused by
different manifestations of the cyclostationarity of the transmit
signal; it will be explained in detail in Section IV.

C. Influence of Guard Bands

It is common practice, that some of the available OFDM
subcarriers (i.e., modulation symbols within the frame A[kf ])
are not used for information transmission. Instead, several
carriers (typically at the highest and/or lowest frequencies)
are set to zero in order to form so-called guard bands [1]. We
denote the number of carriers used for data transmission by
Du.

Obviously, in order to achieve the same data rate as in case
of no guard bands, the symbol interval used in pulse shaping
has to be shortened to Tgb

def= Du/D · T . This approach can
be considered as oversampling (D/Du is the oversampling
factor), since the frames are padded with zeros, meaning that
the periodic repetitions are shifted to higher frequencies.7 As
a result, the PSD ΦXX(ej2πfTgb) periodically exhibits band
where it is (nearly) zero, as shown in the bottom plot of Fig. 7

As a consequence, even by employing a pulse shape with
α � 0 (relative to the interval Tgb), an almost rectangular
average PSD Φ̄SS(f) of the transmit signal is obtained.
This, however, corresponds to a (nearly) wide-sense stationary
signal S(t). Thus, in strong contrast to OFDM transmissions
without guard bands or single-carrier PAM, the basic pulse
shape has (almost) no impact on the PSD as long as it
suppresses the periodic repetitions and exhibits a constant
transfer function in the range of the used subcarriers.

7When using Du = 512 out of D = 1024 carriers and hence Tgb = T/2,
the periodic repetitions only appear at f = v · 2/T , v ∈ Z.

The influence of the guard bands and the associated wide-
sense stationarity of the transmit signal is demonstrated by
Monte–Carlo simulation (16QAM symbols) for D = 1024,
Du = 512 and RRC pulse shape with α = 0.5 (relative to
Tgb). For this setting, an almost rectangular PSD Φ̄SS(f)
is achieved. As can be seen from Fig. 8 (labeled “with
g.b.”), as expected from the theoretical considerations, the ccdf
coincides with that for Gaussian coefficients and ideal low-
pass filtering. Thus, the use of guard bands, which naturally
leads to a wide-sense stationary transmit signal, even has a
positive effect on the PAR of OFDM.

IV. COMPARISON OF SINGLE- AND MULTI-CARRIER
SIGNALS

In this section, we compare the PAR behavior of single- and
multi-carrier modulated signals. In addition, we provide an
explanation for the contradictory influence of the roll-off factor
on both modulation techniques. To this end, Fig. 9 shows the
iccdf (probability ψ = 10−5) for the single- (QAM modula-
tion) and multi-carrier (OFDM) case. By computing the iccdf
for the individual time instances t = 0 and t = T/2, as well
as the time-averaged icddf, the impact of the cyclostationarity
of the transmit signal can be grasped.
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Fig. 9. Iccdf of normalized instantaneous power for observation times
t = 0 and t = T/2 together with the time-averaged result. Single-carrier
transmission using QAM (here: M → ∞) and multi-carrier transmission
(OFDM).

Considering the Gaussian distribution of the coefficients
X[k] in OFDM (without guard bands), the explanation for the
degrading PAR behavior when increasing α is straightforward:
Since the Gaussian pdf remains Gaussian in case of convolu-
tion [8], the transmit signal S(t) obtained from pulse shaping
is also Gaussian. In the wide-sense stationary case (α = 0),
the same (complex) Gaussian distribution is present at any
observation time t ∈ [0, T ) as i) the average power8 (ensemble
average) does not vary over time and ii) a zero-mean Gaussian
distribution is completely defined by its variance. Hence, the
ccdf of the normalized instantaneous power is identical to the
time-averaged one and reads ΓP̄n

(pn) = e−pn .

8As we consider only zero-mean processes, the average power coincides
with the variance.



However, the variance (ensemble average) of the transmit
signal S(t), which is determined by the sum of squared filter
coefficients at a given observation time (cf. (18)), shows an in-
creasing fluctuation over the symbol interval if α is increased.
In particular, the variance around t = T/2 decreases (and
hence does the iccdf curve), whereas the variance around t = 0
(and the iccdf curve) increases over α. As the time-averaged
PAR behavior is dominated by the worst-case distribution
within one symbol duration, it gets worse when increasing
α. In summary, we can conclude that the use of guard bands
(oversampling) in OFDM results in a (wide-sense) stationary
transmit signal and, in turn, in the best possible PAR.

In contrast, in the single-carrier case, uniformly distributed
amplitude coefficients A[k] lead, after pulse shaping, to a
transmit signal S(t), which exhibits a distribution that com-
pletely differs from a Gaussian one. Although the variance
(ensemble average) does not vary over time for α = 0,
the distributions of various observation instances significantly
differ as higher moments [8] are relevant, too.
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Fig. 10. Pdf of S×(t) (M → ∞) in case of α = 0 (wide-sense stationary
transmit signal) and α = 1 (maximum variations over time).

This property is illustrated in Fig. 10, where the pdf of S×(t)
(QAM constellation with M → ∞) is shown for t = 0 and
t = T/2 and an RRC pulse with roll-off factor α = 0 and
α = 1. As one can see, the distribution at t = T/2 dominates
the PAR behavior for α = 0. By increasing the roll-off factor
to α = 1, we can improve the situation around t = T/2, as
the average power at this time instance is decreased. However,
this comes at the cost of the distribution at t = 0, where the
average power increases. Consequently, considering Fig. 9, the
distributions around t = T/2 are the dominating contributions
for α < 0.4. For approximately α > 0.4, the distributions
around t = 0 are dominating.

As can bee seen from Fig. 9, in general, OFDM transmission
shows an inferior PAR. However, to obtain a fair comparison
which is relevant in practice, the OFDM guard bands have to
be taken into account. This, in turn, leads to a comparison
of different spectral shapes, as shown in Fig. 7. Hence, to
be fair, OFDM transmission (with guard bands) has to be
compared to single-carrier transmissions with (nearly) ideal
low-pass filtering. Only in this case, the PSDs of the respective

transmit signals are identical. Assuming a QAM constellation
of large cardinality for single-carrier transmission, for α = 0
only a difference of about 2 dB is left (probability ψ = 10−5).
This final gap reflects the difference between Gaussian and
uniform distributed amplitude coefficients and vanishes if
signal shaping [3] is used.

V. CONCLUSION

In this paper, we have presented a new approach for the
assessment of instantaneous power distributions of single-
carrier PAM transmissions based on characteristic functions.
An efficient and accurate FFT-based numerical implementa-
tion was given. Besides this, the suitability of the Gaussian
approximation for OFDM multi-carrier transmission has been
reviewed. The positive influence of guard bands on the PAR
behavior has been worked out. Moreover, the converse impact
of cyclostationarity on single- and multi-carrier signals has
been discussed. A fair comparison of both modulation tech-
niques (same shape of the PSD) reveals that the respective
PAR distributions are much more similar than often stated.
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