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Abstract—Lattice-reduction-aided (LRA) equalization tech-
niques have become very popular in multiple-input/multiple-
output (MIMO) multiuser communication as they obtain the
full diversity order of the MIMO channel. For joint transmitter-
side LRA preequalization or precoding on the broadcast channel,
the signal constellation is required to be periodically extendable,
which is typically achieved by employing square QAM constel-
lations. However, recent enhancements of the LRA philosophy—
named integer-forcing equalization—additionally demand the
data symbols to be representable as elements of a finite field
over the grid the signal points are drawn from. This signif-
icantly constraints the choice of the constellation, especially
when considering the complex baseband and complex-valued
constellations. To overcome the lack of flexibility, in this paper, we
present constellations with algebraic properties for use in LRA
preequalization directly enabling the desired finite-field property.
In particular, fields of Gaussian primes (integer lattice) and
Eisenstein primes (hexagonal lattice) are studied and compared
to conventional constellations. The respective transmitter- and
receiver-side operations are detailed and the adaptation of the
channel matrix factorization is proposed. Numerical simulations
cover the performance of such schemes.

I. INTRODUCTION

Multiple-input/multiple-output (MIMO) transmission has be-
come one of the most significant approaches in nowadays wire-
less communication systems. Starting from point-to-point sin-
gleuser multiantenna scenarios, research has rapidly been ex-
tended to multiuser multipoint-to-point transmission (multiple-
access channel). In the sequel, by dualizing these results, a
wide knowledge on the multiuser point-to-multipoint scenario
(broadcast channel) could be obtained, e.g., [21], [22].

In order to shape the multiuser interference present on the
broadcast channel, schemes well-known from singleuser trans-
mission, e.g., Tomlinson-Harashima precoding (THP) [19],
[9], have soon be adapted to the multiuser case [5], [3]
since a simple linear preequalization (LPE) does not result
in satisfactory performance. Unfortunately, even THP cannot
take advantage of the MIMO channel’s diversity: due to the
inherent principle of successive interference cancellation, the
diversity order remains one.

To overcome this problem, lattice-reduction-aided pree-
qualization (LRA PE) and precoding have been proposed
[25], [23], [24], [16], both achieving the full diversity order
[18]. The main idea of LRA schemes is to perform the
equalization in a suited basis, representing the distorted signal
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grid. Thereby, integer linear combinations of the data are
detected/decoded instead of the data itself. In a final step, these
integer combinations are resolved. In THP and LRA pree-
qualization/precoding, the choice of the signal constellation is
restricted as it has to be periodically extendable [5]; usually
square quadrature-amplitude modulation (QAM) constellations
are employed.

Recently, so-called integer-forcing (IF) schemes have been
introduced, which share the main idea of LRA equalization
in detecting/decoding integer linear combinations. However,
in IF the integer interference is resolved in the arithmetic
of a finite field relaxing the unimodularity constraint on the
integer matrix. This strategy was first introduced for receiver-
side processing [14], [26], but has particularly been dualized
to the broadcast channel [11], [10].

In IF, the crucial point is to link the signal constellation
and the channel code to the arithmetic of a finite field. In
[14], [26], this is done by restricting to real-valued modulation.
For complex baseband channels, this is achieved by treating
the quadrature components separately. In [11], specific square
QAM constellations which form a field in the complex plane
are applied. However, both approaches are very limited as only
very specific constellation sizes are possible. An alternative
strategy, already proposed for physical-layer network coding
and relaying, is to draw the data symbols from algebraic
structures over the complex plane, specifically, fields of so-
called Gaussian or Eisenstein primes [17], [4], [20].

For transmitter-side LRA/IF equalization, these algebraic
structures have not yet been considered in literature. Con-
sequently, in this paper, we consider the application of
algebraically-defined constellations in LRA PE. Both the
complex-valued integer and hexagonal lattice are studied.
The differences and advantages compared to state-of-the-art
constellations are enlightened; in particular the possibility of
periodically extending the constellation is of great importance
in precoding. The performance of the different schemes is
compared by means of numerical simulations.

The paper is structured as follows: In Sec. II, the system
model for LRA PE on the MIMO broadcast channel is given.
Sec. III briefly reviews signal constellations conventionally
employed in LRA PE. In Sec. IV, algebraic signal constella-
tions over Gaussian and Eisenstein integers are reviewed and
their differences and advantages compared to the conventional
ones are discussed. Numerical results are provided in Sec. V.
The paper closes with a summary and conclusions in Sec. VI.



II. SYSTEM MODEL

A. MIMO Broadcast Channel Model

Throughout the paper, we assume a complex-valued (equiv-
alent complex baseband) discrete-time MIMO broadcast chan-
nel; i.e., downlink transmission with joint transmitter-side
processing and non-cooperating users is considered (cf. Fig. 1).
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Fig. 1. MIMO broadcast channel model with joint transmitter-side processing
(TX pr.) and non-collocated receivers (RX pr.).

In each time step, the data symbols al to be transmit-
ted to receiver l = 1, . . . , NR, in vector notation a =
[a1, . . . , aNR

]T, are drawn from a predefined, zero-mean signal
constellation A with variance1 σ2

a
def
= E

{
|a|2

}
and cardinality

M
def
= |A|; hence, a rate Rm ≤ log2(M) of (uncoded)

modulation is achieved. Via transmitter-side processing, a
vector of zero-mean transmit symbols x = [x1, . . . , xNT

]T to
be radiated from the antennas is calculated. The sum transmit
power is fixed to NTσ

2
x = NRσ

2
a with σ2

x
def
= E

{
|x|2

}
.

The MIMO broadcast channel is expressed by

y = Hx+ n , (1)

where the MIMO channel matrix (flat-fading channel) reads

H =
[
hl,k

]
l=1,...,NR
k=1,...,NT

. (2)

We assume i.i.d. unit-variance zero-mean complex Gaussian
distributed coefficients hl,k, which are constant over a block of
symbols (bursty transmission). On the channel, additive zero-
mean white Gaussian noise n = [n1, . . . , nNR

]T with variance
σ2
n

def
= E

{
|nl|2

}
, l = 1, . . . , NR, is present.

At the receivers, individual processing is performed; the
vector of the resulting estimated data symbols is denoted as
â = [â1, . . . , âNR

]T.
The signal-to-noise ratio (SNR) is expressed as the trans-

mitted energy per bit in relation to the average noise power
spectral density, which reads

Eb,TX

N0
=

σ2
a

σ2
nRm

. (3)

B. Lattice-Reduction-Aided Preequalization

Lattice-reduction-aided preequalization or precoding [16],
[24] is very well suited for handling the multiuser interference
on the MIMO broadcast channel. To calculate the required

1E{·} denotes expectation.

TX processing matrices, the augmented channel matrix is
factorized according to [6]

H̄ =
[
H

√
ζI

]
NR×(NR+NT)

= ZH̄red , (4)

where ζ = σ2
n/σ

2
x and I is the identity matrix. H̄red denotes

the augmented reduced channel matrix and Z is an unimodular
integer matrix (|det(Z)| = 1). This factorization task can—in
general—efficiently be performed via the LLL algorithm [13].
For the complex-valued situation at hand, the complex variant
of the LLL algorithm [8] (denoted as “C-LLL”) is suited. Thus,
Z consists of complex integers (complex values with integers
in both real- and imaginary part; represented by the Gaussian
integers [12], [1], [2]

G def
=

{
zI + j zQ | zI, zQ ∈ Z

}
. (5)

For LRA PE, the joint transmitter-side processing is per-
formed as follows (see Fig. 2): Starting from the vector of
data symbols a, the LRA preequalization is performed via

az = Z−1a (6)

where az = [az,1, . . . , az,NR
]T. Then, a component-wise

modulo function modΛp
(·) w.r.t. some precoding lattice Λp

is applied, resulting in a vector of precoded symbols ãz =
[ãz,1, . . . , ãz,NR ]T. The modulo function generally reads

modΛ(z)
def
= z −QΛ(z) , z ∈ C , (7)

where
QΛ(·) def

= argmin
λ∈Λ

|λ− z|2 (8)

denotes the quantization operation w.r.t. the given (complex)
lattice Λ.

For LRA PE, just like for THP, the signal point lattice
Λa, i.e., the grid the signal points are drawn from, and
the precoding lattice Λp have to match in order to form a
periodically extendable signal constellation [5]. This is usually
achieved by choosing the signal constellation

A def
= RV(Λp) ∩Λa , (9)

where RV(Λp) denotes the Voronoi region of the precoding
lattice; this region establishes the boundary region for the
constellation by linking Λa and Λp. Further details will be
explained in Sec. III.

When optimizing the preequalization according to the mini-
mum mean-square error (MMSE) criterion, the residual linear
preequalization can be performed via the NT×NR upper part
F (preequalization matrix) of[

F
C

]
def
= H̄

H
red

(
H̄redH̄

H
red

)−1

(10)

and a channel-dependent scaling factor 1/g to keep the average
transmit power constant for each channel realization.

At the receiver side, each receiver scales its incoming signal
with the factor g; then a quantization with respect to Λa is
applied, i.e.,

ãl = QΛa(g · yl) , l = 1, . . . , NR , (11)
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Fig. 2. LRA PE system model. Joint transmitter processing and non-cooperating receivers.

to obtain ã = [ã1, . . . , ãNR ]T ∈ ΛNR
a . Finally, estimated

symbols â ∈ ANR are obtained (from the modulo congruent
ones) by applying the modulo function (7) w.r.t. Λp to the
quantized symbols ã.

III. CONVENTIONAL LATTICE-REDUCTION-AIDED
PREEQUALIZATION

In conventional LRA PE, the precoding lattice Λp is typically
chosen as a scaled version of the signal point lattice Λa,
mathematically Λp = rΛa, with r ∈ N. The constellation
is hence given as A = RV(rΛa) ∩ Λa. This case is now
discussed in more detail.

A. Gaussian-Integer-Lattice Constellation

The common approach is to draw the data symbols from
a subset of the ring of Gaussian integers, i.e., Λa = G
(isomorphic to lattice Z2, cf. [2]), and to choose the precoding
lattice as a scaled version of G in dependency of the desired
cardinality, specifically Λp =

√
MG,

√
M ∈ N, for an M -ary

signal constellation.
Consequently, square QAM constellations with AG

def
= AI +

jAQ are obtained. If
√
M is an odd number, the constellation

is immediately given as AI = AQ = {0,±1,±2, . . . , (
√
M −

1)/2}. For
√
M even, in order to be zero-mean, AI = AQ =

{±1/2,±3/2, . . . , (
√
M − 1)/2}, is used; hence the shifted

lattice Λa + o = G + o with offset o = (1 + j)/2 is present.2

The variance of the constellation is given as σ2
a = (M −1)/6.

For z ∈ C, the quantization to Gaussian integers reads3

QG(z) = bRe{z}e+ j bIm{z}e . (12)

Since the precoding lattice is given as Λp =
√
MG, the

modulo operation reads

mod√MG(z) = z −
√
M QG

(
z√
M

)
, (13)

leading to a square boundary region RV(
√
MG).

In Fig. 3, the 25-ary square QAM constellation is illustrated
including the boundary region RV(5G), as well as the con-
stellation’s periodic extensions. Noteworthy, each signal point
has four nearest neighbor points (kissing number).

Moreover, the factorization of the channel matrix can be
carried out via the C-LLL (entries of Z are Gaussian integers).

2All operations explained in Sec. II have to be carried out w.r.t. the non-
shifted lattice Λa; hence, the offset has to be compensated. Specifically, az =
Z−1(a−o)+o, and the quantization of ỹ = gy−Zo, with o = [o, . . . , o]T,
have to be performed.

3b·e denotes rounding to integers.

B. Eisenstein-Integer-Lattice Constellation

The ring of Eisenstein integers E [2] represents the hexag-
onal grid in the complex plane (isomorphism from lattice A2

to E) and is hence a potential alternative to the rectangular
signal grid of the Gaussian integers.

A complex number is an Eisenstein integer if it can be
written as

a+ ω b, a, b ∈ Z , (14)

where ω = (−1 + j
√

3)/2 = ej2π/3. Just like for Gaussian
integers, a quantization to Eisenstein integers, denoted as
QE(z), z ∈ C, is efficiently implementable [17].

As the hexagonal lattice (the Eisenstein integers) gives the
densest packing possible in two dimensions [2], a packing
gain can be achieved when choosing Λa = E instead of
Λa = G. However, the number of neighboring signal points
is increased to six. When additionally employing a scaled
version of E as precoding lattice Λp (i.e., the boundary region
RV(rE) is present), a shaping gain is possible, too [5]. As an
example, in Fig. 4, a 25-ary zero-mean hexagonal constellation
is illustrated for Λp = 5E.

Regrettably, the factorization with the complex LLL algo-
rithm4 is generally not possible for the Eisenstein integers: as
it results in Z consisting of Gaussian integers, we run out
of the set E when multiplying the vector of data symbols
with Z (e.g., an entry j leads to a phase rotation of π/2 and
hence a non-existent lattice point) and the lattice-reduction-
aided preequalization becomes inoperative.5

IV. LATTICE-REDUCTION-AIDED PREEQUALIZATION
OVER ALGEBRAIC SIGNAL CONSTELLATIONS

In this section, the strategy of choosing the signal constellation
A for LRA preequalization according to algebraic structures
is introduced.

In the following, the signal points are still drawn from
G or E, i.e, we have the signal point lattice Λa = G or
Λa = E. However, in contrast to the conventional approach
mentioned in the previous section, the precoding lattice Λp

is now assumed to be a complex scaled version of Λa, i.e.,
Λp = cΛa, with c ∈ C. This generalization raises the question
how to choose c in order to obtain a periodically extendable
constellation defined via (9).

4Or, alternatively: factorization using the conventional LLL algorithm with
doubled dimension.

5A possible solution would be the restriction to real-valued entries of Z
(but the factorization has still to be applied to complex-valued channels).
This can be achieved by restricting the quantization in the LLL algorithm to
real-valued numbers; however, with a huge decrease in diversity order.
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Fig. 3. Square QAM constellation AG for M = 25 (blue; Λa = G, Λp =
5G). The boundary region is depicted (red dashed;RV(5G)), as well as some
signal points of the constellation’s periodic extensions (gray).

The question can be answered with the help of algebraic
structures—in particular finite fields over C—, which inher-
ently define a modulo congruence / modulo operation, hence
a precoding lattice, and finally the signal constellation. For
both G and E, such finite-field constellations are presented
and their advantages in comparison to conventional LRA PE
are discussed.

A. Gaussian Prime Constellations

1) Preliminaries: Consider a prime p > 2 ∈ N of the form6

rem4(p) = 1, i.e., p = 5, 13, 17, . . . For this kind of real-
valued primes, integers a, b ∈ Z, and a Gaussian integer Θ =
a+ j b ∈ G, called a Gaussian prime [12], [1], can be found,
which fulfill7

p = a2 + b2 = |a+ j b|2 = Θ Θ∗ . (15)

2) LRA PE over Gaussian Prime Constellations: For the
case when Λa = G, the basic idea is now to employ an
(arbitrary) Gaussian prime as complex-valued scaling factor
for the precoding lattice, i.e., Λp = ΘG. The respective
modulo function is consequently given by

modΘG(z) = z −ΘQG

( z
Θ

)
, (16)

and the signal constellation reads AGΘ

def
= RV(ΘG) ∩G. The

boundary region RV(ΘG) is hence still a square (cf. Fig. 3),
but rotated by arg(Θ).

The main advantage of the resulting Gaussian prime con-
stellations over the conventional ones is that their data symbols
(or the respective lattice points) inherently form a p-ary finite
field over C, denoted as GΘ [12], [1]. The constellation’s

6remd(c)
def
= c− d bc/dc, where c, d ∈ Z.

7Θ∗ denotes the complex conjugate of Θ = a+ j b, i.e., Θ∗ = a− j b.
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Fig. 4. 25-ary constellation AE over the hexagonal signal grid (blue; Λa =
E, Λp = 5E). The boundary region is depicted (red dashed; RV(5E)), as
well as some signal points of the constellation’s periodic extensions (gray).

cardinality is directly given as M = p = Θ Θ∗ (cf. (15)).
Since, in addition,

modΘG(γ) ∈ GΘ , ∀γ ∈ G , (17)

defines a modulo function G → GΘ, residue classes of G
modulo Θ, the classes of modulo-congruent signal points, are
immediate [12]. Λa = G and Λp = ΘG match in order
to form a periodically extendable constellation, whose data
symbols additionally represent a finite field over the complex
plane. As an example, in Fig. 5, the 37-ary signal constellation
based on GΘ, where Θ = 6 + j, is depicted.

Due to their point symmetry to z = 0, zero-mean Gaussian
prime constellations are constructed. As in the conventional
case, the common C-LLL can be applied, since Z−1 consists
of Gaussian integers and hence the LRA preequalized symbols
az (cf. (6)) also form a subset of G. Noteworthy, due to (17),
the precoded symbols ãz are again elements of GΘ. The same
is valid after the receiver-side modulo operation, i.e, ã ∈ GNR

Θ .
Hence, an end-to-end finite-field channel is present.

3) Isomorphism to Fp or Fp2 : Noteworthy, an isomorphism
between the finite field Fp, where p = Θ Θ∗ is a prime as
defined above, and a corresponding finite field GΘ over C can
be given [12], [1]. This fact can immediately be used to define
a bijective mapping from Fp to the signal constellation AGΘ ,
i.e., a labeling of the signal points via finite-field elements. Let
ξ ∈ Zp = {0, . . . , p− 1} be a real-valued integer representing
the elements of Fp (Zp ' Fp). Then, the corresponding signal
point is simply given by a = modΘG(ξ) ∈ AGΘ

.
In addition, for primes p ∈ N with rem4(p) = 3, i.e.,

p = 3, 7, 11, . . . , an isomorphism between the extension field
Fp2 and a field GΘ with a Gaussian prime of the form Θ = p
or Θ = j p is existent [12]. For these cases, the mapping
to GΘ is also defined by (16), but ξ ∈ Zp + jZp. As a
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Fig. 5. Gaussian prime constellation AGΘ
for Θ = 6 + j (blue; Λa = G,

Λp = (6+j)G), i.e, M = p = 37. Boundary region is depicted (red dashed;
RV((6 + j)G)), as well as some signal points of the constellation’s periodic
extensions (gray).

consequence, M = p2-ary Gaussian prime constellations AGΘ

with boundary region RV(pG) = RV(j pG) are present. Since
a rotation by π/2 (multiplication by j) does not influence
the square boundary region, both cases are equivalent to the
conventional square QAM one with cardinality

√
M = p per

dimension (cf. (13) and Fig. 3). However, these special square
QAM constellations represent finite fields in the complex
plane. This property will be further discussed below.

B. Eisenstein Prime Constellations

1) Preliminaries: Consider a prime p > 3 ∈ N fulfilling
rem6(p) = 1, i.e., p = 7, 13, 19, . . . Then, an Eisenstein
integer Θ ∈ E of the form Θ = a + ω b, a, b ∈ Z, called
Eisenstein prime [17], can be found, for which holds

p = a2 + b2 − ab = |a+ ω b|2 = Θ Θ∗ . (18)

2) LRA PE over Eisenstein Prime Constellations: In equiv-
alence to the Gaussian prime constellations, Eisenstein prime
constellations are obtained when choosing Λa = E and
Λp = ΘE, where Θ is an Eisenstein prime as defined above.
The modulo function now reads

modΘE(z) = z −ΘQE

( z
Θ

)
, (19)

and we obtain the signal constellation AEΘ
def
= RV(ΘE) ∩ E.

Compared to the conventional case (cf. Fig. 4), the hexagonal
boundary region RV(ΘE) is maintained but it is again rotated
in the complex plane by arg(Θ).

In the same way as the Gaussian prime constellations,
the signal points (data symbols) of the Eisenstein prime
constellations form a p-ary finite field over C, denoted as EΘ,
but naturally over the hexagonal signal grid [17], [20]. The
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Fig. 6. Eisenstein prime constellation AEΘ for Θ = 7+ω 3 (blue; Λa = E,
Λp = (7 + ω 3)E), i.e, M = p = 37. Boundary region is depicted (red
dashed; RV((7+ω 3)E)), as well as some signal points of the constellation’s
periodic extensions (gray).

cardinality of EΘ is hence given as M = p = Θ Θ∗ (cf. (18)).
Furthermore, as

modΘE(ε) ∈ EΘ , ∀γ ∈ E , (20)

we have a modulo function E→ EΘ and thus residue classes
of E modulo Θ. Since Λa = E and Λp = ΘE are matching,
a periodically extendable constellation finite-field constellation
is present. In Fig. 6, the 37-ary Eisenstein prime constellation,
where Θ = 7 + ω 3, is exemplarily depicted.

3) Factorization of the Channel Matrix: For Eisenstein
prime constellations, the common C-LLL algorithm does not
result in a suitable matrix Z (running out of lattice E, cf.
Sec. III). However, the finite-field property immediately offers
a suited strategy: Let the entries of Z (and hence Z−1)
now be drawn from E; we denote this matrix as ZE. As
a consequence, instead of quantizing to Gaussian integers
(QG(·)) in the C-LLL algorithm [8, Line 1 in Alg. 2], the
quantization operation is now performed with respect to the
Eisenstein integers (QE(·)). The factorization task (4) hence
reads

H̄ = ZEH̄red . (21)

We denote this variant of the LLL algorithm conducting a
rounding to Eisenstein integers as “E-LLL”.

When performing LRA PE, the preequalized symbols az
(cf. (6)) hence form a subset of E. As a consequence, via
modΘE(·), elements of EΘ are obtained (from the modulo
congruent ones, cf. (20)), and thus ãz ∈ ENR

Θ . At the receiver-
side, after the modulo operation, the estimated symbols are
again drawn from EΘ. In summary, the end-to-end finite-
field channel enables LRA/IF preequalization when operating
over the hexagonal lattice. Noteworthy, all Eisenstein prime



constellations are zero-mean due to their point symmetry to
z = 0.

4) Isomorphism to Fp or Fp2 : The isomorphism between
Fp and EΘ is similar to the one for GΘ and gives the respective
mapping from Fp to the signal points; information, represented
by ξ ∈ Zp ' Fp, is mapped to the signal point via a =
modΘE(ξ) ∈ AEΘ

Moreover, an isomorphism between the extension field Fp2

and a field of a related Eisenstein prime Θ = p or Θ = ω p
can be derived [17] when rem3(p) = 2, i.e., p = 2, 5, 11, . . .
The mapping to EΘ is given by (19), but with ξ ∈ Zp +ω Zp.

Regarding Eisenstein primes of the form Θ = p or Θ = ω p,
p2-ary signal constellations with RV(pE) = RV(ω pE) are
obtained. Since a rotation by the Eisenstein unit ω does not
affect the hexagonal boundary region, we have equivalent
constellations in both cases. In addition, the constellation
illustrated in Fig. 4 turns out to be an Eisenstein prime one
where Θ = 5 (or Θ = ω 5). Hence, a finite-field constellation
with M = p2 = 25 is given.

C. Comparison to Conventional Case

In the following, we give an overview on the advantages
of the described finite-field constellations in comparison to
the conventional ones. Most important, the fact that they
inherently specify a periodically extendable constellation with
algebraic (finite-field) properties is highly desirable and a
prerequisite for LRA/IF equalization/precoding. Furthermore,
the benefit of a hexagonal signal grid / boundary region is
discussed.

1) Representation as Finite Field: Recently, research ac-
tivities have been focused on integer forcing schemes, e.g.,
[14], [11], [4], [26], which are very tightly related to the
principle of LRA equalization. However, conventional (QAM)
constellations are—in the main—not suited for these schemes
as the idea is to resolve the interference via finite-field pro-
cessing in combination with channel coding over these fields.
For receiver-side equalization (multiple-access channel), the
employment of fields of Gaussian and even Eisenstein integers
[20] has already been proposed. However, for transmitter-side
equalization/encoding, they are even more advantageous due
to their implicitly defined modulo function.

Concerning conventional M -ary square QAM constella-
tions, the naive approach to achieve a finite-field property
is to separate the complex dimensions, i.e., splitting the
constellation into

√
M one-dimensional fields Z√M with

elements drawn from R, isomorphic to Fp, where p is a
prime. However, as listed in Table I (column “(Z√M )2”) for
4 ≤ M ≤ 128, this strategy only results in five different
possibilities (M = 4, 9, 25, 49, 121); hence, the choice of the
cardinality is very restricted.

In [11], for both transmitter- and receiver-side joint pro-
cessing (multiple-access/broadcast channel), the employment
of square QAM constellations representing fields over the
complex plane is proposed (cf. isomorphism between Fp2 and
GΘ; purely real-valued Θ w.r.t. GΘ in Table I). This gives even
less degrees of freedom (M = 9, 49, 121).

TABLE I
FINITE-FIELD CONSTELLATIONS FOR CARDINALITIES 4 ≤M ≤ 128.

(Z√M )2 ,
√
M A PRIME NUMBER, GAUSSIAN PRIME CONSTELLATIONS

GΘ , Θ A GAUSSIAN PRIME, AND EISENSTEIN PRIME CONSTELLATIONS
EΘ , Θ AN EISENSTEIN PRIME.

(Z√M )2 GΘ EΘ
M p σ2

a Θ σ2
a Θ σ2

a

4 2 0.5 2 0.75
5 2 + j 0.8
7 3 + ω 0.8571
9 3 1.3333 3 1.3333
13 3 + j 2 2.1538 4 + ω 1.8462
17 4 + j 2.8235
19 5 + ω 2 2.5263
25 5 4 5 3.6
29 5 + j 2 4.8276
31 6 + ω 4.2581
37 6 + j 6.1622 7 + ω 3 5.0270
41 5 + j 4 6.8293
43 7 + ω 6
49 7 8 7 8
53 7 + j 2 8.8302
61 6 + j 5 10.1639 9 + ω 4 8.3607
67 8 + ω 2 9.3134
73 8 + j 3 12.1644 9 + ω 10.1096
79 10 + ω 3 10.9367
89 8 + j 5 14.8315
97 9 + j 4 16.1649 11 + ω 3 13.4845
101 10 + j 16.8317
103 11 + ω 2 14.2718
109 10 + j 3 18.1651 12 + ω 5 15.1927
113 8 + j 7 18.8319
121 11 20 11 20 11 16.9091
127 13 + ω 6 17.5276

Skipping the square QAM property and going over to
general fields of Gaussian primes (for Λa = G), the flexibility
can tremendously be increased. As apparent from Table I, there
are 14 additional cardinalities that can be chosen, all enabling
finite-field calculations on complex symbols. While the above
state-of-the-art approaches do not allow any cardinalities be-
tween M = 49 and M = 121, employing the Gaussian prime
constellations eight additional options are enabled.

2) Advantages of Eisenstein Prime Constellations: Two
benefits are obtained when considering constellations AEΘ
based on the Eisenstein integers (Λa = E). On the one
hand, the degree of freedom w.r.t. the cardinality is even
more increased as constellations for 8 new values can be
constructed (compared to Λa = G for 4 ≤ M ≤ 128, cf.
Table I). Besides, for the cases M = 4 and M = 25—which
were only possible for separate component-wise processing—
two-dimensional operations are possible here (isomorphism
between Fp2 and EΘ). On the other hand, positive impacts
on the transmission performance can be expected: First, the
packing and shaping gain of Eisenstein prime constellations in
comparison to the Gaussian ones allow a decrease in transmit
power (fixed desired error performance) or alternatively an
increase in transmission performance (fixed transmit power).
As an example, considering M = 61, where both fields of
Gaussian and Eisenstein primes exist, a gain of about 0.85 dB
concerning the variance of the respective constellations (cf.



Table I) is present. Moreover, the quantization to Eisenstein
integers when applying the E-LLL algorithm results in a
factorization gain compared to the Gaussian integers: due to
the higher packing density, the average quantization error can
be decreased. The consequence is a lower orthogonality defect
and thus—finally—a lower noise enhancement.

V. NUMERICAL RESULTS

In the following, the theoretical considerations and deriva-
tions from the previous sections are covered by means of
numerical simulations. For fair comparison, all simulations
were performed w.r.t. the basic LRA PE system model for
the NR × NT i.i.d. flat-fading MIMO broadcast channel as
described in Sec. II. Factorization of the augmented channel
matrix is done via C-LLL (or E-LLL, respectively) as efficient
factorization algorithms for the IF strategy are not yet available
(cf. [15]). The linear preequalization part is adjusted according
to the MMSE criterion. For comparison, in each case, the
results for conventional linear preequalization according to the
MMSE criterion are given.8 The presented results are averaged
over the users and a sufficiently large number of channel
realizations.

A. Transmission using Finite-Field Constellations

First, we assess Gaussian or Eisenstein prime constellations
and compare them to conventional square QAM constellations
of similar cardinalities that may be represented as (one-
dimensional or complex-valued) finite fields. In the figures,
the symbol error rate (SER) in dependency of Eb,TX/N0 is
given. Noteworthy, even when considering non-binary uncoded
transmission (i.e., Rm /∈ N), the energy per bit as opposed to
the energy per symbol is more appropriated since the amount
of transmitted information per modulation step is taken into
account.

1) Scenario 1: In Fig. 7, a 9-ary square QAM constellation
(AG), representable as Gaussian prime constellation AGΘ

,
where Θ = 3, serves as basis for the comparison. In addition,
the performance of Gaussian prime constellations with cardi-
nalities M = 5 and M = 13 is given. These constellations
have the same signal point lattice Λa and a (possibly rotated)
square Voronoi region of Λp. First, we restrict to the case
NT = NR = 4 (top). Obviously, decreasing the cardinality
from M = 9 (Rm = 3.17) to M = 5 (Rm = 2.32) leads
to a gain of approximately 1.25 dB in Eb,TX/N0 in the low-
SER regime, whereas an increase from M = 9 to M = 13
(Rm = 3.70) induces a loss of about 1.75 dB, while the
constellations’ basic properties stay the same. We hence obtain
more flexibility in the trade-off between spectral efficiency
(high Rm) and power efficiency (low transmit power) when
including (general) Gaussian prime constellations.

With regard to the hexagonal lattice constellations, the
impact of the packing, shaping, and factorization gain becomes
apparent: In comparison to the lattice G, for M = 13, a gain of

8Conventional linear preequalization is equivalent to LRA PE with Z = I
and switching off all modulo operations.
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Fig. 7. SER over Eb,TX/N0 for uncoded LRA PE employing finite-field
constellations according to Scenario 1 (solid). Parameter: M ; variation of
signal point lattice Λa. For comparison, the results for conventional LPE are
given (dashed). Top: NT = NR = 4. Bottom: NT = NR = 8.

about 1 dB is present in the high-SNR regime. Moreover, the
7-ary Eisenstein prime constellation even exhibits a lower SER
than the 5-ary Gaussian one. Thus, if possible, the Eisenstein
lattice should be preferred.

For the situation at hand, all curves converge to diversity
order four (Eb,TX/N0 → ∞). Due to equalization according
to the MMSE criterion, the decline may even be larger in
the mid-to-high-SNR regime, but the curves finally flatten
out to this slope. For the conventional LPE case, the rapid
convergence to diversity order one is clearly visible. Here, the
Eisenstein constellations show hardly any advantage, as the
number of six nearest neighbors more degrades the overall
performance since the slope of the curve is small.

Fig. 7 (bottom) additionally visualizes the results for the
abovementioned constellations if NT = NR = 8. Due to the
higher diversity and larger receive power (for fixed transmit
power), the SER is typically lower for a fixed SNR. All LRA
PE curves finally converge to diversity order eight, whereas
the order for conventional LPE cannot be increased. Again, the
more flexible trade-off between spectral and power efficiency
enabled by using Gaussian prime constellations is visible;
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Fig. 8. SER over Eb,TX/N0 for uncoded LRA PE employing finite-field
constellations according to Scenario 2 (solid). Parameter: M ; variation of
signal point lattice Λa. For comparison, the results for conventional LPE are
given (dashed). Top: NT = NR = 4. Bottom: NT = NR = 8.

the gap w.r.t. Eb,TX/N0 even becomes larger. Besides, the
Eisenstein prime constellations are actually more advantageous
for high diversities; the 13-ary Eisenstein one almost performs
the same as the 9-ary square QAM one.

2) Scenario 2: In addition, we consider a scenario where
a 25-ary square QAM constellation is taken as basis.9 The
respective simulation results are depicted in Fig. 8. Restricting
Λa to G, again we can utilize the improved degrees of
freedom concerning the cardinality and hence obtain a more
flexible and fine-granular trade-off between power and spectral
efficiency.

The superiority of the Eisenstein constellations is again
present, e.g., for the case NT = NR = 4, the 31-ary Eisen-
stein constellation shows the same performance as the 25-ary
Gaussian one. When assuming NT = NR = 8, even though
the rate is increased from Rm = 4.64 to Rm = 4.95, a gain of
about 0.5 dB in Eb,TX/N0 (high-SNR regime) is achieved for

9Noteworthy, for the lattice G, this constellation can only be represented
via one-dimensional finite fields Z√M ; a complex-valued finite-field repre-
sentation as in the previous scenario is not possible.

TABLE II
BINARY TRANSMISSION: SIMULATION PARAMETERS AND PROPERTIES

Constellation β µ Rm 2β/Mµ

AG, M = 64 6 1 6 1
AGΘ

, M = 61 427 72 5.93 0.9910
AEΘ , M = 61 427 72 5.93 0.9910
AEΘ , M = 67 6 1 6 0.9552

the considered Eisenstein constellation.10 In addition, for the
scenario at hand, the comparison of a 25-ary Gaussian to a
25-ary Eisenstein constellation is possible (cf. isomorphism
between Fp2 and EΘ). Considering NT = NR = 8, the
Eisenstein one gains approximately 1 dB.

As above, all curves for LRA PE converge to diversity order
four (NT = NR = 4) or eight (NT = NR = 8), respectively;
conventional LPE inherently has diversity order one.

B. Binary Transmission

Finally, we consider the case of binary end-to-end trans-
mission, i.e., include the mapping from binary data to signal
points and vice versa into the end-to-end model. Here, square
QAM constellations with Rm = log2(M) ∈ N are the most
natural choice as a direct mapping from β = log2(M) bits to
one data symbol can be performed.

Unfortunately, a straightforward mapping from bits to data
symbols is not possible when employing Gaussian or Eisen-
stein prime constellations, as Rm = log2(p) /∈ N (or Rm =
log2(p2) /∈ N, respectively).11 The following approaches solve
this problem:

i) Blocks of β bits, i.e., b = [b1, . . . , bβ ], are mapped
to blocks of µ data symbols, i.e., m = [m1, . . . ,mµ], by
means of modulus conversion [7], [5]. Mµ ≥ 2β has to hold;
the surplus signal point vectors are neglected leading to a
degradation. The modulation rate is given by Rm = β/µ.
At the receiver side, the inverse of modulus conversion is
performed to recover the bits from the estimated symbols.

ii) 2β-ary transmission with an M -ary constellation (M >
2β), i.e., M − 2β potential data symbols are ignored. This
strategy can be interpreted as a modulus conversion with
parameter µ = 1.

Starting from a 64-ary square QAM constellation, both the
61-ary Gaussian and Eisenstein prime constellations are suited
for a comparison, as well as the 67-ary Eisenstein one. For the
61-ary constellations, we apply modulus conversion in order to
map bits to symbols; the parameters are given in Table II.12 In
contrast, for AEΘ with M = 67, three potential signal points
are dropped to obtain a 64-ary constellation. In this case—
to be zero-mean—it is convenient to exclude two opposing

10Even though the 25-ary Gaussian prime constellation has a lower variance
than the 31-ary Eisenstein one (cf. Table I), the Eisenstein constellation
performs better due to the factorization gain.

11The case M = p2 = 4 is an exception, cf. Table I.
12Since not all Mµ, but only 2β signal point vectors are used, the signal

points are not precisely drawn with equal probability. Hence, a mean will be
present. For large block lengths in the modulus conversion, however, this mean
value is very low in comparison to the constellation’s variance. Nevertheless,
this fact is incorporated in the simulation results.
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Fig. 9. SER over Eb,TX/N0 for LRA PE assuming uncoded binary end-
to-end transmission according to Table II (solid). Parameter: M ; variation of
signal point lattice Λa. For comparison, the results for conventional LPE are
given (dashed). Top: NT = NR = 4. Bottom: NT = NR = 8.

signal points with the largest magnitude (e.g., a = 2+ω 5 and
a = −2− ω 5), and also the signal point located at the origin
(a = 0).

Fig. 9 illustrates the symbol error rate for binary transmis-
sion in dependency of Eb,TX/N0 subject to Table II for both
NT = NR = 4 and NT = NR = 8. The conclusions that
can be drawn from these SER plots are similar to the ones for
the previous finite-field scenarios: transmission performance
increases with the diversity order, and the Eisenstein prime
constellations allow a decrease in Eb,TX/N0 due to their
packing, shaping, and factorization gain. For NT = NR = 8
we have a gain of about 1.75 dB for the 67-ary-based 64-ary
Eisenstein constellation compared to the 64-ary square QAM
one.13 Instead, employing the 61-ary Eisenstein one results in
a minor additional gain. Similarly, both Gaussian-prime-based
constellations nearly perform the same. For conventional LPE,
the transmission performance is nearly almost constant over
all considered constellations; again only diversity order one is

13Noteworthy, the 64-ary Eisenstein-based constellation has the variance
σ2
a = 9.1562.
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Fig. 10. BER over Eb,TX/N0 for LRA PE assuming uncoded binary end-
to-end transmission according to Table II (solid). Parameter: M ; variation of
signal point lattice Λa. For comparison, the results for conventional LPE are
given (dashed). Top: NT = NR = 4. Bottom: NT = NR = 8.

possible.
When assuming binary (uncoded) transmission, the bit-error

rate (BER) is of great importance. In Fig. 10, it is plotted
over Eb,TX/N0, again for NT = NR = 4 and NT = NR = 8,
respectively. Obviously, binary transmission based on modulus
conversion results in a rather poor BER performance in the
low-to-mid-SNR regime. This can easily be explained by error
propagation when carrying out the inverse modulus conversion
in the receivers: one single symbol error over the block of
µ symbols affects the whole block of equivalent β bits. In
contrast, if a direct mapping to one symbol is used, only
log2(M) bits are affected. For the 64-ary square QAM constel-
lation, a Gray labeling can be employed—then each symbol
error causes only a single bit error (in the mid-to-high-SNR
regime). Regrettably, for the Gaussian and Eisenstein prime
constellations, a Gray labeling cannot be given in general (and
has no direct meaning if modulus conversion is applied). To
summarize, for uncoded transmission, a mapping via modulus
conversion is rather critical. Nevertheless, in the low-BER
range (BER ≈ 10−5) for the high-diversity case, the 61-ary
Eisenstein prime constellation nearly achieves the performance



of the 64-ary square QAM one.
Concerning the 64-ary (67-ary-based) Eisenstein constel-

lation, the situation is different: Since the abovementioned
error propagation is not relevant in this case, in the low-
to-mid-SNR range (as well as for non-LRA LPE) only the
lack of a Gray labeling becomes apparent. In the high-SNR
regime, the packing, shaping, and factorization gain are the
more dominating quantities and the Eisenstein constellation
shows at least the same performance as the square QAM one
(NR = NT = 4). For the high-diversity case, NR = NT = 8, a
gain of approximately 1 dB is possible. Thus, the employment
of Eisenstein prime constellations can even be advantageous
for uncoded binary end-to-end transmission, if a suitable
mapping from bits to field elements can be found.

VI. SUMMARY AND CONCLUSIONS

In this paper, the approach of choosing algebraic signal con-
stellations for lattice-reduction-aided preequalization on the
MIMO broadcast channel has been presented and assessed.
First, conventional complex-valued constellations and their
properties have briefly been reviewed. Basic conditions and
properties w.r.t. fields of Gaussian and Eisenstein primes have
been discussed, as well as the possibility to apply them as
algebraic signal constellations for LRA PE. Their similarities
and differences to the conventional ones have been worked out,
especially concerning the finite-field property, the flexibility
of choosing the cardinality, and the shaping, packing, and
factorization gain of (hexagonal) Eisenstein constellations.
The theoretically-based derivations have been complemented
by numerical simulations revealing the usefulness of these
algebraic signal constellations in precoding schemes.

The finite-field property of these constellations is indis-
pensable for integer-forcing schemes. In this paper, due to
lack of space, only uncoded transmission has been presented.
However, the exposed constellation design can immediately be
combined with coding techniques. As the fields of Gaussian
and Eisenstein primes are isomorphic to Fp, a perfect match
is obtained when applying coded modulation via non-binary
p-ary codes, e.g., low-density-parity-check codes over Fp [11],
[20]. Using algebraic signal constellations, suited non-binary
codes, and LRA/IF equalization/preequalization schemes, a
perfect cooperation of the three parts with flexible design is
enabled.
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2006.

[17] Q.T. Sun, J. Yuan, T. Huang, K.W. Shum. Lattice Network Codes
Based on Eisenstein Integers. IEEE Transactions on Communications,
pp. 2713–2725, July 2013.

[18] M. Taherzadeh, A. Mobasher, A.K. Khandani. LLL Reduction Achieves
the Receive Diversity in MIMO Decoding. IEEE Transactions on
Information Theory, pp. 4801–4805, Dec. 2007.

[19] M. Tomlinson. New Automatic Equalizer Employing Modulo Arith-
metic. Electronic Letters, pp. 138–139, Mar. 1971.

[20] N.E. Tunali, Y.C. Huang, J.J. Boutros, K.R. Narayanan. Lattices
over Eisenstein Integers for Compute-and-Forward. Available online:
http://arxiv.org/abs/1404.1312, v2, Oct. 2014.

[21] P. Viswanath, D.N.C. Tse. Sum Capacity of the Vector Gaussian
Broadcast Channel and Uplink-Downlink Duality. IEEE Transactions
on Information Theory, pp. 1912–1921, Aug. 2003.

[22] S. Vishwanath, N. Jindal, A. Goldsmith. Duality, Achievable Rates,
and Sum-Rate Capacity of Gaussian MIMO Broadcast Channels. IEEE
Transactions on Information Theory, pp. 2658–2668, Oct. 2003.

[23] C. Windpassinger, R.F.H. Fischer. Low-Complexity Near-Maximum-
Likelihood Detection and Precoding for MIMO Systems Using Lattice
Reduction. Proc. IEEE Information Theory Workshop, pp. 345–348,
Mar. 2003.

[24] C. Windpassinger, R.F.H. Fischer, J.B. Huber. Lattice-Reduction-Aided
Broadcast Precoding. IEEE Transactions on Communications, pp. 2057–
2060, Dec. 2004.

[25] H. Yao, G.W. Wornell. Lattice-Reduction-Aided Detectors for MIMO
Communication Systems. Proc. IEEE Global Telecommunications Con-
ference, Taipei, Taiwan, Nov. 2002.

[26] J. Zhan, B. Nazer, U. Erez, M. Gastpar. Integer-Forcing Linear
Receivers. IEEE Transactions on Information Theory, pp. 7661–7685,
Oct. 2014.


