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Abstract—In this paper, lattice-reduction-aided and integer-
forcing equalization are contrasted. In both approaches, the
determination of an integer matrix is essential. The different
criteria for this calculation available in the literature are sum-
marized in a unified way. A new factorization algorithm for
obtaining the integer matrix is proposed. Via extensive numerical
simulations the gains of the respective optimization criterion and
the gain of the new algorithm over the classical Lenstra-Lenstra-
Lovász algorithm are assessed. In particular, the gains achieved
by dropping the constraint that the integer matrix has to be
unimodular are identified.

I. INTRODUCTION

The design of joint receivers for signals transmitted in parallel,

e.g., in multi-user uplink scenarios, is still an important topic

in research. The simplest approach for handling the interfer-

ence in the underlying multiple-input/multiple-output (MIMO)

channels is to use linear equalization (either optimized accord-

ing to the zero-forcing (ZF) or the minimum-mean squared

error (MMSE) criterion). Via a (pseudo left) inverse of the

channel matrix, the interference is eliminated at the cost

of noise enhancement. However, as the users are perfectly

decoupled, individual channel decoding can be performed and

individual codes can be used. Some improvement can be

gained by utilizing decision-feedback equalization (DFE), also

known as successive interference cancellation (SIC) and as

Bell Laboratories space-time (BLAST). The optimum receive

strategy is maximum-likelihood decoding, which, however, for

coded transmission has infeasible complexity.

Since more than one decade, low-complexity but well-

performing approaches are of particular interest. Lattice-re-

duction-aided (LRA) techniques, e.g., [19], [16], [18], were

proven to achieve the optimum diversity behavior [15]. Re-

cently, the concept of integer-forcing (IF) receivers [20]

was proposed. Both strategies are tightly related; the term

“LRA” can be interpreted as a channel-oriented view—it puts

emphasis on the mathematical tool applied to the channel

matrix. In contrast, the denomination “IF” is signal-oriented—

it highlights the main operation on the signals.

In this paper, a brief comparison of both approaches is

given and the advantages and disadvantages of the respective

procedures are enlightened. Moreover, the different criteria for

selecting the integer matrix—which is central in both fields—

available in the literature are summarized in a unified way. A
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new factorization algorithm for determining this matrix in an

optimum way is presented. Using this algorithm, via extensive

numerical simulations, the gains of the respective optimization

criterion and the gain of the new algorithm over the classical

Lenstra-Lenstra-Lovász algorithm are assessed.

The paper is organized as follows: In Sec. II the system

model is introduced and in Sec. III LRA and IF strategies are

contrasted and the different factorization criteria are summa-

rized. A new factorization algorithm is presented in Sec. IV

followed by numerical examples in Sec. V. Sec. VI briefly

summarizes the paper.

II. SYSTEM MODEL

We assume a classical MIMO channel model with K non-

cooperating transmitters (single-antenna users) and a joint

receiver with N antennas. Fig. 1 shows the block diagram

of the system model.
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Fig. 1. System model of the MIMO communication scheme.

Each user k, k = 1, . . . ,K , wants to communicate its

source symbols qk drawn from a finite field Fp. Blocks of

source symbols are encoded via some channel code; the

coded symbols ck are then mapped to complex-valued transmit

symbols xk , drawn from some signal constellation A. Via

a suited choice of the code (including interleaving where

required) and the mapping this generic model includes all

types of coded modulation schemes, lattice-coding approaches,

as well as uncoded transmission.

The symbols xk are then radiated over the users’ antennas.

Denoting the transmit vector (dimension K) as x, the N ×K
channel matrix as H , and the N -dimensional noise vector as

n, the receive vector y is given by

y = Hx+ n . (1)

The transmit symbols (per user) have variance σ2
x and the

zero-mean Gaussian noise has variance σ2
n per dimension.

Noteworthy, all signals and channel coefficients are complex-

valued in the equivalent complex baseband domain.
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Fig. 2. System model of the receiver. Top: lattice-reduction-aided equaliza-
tion; Bottom: integer-forcing receiver.

At the receiver side, the N components of the receive vector

y can be processed jointly in order to produce estimates of the

source symbols qk. To this end, some form of equalization has

to take place and suited channel decoding has to be performed.

In the next section, we will have a closer look at the low-

complexity, well-performing LRA and IF strategies.

III. LATTICE-REDUCTION-AIDED EQUALIZATION

AND INTEGER-FORCING EQUALIZATION

Lattice-reduction-aided (LRA) and integer-forcing (IF) re-

ceivers share the same fundamental principle. The main idea

is to factorize the channel matrix as

H = C Z . (2)

The receive vector can then be written as

y = Hx+ n = CZx+ n = C x̄+ n . (3)

Then, not the transmit vector x itself (blocks of vectors in

the coded case) is recovered but the vector x̄
def

= Zx. If Z

is chosen suitably, this may be done with much less noise

enhancement. Taking into account that the symbols of the

vector x̄ are correlated (due to Z), the respective MMSE linear

equalizer calculates to [5], [20] (inverse SNR ζ
def
= σ2

n/σ
2
x)

F =
(
CHC + ζZ−HZ−1

)
−1

CH (4)

= Z
(
HHH + ζI

)
−1

HH . (5)

Hence, detection/decoding is done w.r.t. some changed

basis. Having the decoding results, this basis change (the

matrix Z) is reversed. The LRA and IF strategies differ in the

way this final step is done and how the matrix Z is chosen.

The block diagrams of the respective receivers are depicted in

Fig. 2.

A. Lattice-Reduction-Aided Equalization

LRA equalization has its roots in the field of lattice reduc-

tion, i.e., the question of finding a suited basis for a given

lattice; here the lattice spanned by the columns of the channel

matrix H . Consequently, Z is chosen as an integer unimodular

matrix. In the complex case, the coefficients of Z are drawn

from the Gaussian integers G
def
= Z + jZ and | det(Z)| = 1,

such that Z−1 is also an (complex) integer unimodular matrix.

Using lattice-reduction algorithms, most prominently the LLL

algorithm [10] or its complex-valued generalization [6], a

solution can readily be found.

Decoding and resolution of the interference via Z−1 is done

over the complex numbers; the linear combinations x̄ of the

transmit symbols have to be estimated by the decoders. Then,

an estimate of the transmit symbols is obtained via x̂ = Z−1ˆ̄x.

Finally, via the encoder inverses, estimates q̂k of the source

symbols are obtained.

LRA equalization only1 works if the signal constellation

A is a subset2 of G, i.e., x ∈ GK , such that any (complex)

integer linear combination of the points is again drawn from G.

Moreover, in the coded case, the codes have to be linear, such

that any (complex) integer linear combination of codewords

is again a valid codeword. It is true that in the vast majority

of the literature, LRA equalization is treated uncoded. This,

however, is justified as equalization and decoding can simply

be cascaded; coding can straightforwardly be put on top of the

uncoded LRA scheme. No further specific restrictions have to

be obeyed.

B. Integer-Forcing Equalization

Recently, originating from compute-and-forward relaying

schemes [11], an integer-forcing linear equalization scheme

was proposed in [20]. The main difference, see Fig. 2, is

that the integer interference is resolved over the finite field

rather than over the complex numbers. To this end, linear

combinations q̄k of the source symbols are delivered by the

decoders and the integer matrix is inverted over Fp. Put simply,

the order of encoder inverse and inverse of Z is reversed.

However, this imposes much stronger constraints on the

codes and the mapping as in the LRA case. Basically,

arithmetic over the complex numbers (modulo p) has to be

isomorphic to the arithmetic of the finite field Fp. In the

simplest version this is achieved by restricting to real-valued

signaling and A is a one-dimensional p-ary constellation where

p is a prime. Generalization to complex-valued Gaussian prime

constellations [9] or other algebraic structures [4] is possible.

Since the integer interference is resolved over the finite field,

the matrix Z has to be invertible over Fp. Since p is a prime

this is possible as long as Z has full rank; no restriction on the

determinant is required. This gives rise to a new factorization

problem: not a shortest basis problem as in LRA has to be

solved but a shortest independent vector problem [20].

C. Comparison

Even though LRA and IF are tightly related, the constraints

and restrictions are different. IF imposes strong constraints

on the signal constellation and its cardinality and in turn on

the applicable codes. In LRA only linearity in signal space is

required. Contrary, here unimodularity of Z is forced.

1Generalization to other lattices, e.g., the Eisenstein integers [2], are
possible. In each case, the signal constellation and the entries of Z have
to be taken from the same lattice/algebraic structure, cf. [4].

2If an offset is present as in usual QAM constellations, LRA equalization
still works if this offset is adequately taken into account, e.g., [17].



The presentation of the IF schemes has sparked a rethinking

of the LRA approach—indeed, unimodularity is not required.

If3 | det(Z)| > 1 the vector x̄ = Zx, with x ∈ GK , is not

taken from GK but a sublattice thereof.4 Given the points from

this sublattice, Z−1—which has a determinant smaller than

one—will recover the original transmit vector x. Hence, the

LRA equalizer structure can be used with any full-rank integer

matrix Z, enabling the same gains as in IF but without the

restrictions on the signal constellation and the codes.

IF schemes have their main justification not in central but

in decentralized receivers. In a distributed antenna system,

the partial equalization via F cannot be applied; the residual

interference is taken as it is and the decoders produce estimates

on linear combinations. In IF schemes, only symbols from Fp

have to be communicated over the backhaul. The integer inter-

ference is resolved in some central processing unit. Conversely,

using the LRA structure, complex numbers would have to be

sent. In a central receiver the LRA structure is preferable.

In summary, LRA and IF have its individual advantages and

constraints. However, the calculation of the integer matrix can

be done in the same way for both approaches. For that we have

to distinguish between the different criteria the optimization

is based on and between different factorization algorithms.

D. Factorization Criteria

We now give an overview on the different criteria the

factorization task (2) is usually based on.
C-I Based on H: In the initial publications [19], [16],

lattice reduction is directly applied to the channel matrix H

H = CI ZI . (6)

Any lattice reduction algorithm may be used, e.g., minimizing

the orthogonality defect of C .
C-II Based on H−H: In [15], the factorization

H−H = FH

II Z
−H

II (7)

has been proposed. As for square matrices FH = C−H =
H−HZH follows from (6), F is immediately the (ZF) equal-

ization matrix and Z is the required integer matrix. Here, lat-

tice reduction is applied to H−H instead of H (for non-square

channel matrices the Hermitian of the left pseudoinverse has

to be used). Since the squared lengths of the columns of F H

give the noise enhancement (in case of ZF linear equalization),

this criterion directly optimizes the performance of the scheme

instead of a substitute measure as above.
C-III Based on H: In [18], an MMSE version to LRA

equalization has been given. The main idea is to calculate the

ZF solution for the augmented5 channel matrix; the result is

exactly the MMSE solution. The factorization here reads
[

H√
ζI

]
def
= H = CIIIZIII =

[
CIII√
ζZ−1

III

]
ZIII . (8)

3As Z ∈ GK×K , |det(Z)| < 1 is not possible for full-rank matrices.
4The individual decoding/detection of the components of x̄ is suboptimal,

as non-valid points can be delivered. This is anyway the case as the actual
boundary region of the constellation cannot be taken into account in separate
decoding, cf. [17]. For sufficiently large SNR this fact is irrelevant.

5Augmented matrices are typeset in calligraphic font.

TABLE I
OVERVIEW ON FACTORIZATION STRATEGIES.

based on
channel matrix H

(“ZF solution”)

augmented matrix H

(“MMSE solution”)

H H = CZ H = CZ

(H+l)H (H+l)H = FH Z−H (H+l )H = FH Z−H

Interestingly, the left pseudoinverse6 C
+l of C, immediately

gives the augmented receive matrix, as a comparison with (4)

shows [5].

C-IV Based on (H+l)H: In [20] a criterion for directly

minimizing the noise variance after MMSE linear equalization

of the part C has been given. With ZH = [z1, . . . , zK ] it reads

ZH

IV = argmin
Z∈GK×K,

rank(Z)=K

max
m

||LHzm||2 , (9)

LLH =
(
HHH + ζI

)
−1

=
(
H

H
H

)
−1

. (10)where

Since L can be any “square root” of the right-hand-side matrix,

as straightforward calculations show, we can set

LH =
(
H

+l
)H

=
(
H

H
)+r

(11)

and the respective factorization task can thus be written as
(
H

+l
)H

= F
H

IV Z−H

IV . (12)

Noteworthy, for all optimization criteria a respective factor-

ization task7 can be stated in which Z has to be chosen such

that the squared lengths of the column of the matrix CI, F
H

II,

CIII, or FH

IV, respectively, are as short as possible.

Table I gives an overview on the different criteria for the

factorization problem.

IV. FACTORIZATION ALGORITHM

The above overview has shown that regardless which opti-

mization criterion is used, a factorization problem has to be

solved in order to obtain the required integer matrix Z. If

we follow the original LRA approach and restrict Z to be

unimodular, any lattice reduction algorithm, in particular the

LLL algorithm [10], can be used. For the complex-valued

setting at hand, the CLLL [6] may be applied.

If the unimodularity is dropped, an algorithm for solving

the shortest independent vector problem (SIVP) has to be

applied. Unfortunately, in the literature, only a few approaches

are available. In [20], the optimization problem (9) or (12)

is solved via a brute-force search with some restrictions to

the search space. In [13], [14], low-complexity factorization

approaches, all directly based on the CLLL and hence resulting

in a unimodular matrix, are given. An algorithm to solve the

successive minima problem has been published in [3]. For

the distributed antenna setting, in [8] a suited factorization is

given, taking into account that no joint feedforward equaliza-

tion via F is possible.

6A+l = (AHA)−1AH denotes the left pseudoinverse of A and A+r =
AH(AAH)−1 the right pseudoinverse. A−H = (AH)−1 = (A−1)H.

7We hence denote the corresponding procedure factorization algorithm.



Alg. 1 Pseudocode of the factorization algorithm.

function Z = factorize(H, ζ)

1 G =
(
HHH + ζI

)−1/2
// generator matrix

2 [GLLL,ZLLL] = LLL(G) // reduced basis

3 R2
max = maxi ||gi,LLL||2 // search radius

4 U = getlist(GLLL, R
2
max) // get list of short vectors

5 {i1, . . . , iK} = getindices(U ) // indices of lin. indep. vectors

6 Z = ZLLL ·U(:, [i1, . . . , iK ]) // integer matrix

We now present an algorithm which is feasible for MIMO

scenarios typically of interest; a pseudocode description is

given in Alg. 1. Via numerical simulations we can then study

the gain possible by the respective criteria and the loss when

restricting Z to be unimodular. To have a compact notation,

we rewrite (10), (12) as

Gopt = GZH , (13)

with G = LH, ZH = [z1, . . . , zK ] ∈ GK×K , rank(Z) = K ,

and the columns of Gopt as short as possible. This means that

given the basis G of a lattice, find K linearly independent

vectors (lattice points) Gui, ui ∈ GK , which are as short as

possible. We do this via performing the following steps:

LLL Reduction:

First, the LLL reduced basis GLLL =
[
g1,LLL, . . . , gK,LLL

]

is calculated. Since the SIVP is more relaxed than the shortest

basis problem, the LLL basis gives an upper bound R2
max =

maxi ||gi,LLL||2 on the norms of the vectors possible in the

SIVP. We denote this step as [GLLL,ZLLL] = LLL(G).
List of Lattice Points:

Then, a (sorted) list of vectors (lattice points) with squared

norms bounded by R2
max is calculated. Let the list be writ-

ten as matrix U =
[
u1,u2, . . . ,uℓ

]
, with ||GLLLui||2 ≤

||GLLLui+1||2, ∀i. Since for complex lattices the volume is

given by the squared magnitude of the determinant of the gen-

erator matrix [2, Eq. (87)]), the list size can be approximated

by ℓ = (πR2
max)

K/(K!| det(G)|2). We denote this step as

U = getlist(GLLL, R
2
max).

This step can be implemented efficiently using the idea

of the list sphere decoder, Alg. ALLCLOSESTPOINTS in

[1]. In principle, this calculation has exponential complexity,

however, if the LLL basis is used and R2
max is small and, thus,

the number ℓ of points within the search sphere is small, still

an efficient search is obtained.

Select Points:

Among the vectors in the list (matrix U ) the best combina-

tion of vectors, i.e., indices i1, . . . , iK , has to be found such

that Z =
[
ui1 , . . . ,uiK

]
has full rank and GLLLuiK is as

small as possible.

The last step can be solved by performing Gaussian elim-

ination on the matrix U , i.e., transforming it to row echelon

form. Since the list is sorted according to increasing (squared)

norms ||GLLLui||2, the best choice is to select the vectors

ui, which first define a new dimension; in row echelon form

these are the vectors at the steps. We denote this step as

{i1, . . . , iK} = getindices(U).

Please note, if some restrictions (e.g., on the determinant) of

Z have to be obeyed, a search over combinations of candidates

can be performed instead of the simple Gaussian elimination.

This step can efficiently be implemented by the sphere decoder

and offers degrees of freedom not present in other algorithms.

V. NUMERICAL RESULTS

The factorization algorithm has been implemented and exten-

sive numerical simulations have been performed. Thereby, H

is an N ×K i.i.d. random zero-mean unit-variance complex

Gaussian matrix. The aim is to assess which gains can be

attributed to which factorization criterion or algorithm. The

proposed straight-forward algorithm gives the same results as

the recent one in [3]. For K up to 8 our strategy is faster

for most of the realizations; however for a few matrices it

requires significant higher complexity. A detailed complexity

evaluation is beyond the scope of the present paper.

First, in Fig. 3 the cumulative distribution function of the

list size (number of columns in U ) is plotted. Please note,

all apparently linearly dependent vectors (those multiplied by

−1, j, and −j) are not added to the list in getlist. It can

be seen that for practical values of K the list size is small

to moderate and can easily be handled. The chosen SNR is

almost the worst case; for large SNR LLH ≈
(
HHH)−1. For

small SNRs smaller list sizes are obtained as LLH ≈ σ2
x

σ2
n
I

and thus Z = I is optimum.

Second, Tab. II summarizes the distribution of the determi-

nant of Z over 106 channel realizations. As the dimension of

the channel matrix increases, the number of channels where
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TABLE II
DISTRIBUTION OF |det(Z)|. σ2

x/σ
2
n =̂ 20 dB.

|det(Z)| = 1
√
2 2

√
5

K = N = 2 100 % — — —

K = N = 3 99.8 % 0.2 % — —

K = N = 4 99.0 % 1.0 % — —

K = N = 5 97.5 % 2.4 % 0.005 % —

K = N = 6 95.4 % 4.5 % 0.03 % 0.003 %

K = N = 7 92.7 % 7.1 % 0.15 % 0.02 %

K = N = 8 89.3 % 10.2 % 0.39 % 0.06 %
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| det(Z)| > 1 increases. However, only for K > 6 non-

unimodular matrices are optimum for a significant portion of

channels.

Finally, bit-error-rate curves for uncoded transmission are

depicted in Fig. 4. 16QAM signaling is used and the SNR

is normalized to Eb

N0
=

σ2
a

σ2
n log2(16)

. The factorization criterion

and the factorization algorithm are varied; in each case the

linear receiver frontend F is adjusted according to the MMSE

criterion. For reference, ML detection is included.

Obviously, C-I together with the LLL algorithm has the

worst performance. Using C-II gives better results (cf. [15]),

best performance is obtained when applying C-IV; still the

LLL is used, thus Z is unimodular. Using the proposed

algorithm which relaxes the constraint on the determinant of Z

some additional gain is possible. This gain, as already can be

deduced from Tab. II, increases when K gets larger. Compared

to classical LRA equalization using C-I and the LLL, gains in

the order of 5 dB are possible for K = N = 8 by replacing the

criterion and the factorization algorithm. Thereby, however, the

LRA receiver structure can be utilized as it is—the constraints

on the constellation and the code design in IF can be avoided.

VI. SUMMARY AND CONCLUSIONS

The tight relation between LRA and IF schemes has been high-

lighted and a new, optimum factorization algorithm has been

proposed. We have restricted ourselves to linear equalization

of the residual part. The extension to successive equalization

and decoding (DFE/SIC, cf. [12]) is immediately possible.

Moreover, the transformation to transmitter-side precoding,

dual to receiver-side equalization, is also directly possible, cf.

[8], [7].
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