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Abstract—Lattice-reduction-aided preequalization or precod-
ing are powerful techniques for handling the interference on the
multi-user MIMO broadcast channel as the channel’s diversity
order can be achieved. However, recent advantages in the closely
related field of integer-forcing equalization raise the question, if
the unimodularity constraint on the integer equalization matrix
in LRA schemes is really necessary or if it can be dropped,
yielding an additional factorization gain. In this paper, so-
called algebraic signal constellations are presented, where the
unimodularity is not required anymore. Assuming complex-
baseband transmission, particularly q-ary fields of Gaussian
primes (complex integer lattice) and Eisenstein primes (complex
hexagonal lattice) are considered. Given the signal constellation
and the channel code in the same arithmetic over a finite field of
order q, a coded modulation approach with straightforward soft-
decision decoding metric is applied. Moreover, LRA precoding
over algebraic constellations and its advantages as opposed to
LRA preequalization are discussed. The theoretical considera-
tions in the paper are covered by means of numerical simulations.

I. INTRODUCTION

In multi-user multiple-input/multiple-output (MIMO) com-
munications, the principle of lattice-reduction-aided (LRA)
equalization has gained significant interest as the respec-
tive schemes are able to achieve the diversity order of the
multi-user MIMO channel [30]—in contrast to well-known
traditional techniques like linear (pre-)equalization, decision-
feedback equalization (DFE) [10] or Tomlinson-Harashima
precoding (THP) [31], [16], which have been adapted from
the single-user to the multi-user scenario [10], [7].

In LRA schemes, the equalization is performed in a suited
basis w.r.t. the lattice described by the MIMO channel matrix.
This is achieved by factorizing the channel matrix into an
unimodular integer part and a “more suited” description of
the lattice with basis vectors close to orthogonal and of small
norm. This approach has first been presented for receiver-
side equalization (multiple-access channel) [38] but could
rapidly—via the uplink/downlink duality [33], [34]—be ex-
tended to downlink transmission (MIMO broadcast channel)
[35], [36], [28].

Recently, inspired by so-called compute-and-forward [25],
[18] or integer-forcing (IF) [39] schemes where the final
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resolution of the interference is performed over finite fields,
the philosophy of LRA equalization has been considered from
a modified perspective [26]: applying signal constellations
with algebraic property [9], or more specifically, constellations
which represent finite fields over the complex plane, the short-
est basis problem present in LRA equalization is generalized
to the shortest independent vector problem. This task, which
is always given in IF equalization, drops the unimodularity
constraint on the integer matrix. Fields of Gaussian primes
[20], [1], [3] (complex integer lattice) or fields of Eisenstein
primes [3], [29], [32] (complex hexagonal lattice) are suited
algebraic structures [26], not only providing the desired finite-
field property, but also directly yielding the precoding lattice
or modulo operation inherently accompanied by LRA pre-
equalization or precoding.

In this paper, the approach of applying algebraic signal con-
stellations for LRA preequalization over the MIMO broadcast
channel as proposed in [26] is reviewed and extended. This
includes a factorization according to the shortest independent
vector problem and the assessment of the achievable factor-
ization gain. A coded modulation approach where both the
channel code and the signal constellation operate over the
same arithmetic [27], specifically a finite field of order q, is
applied and implemented via non-binary q-ary LDPC codes.
Moreover, the LRA linear preequalization in [26], [27] is re-
placed by (Tomlinson-Harashima-type) LRA precoding and its
advantages w.r.t. signal properties and resulting transmission
performance are discussed.

The paper is organized as follows: In Sec. II, the system
model of coded modulation in combination with LRA pre-
equalization or precoding for the MIMO broadcast channel
is given. Sec. III details the aspects of LRA encoding over
algebraic constellations, coded modulation over these constel-
lations and the advantages of LRA precoding instead of LRA
preequalization. Numerical results are provided in Sec. IV.
The paper closes with a summary and conclusions in Sec. V.

II. SYSTEM MODEL

A discrete-time complex-baseband multi-user MIMO broad-
cast channel is considered. At the transmitter-side, a joint
processing is present to supply NR non-cooperating single-
antenna users via NT ≥ NR transmit antennas. The system
model of LRA precoding in combination with (soft-decision)
channel coding is depicted in Fig. 1.
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Fig. 1. System model of LRA precoding (transmitter-side and receiver-side processing) for the MIMO broadcast channel with NT transmit antennas and NR

single-antenna users in combination with soft-decision channel coding. For individual processing, the dimension per user is specified.

A. Transmitter-Side Processing

Independent serial streams of source information symbols
are transmitted to user u = 1, . . . , NR. As a block-based
channel coding is present, the streams are split into blocks
of µ source symbols. Since usually bits are communicated
we restrict to the binary case. One block of bits of user u is
denoted by iu = [iu,1, . . . , iu,µ] ∈ Fµ2 .

If the source and channel coding do not share the same
arithmetic, i.e., the channel code is represented over a field
Fq = {ϕ1, . . . , ϕq} with q 6= 2, a modulus conversion
(denoted as MC) has to be applied [13], [10], [26]: the block
of µ source symbols drawn from F2 is converted to a block of
ν message symbols drawn from Fq (qν ≥ 2µ). These symbols
are combined into the vector mu = [mu,1, . . . ,mu,ν ] ∈ Fνq .

Subsequently, performing the channel encoding (ENC),
kc = κν, κ ∈ N, (serial) message symbols are encoded to
a codeword of length nc via a kc × nc generator matrix Gc

of a linear block code (rate Rc
def
= kc/nc). This yields the

vector of encoded messages cu = [cu,1, . . . , cu,nc ] ∈ Fnc
q . All

users are assumed to have the same code properties (length,
rate, and code class). However, each encoding is performed
independently of the encoding for all other users.

Given the encoded symbols, a (symbol-wise) predefined
mapping M : c ∈ Fq → a ∈ A to data symbols is performed,
where A ⊂ C denotes a zero-mean signal constellation with
cardinality M def

= |A| and variance σ2
a.

The vectors of data symbols au = [au,1, . . . , au,nc ] ∈ Anc ,
u = 1, . . . , NR, are finally combined into the data-symbol
matrix A ∈ ANR×nc in order to enable a joint precoding.
The precoding results in a matrix of transmit symbols X ∈
CNT×nc that are radiated from the antennas. A sum-power
constraint NTσ

2
x = NRσ

2
a is present, where σ2

x is the transmit
symbols’ variance. The process of precoding will further be
explained in Sec. III.

B. Channel Model

The MIMO broadcast channel is expressed by

Y = HX +N . (1)

The NR × NT channel matrix H is assumed to have i.i.d.
complex-Gaussian zero-mean unit-variance coefficients. A
block-fading channel is assumed, i.e., the channel matrix is
constant over the whole block of nc data symbols. The matrix

N ∈ CNR×nc represents the additive white noise which
is present at each receiver. It is assumed to be zero-mean
complex Gaussian with variance σ2

n; i.i.d. over the users and
time. Finally, Y ∈ CNR×nc denotes the respective matrix of
receive symbols.

The signal-to-noise ratio (SNR) is expressed as transmitted
energy per bit in relation to the noise power spectral density
N0 and given by

Eb,TX

N0
=

σ2
a

σ2
nRcµ/ν

. (2)

C. Receiver-Side Processing

At the receiver-side, for each user u = 1, . . . , NR a metric
L : Cnc → [0, 1]q×nc for soft-decision decoding is calculated
from its incoming signal vector yu = [yu,1, . . . , yu,nc

]. Since
the decoding is independently performed in an equivalent way,
we drop the user index for simplicity. For each sample yγ in y,
γ = 1, . . . , nc, the metric is represented as q-dimensional vec-
tor lγ = [l1,γ , . . . , lq,γ ]T. Thereby, lρ,γ

def
= Pr{cγ = ϕρ | yγ},

ρ = 1, . . . , q, i.e., lγ is a probability mass function (pmf)
of one encoded message symbol w.r.t. all possible elements
ϕρ ∈ Fq .

Combing all nc metric vectors into L ∈ [0, 1]q×nc , a soft-
decision decoding (DEC) is performed. The resulting decoded
messages are denoted as m̂u = [m̂u,1, . . . , m̂u,kc ] ∈ Fkc

q .
In a final step, the inverse modulus conversion is applied

to obtain the estimated initial information symbols (blocks
of ν message symbols are converted to blocks of µ source
symbols). It yields κ blocks of estimated bits î ∈ Fµ2 .

III. LRA PRECODING FOR CODED MODULATION OVER
ALGEBRAIC SIGNAL CONSTELLATIONS

In order to handle the multi-user interference present on
the MIMO broadcast channel, both LRA preequalization and
(Tomlinson-Harashima-type) precoding share the principle of
performing the interference cancellation in a suited basis, i.e.,
a change in basis is realized to reduce the related increase in
transmit power. The optimal solution for this strategy is found
by solving a shortest basis problem (SBP) [35], [36]. In the
following, the basic idea behind LRA schemes is reviewed.

Solving the shortest basis problem is equivalent to a factor-
ization of the channel matrix according to

H = ZHred , (3)
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Fig. 2. Block diagram of LRA preequalization (feedback part inactive, i.e.,
B = I) and LRA precoding for the MIMO broadcast channel.

where Hred denotes the reduced channel matrix which repre-
sents the more suited basis for equalization. The integer matrix
Z ∈ ΛNR×NR

a consists of elements drawn from a given signal-
point lattice Λa [10], [26] (signal grid of A, i.e., A ⊂ Λa)
and describes the change of the basis. It is usually demanded
to be to be unimodular (|det(Z)| = 1) to ensure the existence
of an inverse integer matrix Z−1 ∈ ΛNR×NR

a .
Concerning transmission performance, it is advantageous to

operate on the augmented channel matrix [37], [11]

H̄
def
=
[
H

√
ζI
]
NR×(NR+NT)

, (4)

where ζ def
= σ2

n/σ
2
a and I denotes the identity matrix (MMSE

solution). To be precise, the optimum strategy is to factorize
the Hermitian of the pseudo-inverse augmented channel matrix(
H̄

+)H
=
(
H̄

H
(H̄H̄

H
)−1
)H

according to (cf. [12], [27])(
H̄

+)H
= Z−H

(
H̄

+
red

)H
. (5)

In this case, the inverse integer matrix is Z−1 =
(
Z−H

)H
and(

H̄
+
red

)H
denotes the Hermitian of the right pseudo-inverse of

the reduced channel matrix with the same dimensions as H̄ .
Given the channel factorization, the LRA preequalization

can be performed as depicted in Fig. 2: The LRA preequali-
zation is realized by an integer equalization matrix

Zp
def
= PZ−1 (6)

to obtain a matrix of equalized symbols Ã ∈ ΛNR×nc
a from the

data symbols A. Thereby, P is a permutation matrix enabling
an optimized precoding order among the data symbols (de-
tailed below). Employing the element-wise modulo reduction

modΛp(z)
def
= z −QΛp(z) , z ∈ C , (7)

where QΛp
(·) is the quantization to the predefined precoding

lattice Λp [10], [26], encoded symbols X̃ ∈ CNR×nc are
created. In case of LRA precoding, this is done in a successive
way as the interference from previously encoded symbols is
canceled via the feedback matrix B (for LRA preequalization:
B = I). Noteworthy, due to the modulo reduction a periodi-
cally extendable constellation [10], [26]

A def
= RV(Λp) ∩Λa (8)

is required, where RV(Λp) denotes the Voronoi region [10]
of the precoding lattice. In the last step, the feedforward
matrix F handles the remaining (non-integer) interference; the
factor g ensures that the sum-power constraint is fulfilled when
obtaining the matrix of transmit symbols X . A suited choice
of F will be discussed below.

A. Unimodularity Constraint and Algebraic Constellations

Initially, for LRA preequalization/precoding, conventional
square-QAM constellations have been employed [36]: utilizing
the Gaussian integers G [1], [3] (i.e., the integer lattice in the
complex plane) as the signal-point lattice1 Λa, the demanded
property of a periodical extensibility can be provided by
setting Λp =

√
MG [26], i.e., a scaled version of the signal-

point lattice (nested lattices, cf. (8)).
Quite recently, an alternative strategy [26], [27] inspired by

integer-forcing schemes [25], [18], [17], [39] was proposed: In
IF, the integer interference is canceled over the arithmetic of a
finite field, setting the requirement to have a signal constella-
tion which can be represented as algebraic structure [9] over
the complex numbers. In the following, we briefly review the
algebraic structures proposed in [26]; subsequently we discuss
the possibility of relaxing the unimodularity constraint in LRA
precoding on the basis of these special constellations.

1) Fields of Gaussian Primes: For the signal-point lattice
Λa = G, fields of Gaussian primes [1], [3], [20] are con-
venient algebraic structures. A Gaussian prime is a Gaussian
integer Θ = a + j b, a, b ∈ Z, which fulfills the equation
ΘΘ∗ = |Θ|2 = p, where p is a real-valued prime and
Θ∗ = a−j b denotes the complex conjugate of Θ. In particular,
primes of the form2 rem4(p) = 1, i.e., p = 5, 13, 17, . . .
are suited. In addition, for real-valued primes of the form
rem4(p) = 3, i.e., p = 3, 7, 11, . . . , a related real-valued
Gaussian prime is directly given by Θ = p.

Choosing the precoding lattice as Λp = ΘG [26], the re-
spective zero-mean signal constellation A(G)

Θ
def
= RV(ΘG)∩G

(cf. (8)) represents a finite field over C. The constellation’s
cardinality always reads M = |Θ|2.

2) Fields of Eisenstein Primes: As an alternative choice
of the signal-point lattice, the Eisenstein integers E represent
the hexagonal lattice over C (Λa = E). By analogy to the
Gaussian primes, Eisenstein primes [3], [29], [32] of the form
Θ = a + ω b can be found that fulfill ΘΘ∗ = p. Thereby,
ω = (−1 + j

√
3)/2 = ej2π/3 is the Eisenstein unit. In this

case, rem6(p) = 1 has to hold for the real-valued prime p,
i.e., p = 7, 13, 19, . . . . When rem3(p) = 2 is fulfilled instead,
i.e., for the case when p = 2, 5, 11, . . . , real-valued Eisenstein
primes of the form Θ = p are given.

Since the precoding lattice is now chosen as Λp = ΘE,
where Θ is an Eisenstein prime, a zero-mean finite-field con-
stellation is formed by A(E)

Θ
def
= RV(ΘE) ∩ E. The cardinality

again reads M = |Θ|2.
The use of Eisenstein constellations additionally enables a

packing and shaping gain compared to the Gaussian prime
ones [26]: due to the higher packing density of the signal
points and the hexagonal shaping region RV(ΘE) instead of
the square one RV(ΘG), the power efficiency is increased.

3) Finite-Field Processing: Since fields of Gaussian or
Eisenstein primes are isomorphic to the finite field of order
q = |Θ|2 = M [3], [26], an equivalent finite-field equalization

1If
√
M is even, a shifted version of G has to be applied, cf. [26].

2remd(c)
def
= c− dbc/dc, with c, d ∈ Z.



approach is possible for both cases [26], [27]: Employing these
algebraic constellations, the cascade of integer preequalization
and modulo operation can be interpreted as a finite-field
multiplication with the matrix PZ−1

F ∈ FNR×NR
q , where

PZ−1
F ' P (modΛp(Z))−1 ∈ ANR×NR

Θ . (9)

The integer equalization is hence performed with the (integer)
inverse of a modulo-reduced finite-field variant of Z with
elements isomorphic to Fq . The inverse of ZF ∈ FNR×NR

q

always exists as long as ZF ' modΛp
(Z) ∈ ANR×NR

Θ has
full rank. As a consequence, the channel factorization can
be performed w.r.t. the shortest independent vector problem
(SIVP): by a relaxation of the unimodularity constraint (i.e.,
|det(Z)| ≥ 1), a factorization gain may be achieved.

B. Coded Modulation over Algebraic Constellations
Due to the isomorphism of q-ary fields of Gaussian and

Eisenstein primes to Fq , a coded modulation approach is
straightforward, cf. [27]. Performing the channel coding over
the finite field Fq , the elements ϕ1, . . . , ϕq are mapped to the
q-ary constellation A(G)

Θ ' Fq or A(E)
Θ ' Fq , respectively,

where a natural mapping Fq → A(·)
Θ via modulo reduction (7)

can be used [26]. This strategy gives the possibility to operate
in the same arithmetic for both channel coding and (integer)
channel equalization (a precondition for the application of IF).

Non-binary LDPC codes are a suitable code class for the
above coded modulation strategy due to the possibility of
soft-decision decoding via non-binary belief-propagation (BP)
decoding over Fq [4] and the flexible code length (e.g., in
contrast to Reed-Solomon codes).3 In particular, the subclass
of irregular repeat-accumulate codes [21] adapted to the non-
binary case [23] is of interest, as the parity-check matrixHc is
guaranteed to have full rank. Consequently, a systematic linear
encoding with the related generator matrix Gc is possible.

An approximate metric for soft-decision decoding can be
derived in the following way: According to Bayes’ theorem,
each element lρ,γ , ρ = 1, . . . , q, of the q-dimensional proba-
bility vector (pmf) for the sample yγ is given by (cf. Sec. II)

lρ,γ = Pr{cγ = ϕρ | yγ} =
Pr{yγ | cγ = ϕρ}Pr{cγ = ϕρ}

Pr{yγ}
.

(10)
The factors Pr{cγ = ϕρ} and 1/Pr{yγ} are constant ∀ϕρ
and the first factor reads

Pr{yγ | cγ = ϕρ} =
∑

λ∈Λp

fN (yγ − (M(ϕρ) + λ)) ·Pr(λ)
ρ,γ

(11)
since an infinite number of modulo-congruent signal points is
present at the receiver side [10]. Thereby,

fN (n) =
1

πg2σ2
n

exp

(
−|n|2

g2σ2
n

)
, n ∈ C , (12)

3Literature on non-binary BP decoding is usually focused on the case q =
2b, b ∈ N, e.g., [5]. For arbitrary fields Fq , a standard probability-domain BP
decoding as explained in [4] can be performed over the related arithmetic. It
should be noted that for each element of Fq , additionally the probability of
its additive inverse has to be calculated in the sum-product step (check-node
message update). When choosing q = 2b, this is typically neglected as the
additive inverse is the element itself.

is the probability density function (pdf) of the scaled noise
(factor g) and Pr(λ)

ρ,γ
def
= Pr{yγ − nγ =M(ϕρ) + λ}|

Zp
the

probability of occurrence for each modulo-congruent signal
point which depends on the actual integer equalization matrix.
Due to the infinite number of congruent points, (11) has to be
approximated. For mid-to-high SNRs, it is sufficient to assume

Pr{yγ | cγ = ϕρ} ≈ fN
(
yγ − (M(ϕρ) + λ̃)

)
·Pr(λ̃)

ρ,γ , (13)

i.e., for each element of Fq , only the neighboring modulo-
congruent representative

λ̃
def
= argmin

λ∈Λp

|yγ − (M(ϕρ) + λ)|2 (14)

is taken into account [10], where Pr(λ̃)
ρ,γ ≈ 1/q. In summary,

the vector l̃γ = [l̃1,γ , . . . , l̃q,γ ]T with

l̃ρ,γ
def
= fN

(
min
λ∈Λp

|yγ − (M(ϕρ) + λ)|
)

(15)

is calculated and normalized to lγ = l̃γ/
∑q
ρ=1 l̃ρ,γ .

C. LRA Precoding over Algebraic Constellations

Since a modulo reduction—in case of LRA preequalization
inherently defined by the precoding lattice Λp—is one of the
basic ideas behind Tomlinson-Harashima-type precoding [31],
[16], [10], the combination of LRA (integer) equalization and
non-integer precoding / successive interference cancellation is
a promising strategy.

1) LRA Preequalization: Given the channel factorization
H̄ = ZH̄red (cf. (3)), the integer equalization matrix directly
reads Zp = Z−1, i.e., P = I . The feedback part (cf. Fig. 2)
is deactivated; the feedforward matrix for the residual non-
integer equalization according to the minimum mean-square
error (MMSE) criterion is the NT ×NR upper part F of4

F̄
def
=

[
F (NT×NR)

F̃ (NR×NR)

]
= H̄

+
red = H̄

H
red

(
H̄redH̄

H
red

)−1

. (16)

The factorization tasks (3) or (5) can be solved by any
lattice reduction / shortest independent vector algorithm. Em-
ploying fields of Gaussian primes (Λa = G), a complex-
valued factorization has to be supported. As an example, the
complex variant [14] of the LLL algorithm [22] is suited,
however, always resulting in an unimodular Gaussian-integer
matrix Z. For fields of Eisenstein primes (Λa = E), an
adapted version is possible [24], [26], resulting in an unimodu-
lar Eisenstein-integer matrix Z. Recently—for receiver-side
IF/LRA equalization—two algorithms which solve the SIVP
instead of the SBP have been proposed [6], [12]. The dual
variants can directly be applied for the situation at hand.
Although both algorithms are designed for Gaussian integers,
the strategy in [12] can be adapted to perform the search on
Eisenstein integers.5

4If the factorization task (5) instead of (3) is solved, the feedforward matrix
is directly given by the NT ×NR upper part of ((H̄+

red)
H)H.

5For the one proposed in [6] this is not possible as real- and imaginary part
are separated to a real-valued representation of doubled dimension.
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Fig. 3. Comparison of the signal processing for LRA preequalization and LRA precoding (cf. Fig. 2) for one exemplary channel realization. Channel
factorization for the lattice G or E (MMSE solution); additional sorted QR decomposition for precoding. 25-ary square-QAM (top) and Eisenstein-prime
(bottom) constellation. Uncoded transmission (Rc = 1); Eb,TX/N0 = 10 dB. NT = NR = 8 and kc = 100, i.e., 800 samples per illustration.

2) LRA Precoding: For the application of LRA precoding,
additionally a sorted LQ decomposition according to [11]

PH̄red = L
[
Q Q̃

] def
= LQ̄ (17)

is necessary. Thereby, P is a NR × NR permutation matrix
describing the optimum encoding order among the users.
Usually—due to the uplink-downlink duality [33], [34]—the
reversed VBLAST sorting [15] is used. The lower triangular
NR×NR matrix L with unit main diagonal directly yields the
feedback matrix (i.e., B = L), and Q̄ is a NR × (NR +NT)
matrix with orthogonal rows. The MMSE feedforward matrix
for the residual equalization is the upper part F of

F̄ =

[
F (NT×NR)

F̃ (NR×NR)

]
= Q̄

+
= Q̄

H
(
Q̄Q̄

H
)−1

. (18)

The integer matrix is now given by Zp = PZ−1 (or by its
finite-field variant (9)), including both the integer equalization
and the permutation for an optimized encoding order.

In contrast to LRA preequalization, two different factoriza-
tion tasks have to be solved: first the SBP/SIVP and afterwards
the sorted LQ decomposition. Both steps may be combined
into a single factorization algorithm (cf. [11]), however, the
state-of-the-art approaches are limited to the SBP.

3) Comparison of Preequalization and Precoding: Though
both LRA preequalization and LRA precoding are performing
the same integer-based equalization they differ in how to
treat the residual non-integer interference. In the following,
this will be discussed with the help of Fig. 3, where LRA
preequalization and LRA precoding are exemplarily illustrated
for a 25-ary square-QAM and Eisenstein-prime constellation.

Via Zp, linear combinations of data symbols or lattice
points, respectively, are calculated. Performing LRA preequali-
zation, the encoded symbols Ã are simply modulo reduced.
This results in symbols X̃ that are again elements of the con-
stellation A (Fig. 3 left). For algebraic constellations A(·)

Θ this
has the consequence that still elements of the finite field are
present. The residual non-integer interference is equalized by
the pseudo-inverse of the reduced augmented channel matrix.

In LRA precoding, the feedforward matrix shapes the
reduced channel to have a lower triangular structure; con-
sequently the remaining causal interference can perfectly be
eliminated by successive interference cancellation. As in con-
ventional THP—due to the modulo operation—this results in
approximately uniformly distributed encoded symbols X̃ over
RV(Λp) (cf. Fig 3). A finite-field property of X̃ is no longer
present as a part of the non-integer interference is already
incorporated.

In Fig. 3 (right side), the transmit symbols X (after feedfor-
ward processing) are illustrated for both cases neglecting the
scaling factor g which enables a fair comparison. Apparently,
on average precoding results in lower signal amplitudes. This
is accompanied by a lower scaling factor g for a constant
transmit power (dual to the noise enhancement for receiver-
side equalization) which finally results in an increase in the
receiver-side SNR and hence an improved performance. The
gain is induced by a lower row norm [11] of the feedfor-
ward matrix when performing precoding instead of a simple
inversion of the reduced channel matrix. Moreover, as can be
seen from Fig. 3 (both preequalization and precoding), the
mean amplitude is even more decreased when the Eisenstein
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Fig. 4. SER over Eb,TX/N0 in dB for LRA preequalization (top) and
LRA precoding (bottom) assuming uncoded transmission. Parameter: M ;
variation of the signal constellation A and the related signal-point lattice
and precoding lattice. Solid: Factorization according to the SIVP. Dashed:
Factorization according to the SBP (LLL algorithm). NT = NR = 8. The
results for a 16QAM constellation are shown when performing both LRA
(LLL factorization) and conventional preequalization/precoding.

constellation is applied. This not only results from the packing
and shaping gain, but also from a factorization gain due to the
higher packing density [26].

IV. NUMERICAL RESULTS

In this section, numerical results for LRA preequalization and
LRA precoding over algebraic constellations are provided.
The gain in transmission performance is quantified when a
factorization according to the SIVP instead of the SBP is
applied. Besides, the coded-modulation approach at hand is
compared to state-of-the-art techniques. The results are always
averaged over all users and a large number of noise and
channel realizations. For LRA transmission, the factorization
task according to (5) is solved (MMSE solution) in any case.

A. Uncoded Transmission

For a reasonable assessment of the coded-modulation ap-
proach and its impact on the transmission performance we first
restrict to the uncoded case (Rc = 1): the encoding is skipped
and the decoding is replaced by a quantization to the signal-
point lattice and a modulo operation w.r.t. the precoding lattice
(cf. [26]). Hence, the channel equalization is in the focus. In
order to achieve a fair comparison among constellations of
different cardinalities, the SNR is always considered as energy
per bit as given in (2). Nevertheless, in the uncoded case the
different modulation rates cannot be compensated completely.

TABLE I
SIMULATION PARAMETERS.

A Λa Field µ ν nc kc Info-Bits

A(G)
Θ G F13 37 10 16200 8760 32412

A(E)
Θ E F13 37 10 16200 8760 32412

A(G)
Θ G F17 94 23 16200 7935 32430

A(E)
Θ E F19 497 117 16200 7722 32802

16QAM G F16 4 1 16200 8100 32400

16QAM G F2 – – 64800 32400 32400

1) SIVP and SBP for Preequalization and Precoding: First,
we assess the achievable gains when the finite-field preequali-
zation or precoding approach is performed on the basis of
the SIVP. Since—even for the SIVP—a significant number
of channel realization is non-unimodular only if NR ≥ 4
(cf. [12]), we restrict to the high-diversity case NR = NT = 8.

In Fig. 4, the symbol-error rate (SER; i.e., m̂ 6= m) is
depicted over the SNR for both LRA preequalization (top)
and precoding (bottom) and cardinalities around M = 16.
Regarding LRA preequalization, the superiority of a fac-
torization according to the SIVP (solid) is clearly visible.
For all algebraic constellations, a gain of about 1 dB is
present compared to LLL factorization (high-SNR regime).
The situation changes when precoding is applied instead: in
that case, hardly any gain is possible when applying the SIVP
(curves nearly lie on top of each other). Since the transmission
performance is generally increased compared to the linear case
(about 2 dB), the factorization gain resulting from the SIVP is
very low. Noteworthy, all curves converge to diversity eight.

In addition, the results when applying a conventional QAM
constellation are shown. In this case, an integer preequalization
matrix Zp is only present if an unimodular factorization is
applied (here: complex LLL algorithm). The performance of
both LRA preequalization and LRA precoding over 16QAM
is approximately equivalent the one of the Gaussian prime
constellations (LLL factorization). Conventional (non-LRA)
linear preequalization (LPE) only achieves diversity order one.
When applying conventional THP instead, the performance
is distinctly improved. Nevertheless, a flattening to diversity
order one still occurs.

2) Binary Transmission: For the assessment of the fac-
torization and precoding gain, the SER is a suited measure.
However, in real systems most often a binary end-to-end
transmission is considered, i.e., a modulus conversion has
to performed for q-ary constellations. We hence consider a
binary transmission and its related bit-error rate (BER). The
simulation parameters are listed in Table I; for the moment
the last three columns and last two rows can be omitted.

The simulation results for NT = NR = 8 are shown in
Fig. 5. First—to show the relation between SER and BER—
the SER curves for LRA preequalization and LRA precoding
from Fig. 4 (SIVP) are combined (top). Again, the superiority
of LRA precoding and a packing, shaping, and factorization
gain of the Eisenstein lattice [26] is visible. Considering
the BER (bottom), the precoding gain expectable from the



10−4

10−3

10−2

10−1

100

S
E
R
−→

M=13, A(G)
Θ

M=13, A(E)
Θ

M=17, A(G)
Θ

M=19, A(E)
Θ

16QAM (LLL)

0 2 4 6 8 10 12 14

10−4

10−3

10−2

10−1

100

10 log10(Eb,TX/N0) [dB] −→

B
E
R
−→

Fig. 5. SER (top) and BER (bottom) over Eb,TX/N0 in dB for LRA
preequalization (dashed) and LRA precoding (solid) assuming uncoded binary
transmission. Parameter: M ; variation of the signal constellation A and the
related signal-point lattice and precoding lattice. Factorization according to
the SIVP; NT = NR = 8. The results for 16QAM (LLL factorization) are
shown in addition.

SER curves is present, but all non-QAM constellations suffer
from an error propagation in the inverse modulus conversion
[26]. Additionally, a direct mapping from bits allows a Gray
labeling, still more increasing the BER performance. Even the
13-ary Eisenstein constellation only achieves a performance
similar to the 16-ary QAM one (high-SNR regime), but with
a decrease in modulation rate. An uncoded binary transmission
over algebraic constellations is hence not advisable.

B. Coded Transmission

Finally, coded modulation over algebraic signal constel-
lations is assessed. For this purpose, non-binary irregular
repeat-accumulate codes as proposed in [27] are employed. A
systematic linear encoding and a belief-propagation decoding
with a maximum number of 100 iterations is performed.

Fig. 6 illustrates the results for an end-to-end binary coded
transmission; the transmission and code parameters are again
listed in Table I. To have a fair comparison among the different
settings, by adapting the code rate Rc the number of informa-
tion bits per code block is fixed to achieve the same amount
of transmission data. For comparison, a 16-ary square-QAM
transmission is studied performing the channel coding in the
extension field F16 with the above code construction. Besides,
the conventional bit-interleaved coded modulation (BICM)
[2] approach is applied, where a respective bit-log-likelihood
metric and a well-optimized binary repeat-accumulate parity-
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Fig. 6. FER (top) and BER (bottom) over Eb,TX/N0 in dB for coded
modulation over algebraic signal constellations. LRA preequalization (dashed)
or LRA precoding (solid). Variation of the cardinality / order of the field, the
signal constellationA and the related signal-point lattice and precoding lattice.
Factorization according to the SIVP; NT = NR = 8. The results for 16QAM
(LLL factorization; BICM or coding over F16) are shown in addition.

check matrix from the DVB-S2 standard [8] are employed.
Noteworthy, for the algebraic constellations the SIVP is again
present, for the QAM one the SBP (LLL factorization) instead.

Considering the frame-error rate (FER; i.e., m̂ 6= m) of
LRA preequalization, equivalent results and hence conclusions
as in [27] are present: even though the binary code is highly
optimized (cf. BICM vs. code over F16), the algebraic coded-
modulation approach shows a superior performance due to
the factorization gain induced by the SIVP. Furthermore, the
additional gain of the Eisenstein constellations is visible (gain
of about 1 dB compared to BICM). Applying LRA precoding,
the transmission performance can generally be increased (by
about 2.5–3 dB). However, as then a factorization according
to the SIVP doesn’t achieve a significant gain any more, all
algebraic and non-algebraic constellations nearly perform the
same. The gain of the Eisenstein lattice is lowered; the 13-ary
Eisenstein constellation is nevertheless still performing best.
As a maximum-likelihood channel equalization is more ap-
proached with LRA precoding, the optimization of the channel
code becomes more important for the system performance.

Concerning the BER (Fig. 6 bottom), the negative impact of
the error propagation in the inverse modulus conversion (if the
block/frame cannot be decoded correctly) is visible, degrading
the performance of the non-QAM constellations. However, in
the low-BER regime of LRA preequalization, the Eisenstein-
based transmissions even perform better than the BICM one



with optimized code. For LRA precoding, in contrast, a small
loss is present in comparison to BICM since the factorization
gain of the SIVP and the Eisenstein lattice is lowered.

V. SUMMARY AND CONCLUSIONS

In this paper, we have presented an LRA MIMO broad-
cast channel transmission strategy where the integer interfer-
ence is eliminated over finite-field constellations. Since non-
unimodular integer equalization matrices can be employed in
this case, a factorization according to the shortest independent
vector problem is enabled. A coded modulation scheme, where
the channel coding and the integer channel equalization are
performed over the same q-ary arithmetic, has been assessed.
For the cancellation of the non-integer interference, both LRA
linear preequalization and LRA precoding have been consid-
ered, including a discussion on the advantages of precoding.

Numerical results have revealed that a factorization accord-
ing to the SIVP is only reasonable for LRA preequalization, as
the achievable gain for LRA precoding is very low. However—
especially on the basis of the Eisenstein lattice—the algebraic
coded-modulation approach is promising: in combination with
the application of optimized non-binary (q-ary) LDPC codes,
e.g. [19], further gains in the coding and thus the transmission
performance can be expected. Since non-binary LDPC codes
outperform binary ones in BP decoding [4], q-ary coded modu-
lation schemes are suited to achieve a significant increase in
performance compared to conventional strategies like BICM.
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