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Abstract—Lattice-reduction-aided (LRA) preequalization for the
multiple-input/ multiple-output broadcast channel has most often
been considered for the uncoded case so far. However, recent
advantages in the closely related field of integer-forcing equal-
ization, where the cancellation of the multiuser interference and
the channel coding are combined, create doubt to this separated
point of view. In this letter, the philosophy of matching both the
channel code and the complex-valued signal constellation to the
same finite-field arithmetic is proposed. The consequences on the
factorization task present in LRA preequalization are discussed
and covered by numerical performance evaluations based on non-
binary low-density parity-check codes.

I. INTRODUCTION

Over the last years, multiuser multiple-input/multiple-output
(MIMO) communication has gained huge interest. For down-
link transmission (MIMO broadcast channel), i.e., joint
transmitter-side (TX) and non-cooperative receiver-side (RX)
processing, especially lattice-reduction-aided (LRA) preequal-
ization and precoding [16] have become popular achieving full
diversity. Thereby, the main idea is to perform the preequal-
ization in a suited basis. This is achieved by factorizing the
channel matrix into an integer part and a reduced part which
is conventionally equalized instead. As the equalization of the
integer matrix is performed by an integer inverse thereof, a
unimodularity constraint is set for the factorization. The related
factorization task is known as shortest basis problem (SBP).

Recently, an approach derived from physical-layer network
coding [6] named integer-forcing equalization [17] has been
proposed, sharing the same philosophy of factorizing the
channel matrix. The main difference is that both channel
coding and equalization are performed over the same finite-
field arithmetic. In turn, as an (integer) inverse always exists
over a finite field if a matrix has full rank, the unimodularity
constraint can be dropped leading to the shortest independent
vector problem (SIVP).

In the following, this finite-field approach is adapted to LRA
preequalization. To this end, algebraic signal constellations
[6] over the complex plane are applied. Specifically, fields of
Gaussian and Eisenstein primes [3], [14] isomorphic to (real-
valued) prime fields are convenient. Given both the channel
code and the signal points in the same arithmetic, a coded
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modulation strategy is straightforward. Numerical simulations
using non-binary low-density parity check (LDPC) codes
show the effectiveness of the strategy at hand compared with
conventional schemes.

II. SYSTEM MODEL

A discrete-time complex-baseband multiuser MIMO broadcast
channel with joint TX-side processing (N transmit antennas;
illustrated in Fig. 1) and K ≤ N non-cooperating users
is considered. For simplicity, the user index is omitted for
equivalent parallel processing.
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Fig. 1. Individual channel encoding and joint TX-side LRA equalization.

Independent streams of binary information/source symbols
(bits) are sent to user 1, . . . ,K. In order to be able to operate
over a finite field Fp = {ϕ1, . . . , ϕp} of prime order p > 2,
modulus conversion [10], [7], [14] is applied: each bitstream
is divided into blocks of length µ that are mapped to blocks
of ν message symbols with elements drawn from Fp.

Following this, an encoding via some linear block code over
Fp is performed. The code rate is Rc = kc/nc, where kc = κν,
κ ∈ N, denotes the code’s dimension and nc the code length.
This leads to encoded symbols c = [c1, . . . , cnc ] ∈ Fnc

p that
are subsequently mapped (M) to a block of complex-valued
zero-mean (channel) symbols a = [a1, . . . , anc

] ∈ Anc drawn
from a p-ary constellation A = RV(Λp) ∩Λa with variance
σ2
a. Thereby, Λa is the signal point lattice and RV(Λp) the

Voronoi region of the precoding lattice Λp [7], [14]. All
independently encoded blocks c1, . . . , cK are finally (row-
wise) combined into a data symbol matrix A ∈ CK×nc

enabling a joint LRA preequalization.
For the application of LRA preequalization, the K × N

channel matrix H is factorized according to H̄ = ZH̄r,
where H̄ = [H,

√
ζI]K×(K+N) denotes the augmented chan-

nel matrix and H̄r the augmented reduced channel matrix of
same dimension [8], [14]; ζ = σ2

n/σ
2
a (σ2

n is the noise variance
and I the identity matrix). The integer matrix Z ∈ ΛK×K

a is



usually demanded to be unimodular (|det(Z)| = 1). Dualizing
the results for the multiple-access channel in [9], the optimum
factorization criterion reads (H̄

+
)H = Z−H(H̄

+
r )H, where

H̄
+ denotes the right pseudo-inverse of H̄ and (H̄

+
)H

the Hermitian matrix thereof. The integer preequalization is
performed via the matrix Z−1 = (Z−H)H and the modulo
function reads modΛp

(z) = z − QΛp
(z), z ∈ C, where

QΛp
(z) is the quantization w.r.t. the precoding lattice [14].

The residual equalization via F is performed with the matrix
of precoded symbols Ã, resulting in the blocks of transmit
symbols X ∈ CN×nc to be radiated from the antennas.
Here, F is the N ×K upper part of H̄+

r . For each channel
realization, the factor g is chosen to ensure the sum-power
constraint Nσ2

x = Kσ2
a.

The coefficients of HK×N are assumed to be i.i.d. zero-
mean unit-variance complex Gaussian and constant over one
block of nc symbols (block-fading channel). At each receiver,
i.i.d. zero-mean complex white Gaussian noise with variance
σ2
n is present, which is combined into the matrix N ∈ CK×nc

(cf. Fig. 2). The MIMO system equation reads

Y = HX +N . (1)

The signal-to-noise ratio (SNR) is expressed as transmitted
energy per information bit in relation to the noise power
spectral density and is given by Eb,TX/N0 = σ2

a/(σ
2
nRcµ/ν).
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Fig. 2. Channel model and separated RX-side soft-decision decoding.

On the receiver-side (Fig. 2), each user separately starts with
a metric calculation L : Cnc → [0, 1]p×nc for soft-decision
decoding based on its incoming signals y = [y1, . . . , ync ] ∈
Cnc . The channel probabilities mρ,γ = Pr{cγ = ϕρ | yγ}, ρ =
1, . . . , p, γ = 1, . . . , nc, represented by M ∈ [0, 1]p×nc , are
calculated for each user. Channel decoding w.r.t. M results in
the estimated messages û = [û1, . . . , ûkc

] ∈ Fkc
p . Via inverse

modulus conversion, a block of estimated bits q̂ is obtained.

III. ALGEBRAIC SIGNAL CONSTELLATIONS

For LRA preequalization, fields of Gaussian primes [12], [3],
[14] (Λa = G, i.e., over the Gaussian integers) or Eisenstein
primes [3], [15], [14] (Λa = E, i.e., over the Eisenstein
integers) are suited as they yield p-ary constellations with alge-
braic properties [6]: both are two-dimensional representations
of Fp forming a field over the complex plane under modulo
arithmetic. This not only means that a finite-field processing is
possible—as performed in integer-forcing schemes—but also
an isomorphism AΘ ' Fp and a natural mapping Fp → AΘ

can be given [14] (Θ is a Gaussian or Eisenstein prime and
AΘ the respective field, where |Θ|2 = p). The precoding
lattice reads Λp = ΘG or Λp = ΘE [14]. The integer pree-
qualization and the modulo operation thus can equivalently be
interpreted as a finite-field equalization matrix Z−1

F ∈ FK×Kp

(see Fig. 1), where Z−1
F ' (modΛp(Z))−1 ∈ AK×KΘ . Since

(full-rank) matrices over Fp always have a finite-field inverse,
the common unimodularity constraint present in LRA schemes
is not necessary any more (|det(Z)| ≥ 1; SIVP).

IV. CODED MODULATION

When demanding a joint arithmetic in channel coding and
preequalization, non-binary LDPC codes [4] over Fp are con-
venient. More specifically, their subclass of repeat-accumulate
codes [13] is suited as both systematic linear encoding and
soft-decision decoding are possible. On the basis of the
probability matrix M , a non-binary (p-ary) belief-propagation
(BP) decoding [2] can be performed.

Provided that the same arithmetic is present (AΘ ' Fp), the
metric calculation can be performed as follows: According to
Bayes’ theorem, mρ,γ = Pr{cγ = ϕρ | yγ} = η · Pr{yγ | cγ =
ϕρ}, where the factor η = Pr{cγ = ϕρ}/Pr{yγ} can
be assumed as constant ∀ϕρ, ρ = 1, . . . , p. Since modulo-
congruent signal points are present at the receiver-side [7],

Pr{yγ | cγ = ϕρ} =
∑
λ∈Λp

fN (yγ − (M(ϕρ) + λ)) · Pr(λ)
ρ,γ .

(2)
Thereby, Pr(λ)

ρ,γ = Pr {yγ − nγ =M(ϕρ) + λ}|Z−1 is de-
pendent on the actual integer equalization matrix. The
first factor is the probability density function fN (n) =
exp

(
−|n|2/(g2σ2

n)
)
/(πg2σ2

n) of the scaled noise. Via
nearest-neighbor approximation [7], (2) can be simplified to

m̃ρ,γ = fN

(
min
λ∈Λp

|yγ − (M(ϕρ) + λ)|
)
, (3)

and normalized to probability mass functions of the form
mγ = m̃γ/

∑p
ρ=1 m̃ρ,γ .

V. NUMERICAL RESULTS

The performance of the proposed approach is assessed by
means of numerical simulations. Random-based irregular
repeat-accumulate codes have been applied, where the vast
majority of all arbitrary parity-check columns has a weight of
3 and a small number of 4 (irregular row weight that differs
by one). The simulation parameters are listed in Table 1;
the number of information bits per block is (almost) kept
constant (2 bits/symbol; code rate is adapted). Starting from
conventional 16QAM (Λa = G, Λp = 4G, Rc = 1/2), the
13-ary Gaussian and Eisenstein prime constellation, as well as
the 17-ary Gaussian and 19-ary Eisenstein one are considered.
For the Gaussian ones, an efficient factorization according
to the SIVP is possible [9], which can easily be adapted to
the Eisenstein lattice. Following the common demand for an
integer equalization matrix Z−1 ∈ Λa

K×K , a restriction to
the SBP is necessary for the QAM constellation. Hence, the



TABLE I
SIMULATION PARAMETERS.

Field A Λa µ ν nc kc Info-Bits
F13 AΘ G 37 10 16200 8760 32412
F13 AΘ E 37 10 16200 8760 32412
F17 AΘ G 94 23 16200 7935 32430
F19 AΘ E 497 117 16200 7722 32802

F16 16QAM G 4 1 16200 8100 32400
F2 16QAM G – – 64800 32400 32400

complex-valued variant of the LLL algorithm [11] has to be
used.

Fig. 3 illustrates both the frame- and the bit-error rate
(FER/BER) in dependency of Eb,TX/N0 in dB if N = K = 8.
For comparison, the results for 16QAM are given when
performing a non-binary coding over F16. As state-of-the-
art approach, bit-interleaved coded modulation (BICM) [1] is
employed (bit log-likelihood BP decoding according to (3);
Gray labeling). Thereby, the binary DVB-S2 irregular repeat-
accumulate code [5] is assessed for LRA and non-LRA linear
preequalization (LPE).

Regarding the FER for 16QAM transmission, the BICM
approach shows a slightly better performance than the non-
binary coding over F16 due to the highly-optimized binary
LDPC code. Employing Gaussian prime constellations and a
factorization according to the SIVP, a gain of about 0.25–
0.5 dB is possible (mid-to-high SNR regime; 17-ary one has
comparably low power efficiency). Furthermore, the Eisenstein
ones achieve a gain of about 1 dB due to a packing, shaping,
and additional factorization gain of the hexagonal lattice [14].
In the non-LRA case, the impact of diversity order one is
clearly visible in spite of channel coding.

Concerning the BER, a degradation of the p-ary constella-
tions is present, which is caused by error propagation in the
inverse modulus conversion [14]. Nevertheless, the Eisenstein
constellations are still advantageous (gain of about 0.5 dB in
the high-SNR range). Besides, at least for the 13-ary Gaussian
one the same performance as in the BICM case is achieved,
where no modulus conversion has to be applied.

VI. CONCLUSION

A coded modulation and preequalization strategy for the
MIMO broadcast channel has been proposed, where the chan-
nel code and the signal constellation share the same finite-
field arithmetic. This strategy—following the philosophy of
integer-forcing equalization—drops the unimodularity con-
straint in LRA schemes. Simulations on the basis of non-
binary LDPC codes have revealed that a factorization gain
is possible compared with state-of-the art approaches like
BICM; employing the hexagonal (Eisenstein) lattice even
results in further enhancement. In combination with optimized
non-binary LDPC codes and non-binary source encoders the
transmission performance may even be increased.
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