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Abstract—In multiple-input/multiple-output (MIMO) systems,
advanced equalization or precoding schemes are not only known
for providing interference mitigation, but they also have been
proven to exploit the MIMO channel’s diversity. However, in the
case of massive MIMO, the computational complexity of such
schemes make them unfeasible. To solve this problem for the
uplink scenario, an electromagnetic (EM) lens may be employed
at the receiver. It effectively focuses the received power onto a
smaller number of antennas. Hence, the application of techniques
known from classical (non-massive) MIMO systems is enabled
in MIMO systems with a large number of antennas. However,
building such EM-lens-enabled systems comes with a drawback.
Due to physical limitations, it may be impossible to space
the antenna elements in a way to provide spatially decoupled
channels at the receiver, which results in a performance loss.
In this paper, this issue is addressed by first extending the
EM-lens-enabled system to include multiple antennas at the
transmitter. Following this, different equalization strategies for
this scenario are assessed. The performance of the proposed
strategies is evaluated by means of numerical simulations. To this
end, different levels of spatial channel correlations are considered
for both uncoded and coded transmission.

I. INTRODUCTION

With increasing demand for spectral and power efficiency

in non-cooperative multi-user multiple-input/multiple-output

(MIMO) systems, massive MIMO systems—where a few users

communicate with a central base station equipped with a very

large number of antennas—, gain more and more attention,

e.g., in [9], [11]. However, disadvantages of such systems

include the computational requirements for signal processing,

and the physical dimensions required to construct such receiver

arrays.

In order to reduce the operational overhead, systems that are

equipped with an electromagnetic lens (EM lens) have been

proposed in [20]. For each user/transmitter (equipped with one

single antenna), the lens focuses the related received power

onto a (small) subset of antennas at the base station. This

smaller footprint reduces the required computational cost for

signal processing and hence enables techniques that are well

suited for classical MIMO (where the number of transmit and

receive antennas are of the same small order).

However, when constructing such EM-lens-enabled sys-

tems, size restrictions are imposed. That can lead to an inter-

antenna spacing at the receiver such that, as a consequence,

correlated channels may be present. This in turn reduces the
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effective dimensionality (degrees of freedom) of the system,

resulting in a performance degradation [17]. To deal with this

degradation, suited detection schemes must be employed.

In this paper, we present an extension to the EM-lens-

enabled uplink system, where the users are equipped with mul-

tiple transmit antennas. We then analyze the performance of

different strategies that are applicable to the scenario in hand.

This includes the transmission via singular value decomposi-

tion (SVD) which is well-known from classical (non-massive)

point-to-point MIMO [16]. Besides, the philosophy of lattice-

reduction-aided linear equalization (LRA LE) [19], [18] is

adapted to the scenario in hand. The analysis is supported by

numerical simulations that cover both coded and uncoded data

transmission. The complexity vs. power-efficiency trade-off of

the above mentioned systems is assessed.

The paper is organized as follows: In Sec. II, the system

model is introduced, and the channel model including the

multiple transmit antenna extension is presented. Next, in

Sec. III, different equalization strategies are discussed. For

coded transmission, related decoding strategies are presented

in Sec. IV. Simulation results for different scenarios and

equalization strategies are provided in Sec. V. Finally, con-

clusions are drawn in Sec. VI.

II. SYSTEM MODEL

We consider a multi-user uplink scenario where users equipped

with Ntx antennas transmit their data to a central base station

equipped with Nrx ≫ Ntx antennas. An EM lens is placed in

front of the array of receive antennas (cf. Fig. 1) [20]. The EM

lens focuses the induced power on a subset of the antennas of

the base station, which effectively provides multi-user spatial

separation.

A. Channel Model

We assume a uniform linear array, deployed along the y-

axis, centered at y = 0. The antennas are numbered as

m = 1, . . . , Nrx. The transmitter, which is placed at an

angle ϑu against the boresight of the array, employs Ntx

antennas (numbered as l = 1, . . . , Ntx and placed also in a

uniform linear array) that are sufficiently spaced such that

the channels are uncorrelated. The new model in hand is

an extension of the single-antenna multi-user model [20];

we define the multi-antenna transmitter by grouping several

single-user transmitters into one device. We also assume that
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Fig. 1. Multi-user massive MIMO uplink system [13]. Nu users transmit to
a central base station with Nrx ≫ Ntx antennas. An EM lens is placed in
front of the base station antenna array [20]. The array model is centered at
y = 0.

the EM lens provides a perfect user separation. Hence, we

simplify our model to the single-user scenario.

Let hl be the channel coefficients vector that contains the

individual channel coefficients hm,l between transmit antenna

l and the base station antenna element m. To specify the

properties of the channel, we resort to its channel covariance

matrix Cl = E{hlh
H
l }.

The f, g element of the covariance matrix is written as [20]

[Cl]f,g = exp

(

−
σ2
φ

2

(

2πda
λ

(f − g) cos θl

)2
)

· exp
(

j
2πda
λ

(f − g) sin θl

)

, (1)

where σ2
φ is the angular spread factor, da is the base station

inter-antenna spacing, λ is the wavelength of the RF carrier

signal in use, and θl is the angle of arrival of transmit antenna

l [10]. The individual angles θl are calculated from ϑu as

θl
def
= tan−1 (tan (ϑu) + (l − 1) dt) , (2)

where dt is the transmitter inter-antenna spacing (cf. Fig. 2).

A construction similar to that of [20] is employed to include

the effects of the EM lens on the channel model. First, the

spatial position y(θl) of the maximum power induced for a

given angle of arrival θl is calculated via

y(θl) = −da (2∆−Nrx + 1) θl
Θ

, θl ∈ R . (3)

Here, ∆ designates the EM lens focusing parameter, which

defines how many antennas the receive power is induced on

(i.e., the induced power footprint), and Θ is the (total) base

station coverage angle. Following this design, as long as the

user antennas l are within the base station coverage angle, i.e.,

θl ∈
[

−Θ
2 ,

Θ
2

]

, the induced power is focused on the array

elements and no power is lost.

Next, the position of the antenna closest to y(θl) is calcu-

lated via

m̄ =
Nrx

2
+

⌊

y(θl)

da

⌉

, (4)

where m̄ ∈ {1, . . . , Nrx}, and ⌊·⌉ denotes rounding to the next

integer. Following the same argumentation as in [13], i.e., that
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Fig. 2. Example illustrating the angle of arrival of each transmit antenna
[10]. The two-antenna transmitter (with inter-antenna spacing dt) is placed in
front of a linear array equipped with Nrx antennas. The angle of arrival θ1
of antenna l = 1 is used as the reference (ϑu).

the average receive power obeys a pure path loss model, we

define the receive power distribution over the antenna elements

m as

pm = cp · e−
|m−m̄|2

2∆2 , (5)

which ensures that 95% of the induced power is focused

on a 4∆ antenna footprint (−2∆, . . . , 2∆), centered at m̄.

The normalization constant cp is used to ensure that the total

power induced on the antenna array remains constant with and

without the use of the EM lens, i.e., the EM lens is lossless

and acts as a power focusing device, and power control is

applied at the transmitter. The normalization constant then

reads
∑Nrx

m=1 pm = Nrx.

To include the focusing effect of the EM lens, the channel

covariance matrix is finally extended to [20]

C̄l = PClP , (6)

where P
def
= diag(

√
pm), m = 1, . . . , Nrx, is a diagonal

matrix with entries
√
pm that denotes the spatial power

distribution of the EM lens. By changing the values of

the angular spread factor σ2
φ, the receiver-side inter-antenna

distance da, and the power distribution matrix P , all scenarios

ranging from a line-of-sight (LOS) channel (σ2
φ = 0) to

i.i.d. channels (da ≫ λ) and systems without an EM lens

(P = I) can be modeled. The channel coefficient vectors hl

are then drawn from a zero-mean circular-symmetric complex

Gaussian multivariate distribution with covariance matrix C̄l,

i.e., hl ∼ N (0, C̄l).

B. Equivalent MIMO System Model

Since the EM lens effectively removes the inter-user in-

terference (by means of spatially separating the users and

restricting the induced power of each user into a separate

footprint), the channel model can be reduced to a single-

user (point-to-point) MIMO scenario. As a consequence, the

statistical channel model (6) universally describes the channel

between an arbitrary user and the base station. In addition, the

channel coefficients are assumed to be constant over a burst

of Nbl symbols.

We assume that each user wants to transmit Ntx parallel

data streams, i.e., one data stream per antenna (maximum



multiplexing gain). In the transmitter (Fig. 3), following the

philosophy of bit-interleaved coded modulation (BICM) [1],

[8], blocks of binary input symbols q ∈ F
kc
2 are encoded

and randomly interleaved (Π; producing the bits c ∈ F
nc
2 ).

Thereby, Rc = kc/nc is the code rate. Subsequently, the bits

are mapped to a vector of data symbols a ∈ Anc/ log2(M)

(mapping M), where A denotes a zero-mean signal constel-

lation with cardinality M and variance σ2
a . The data symbols

are finally demultiplexed into Ntx streams, represented by the

matrix of data symbols A = [aH
1 , . . . ,a

H
Ntx

]H ∈ ANtx×Nbl , with

the block length Nbl = nc/(Ntx log2(M)). Thus, the matrix

A represents one binary codeword.

q
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Fig. 3. System model of the transmitter [8]. The binary information symbols
q are encoded into c′, interleaved (Π) to produce c and are then mapped to
the transmit symbols a. After mapping, the transmit symbols are divided into
Ntx parallel streams for transmission.

Before radiation, the matrix of data symbols is (jointly)

preprocessed in order to obtain the matrix of transmit symbols

X = [xH
1 , . . . ,x

H
Ntx

]H ∈ CNtx×Nbl . The preprocessing is

performed in such a way that the transmit symbols have the

variance σ2
x = σ2

a .

The block-based transmission is described by the MIMO

system equation

R = HX +N . (7)

Thereby, the matrix H = [h1, . . . ,hNtx
] ∈ CNrx×Ntx consists

of the channel coefficient (row) vectors hl which are randomly

chosen according to (6). Moreover, the matrix N ∈ C
Nrx×Nbl

collects zero-mean circular-symmetric Gaussian noise samples

nm,k with variance σ2
n . At the base station, we finally obtain

our receive symbols which are combined into R ∈ CNrx×Nbl .

III. EQUALIZATION STRATEGIES

Since Nrx ≫ Ntx, joint transmitter-/receiver-side or pure

receiver-side equalization schemes have to be employed in or-

der to handle the multi-antenna interference. In contrast, con-

ventional preequalization/precoding techniques are not suited

(since, to that end, Nrx ≤ Ntx is required).

In particular, for point-to-point MIMO, the SVD is a

straightforward linear joint transmitter- and receiver-side ap-

proach. More powerful is the concept of LRA LE. It is,

however, a pure receiver-side technique that has—at least

in the coded case—strict constraints w.r.t. channel code and

signal constellation.

In the following, we first review the concepts of SVD

and (conventional) LRA LE. Following this, we adapt the

philosophy of LRA equalization to the point-to-point scenario,

i.e., we split the channel equalization into a transmitter and a

receiver part, keeping the advantages of LRA LE and avoiding

its disadvantages.

A. Singular-Value Decomposition

For the case Nrx ≥ Ntx, the SVD of the MIMO channel is

defined as [16]

H = UΣV H , (8)

with the unitary matrix U ∈ CNrx×Nrx , the diagonal matrix

Σ = diag(ς1, . . . , ςNtx
) ∈ CNrx×Ntx which represents the

sorted singular values ς1 ≥ · · · ≥ ςNtx
, and the unitary matrix

V H ∈ CNtx×Ntx .

The related transmission model is depicted in Fig. 4 (Top):

At the joint transmitter, the matrix of data symbols is preequal-

ized via V . Since this matrix is unitary, the transmit power is

kept constant, particularly we have σ2
x = σ2

a . At the receiver

side, the matrix of receive symbols is equalized via Σ−1UH

before decoding.

Via this procedure, we obtain Ntx decoupled AWGN chan-

nels with noise variance σ̃2
n,l = σ2

n/ς
2
l , l = 1, . . . , Ntx. Given

the case that all data streams employ the same type of (coded)

modulation and the same data and code rate, the transmission

performance is dominated by the channel with the lowest

singular value, i.e., the noise power

σ̃2
n,max = σ2

n/ς
2
Ntx

. (9)

For the conventional i.i.d. complex Gaussian channel model

(i.e., uncorrelated coefficients, cf. Sec. II), it is well-known that

a restriction to diversity order D = Nrx −Ntx +1 is present.1

B. Lattice-Reduction-Aided Equalization

1) Lattice-Reduction-Aided Linear Equalization: Conven-

tional LRA LE [19], [18] has originally been designed for

the MIMO multiple-access channel scenario, where several

(single-antenna) users transmit their data to one joint receiver

without any kind of cooperation. The related system model

is depicted in Fig. 4 (Middle). Since joint transmitter-side

processing is neglected, the data symbols are directly radiated.

Hence, we have the (row) vectors xl = al, l = 1, . . . , Ntx,

and thus σ2
x = σ2

a .

In order to perform LRA LE, the channel is factorized into

H = HredZ . (10)

More specifically, we have a reduced non-integer part Hred ∈
C

Nrx×Ntx and an integer part Z ∈ G
Ntx×Ntx , which is unimodu-

lar (| det(Z)| = 1) and describes a change of basis for equali-

zation. Thereby, G = Z + jZ denotes the Gaussian integer

lattice. Given the channel factorization (10), the equalization

is performed as follows: After transmission over the MIMO

channel, the matrix of noisy input symbols R is linearly equal-

ized in a suited basis via F = H+
red = (HH

redHred)
−1HH

red,

i.e., the left pseudoinverse of Hred. After decoding, the change

of basis is reversed via Z−1 ∈ GNtx×Ntx , finally resulting in

the matrix of estimated symbols Â.

For the i.i.d. complex Gaussian channel model, it has been

proven that this approach exploits the diversity order of the

1The diversity order describes the slope of the symbol/bit error curve. Given
diversity order D, a decrease of D decades in error rate is present for an
increase in signal-to-noise ratio (SNR) of 10 dB.
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Fig. 4. Top: point-to-point MIMO transmission via SVD. Middle: conventional LRA LE for multipoint-to-point transmission. Bottom: precoded LRA LE for
point-to-point transmission. In case of SVD and precoded LRA LE, a binary code and BICM is assumed.

MIMO channel, i.e., we have D = Nrx [15]. However,

when applying LRA LE, a big problem is the combination

with (soft-decision) channel decoding. Specifically, after non-

integer equalization via F , the cascade

Υdec = FHA = ZA (11)

is present, i.e., linear combinations of the data symbols (and

hence the related codewords) have to be decoded (cf. Fig. 4).

As a consequence, very strict demands on code and signal

constellation are imposed: the code has to be linear, and

both code and constellation have to share a joint modulo-

periodic finite-field arithmetic, cf., [21], [5]. For these special

constellations, a direct mapping from bits to constellation

points is not possible [14]. Particularly, non-linear binary

approaches like BICM cannot be applied. Hence, for the binary

transmission scenario in hand, LRA LE is not a suited strategy.
2) Precoded Lattice-Reduction-Aided Linear Equalization:

Since, in our scenario, a point-to-point transmission is present,

we can take advantage of a joint preprocessing at the trans-

mitter (cf. SVD). Hence, we are able to split the concept of

LRA LE into a transmitter- and receiver-side equalization part

as depicted in Fig. 4 (Bottom).

Thereby, the non-integer equalization via F has to remain

at the receiver as Nrx ≥ Ntx. However, the integer equalization

may be moved to the transmitter since ZZ−1 = Z−1Z = I ,

i.e., an integer preequalization can be employed. In order to

limit the transmit power, the preequalized symbols are modulo-

reduced by analogy with Tomlinson-Harashima precoding or

LRA precoding [18] w.r.t. a modulo-periodic signal constel-

lation A (denoted as MODA). After modulo reduction, the

preequalized symbols are again drawn from A and—since the

statistical distribution of the data symbols is preserved [4]—

we obtain the desired transmit power property σ2
x = σ2

a . We

call this strategy precoded LRA LE.

A convenient way to define the modulo operation in de-

pendency of the signal constellation is to use the interaction

of signal-point lattice Λa and precoding lattice Λp [6], [3],

[14]. Thereby, the signal-point lattice is the lattice the data

symbols are drawn from (neglecting a constant offset in order

to be zero-mean). For QAM constellation we, e.g., have

Λa = G. The precoding lattice defines the shaping region, i.e.,

the boundaries of the modulo operation and thus the related

cardinality of the constellation M . In particular, the modulo

operation is given as

MODA{z} = z −QΛp
{z} , (12)

where QΛp
{·} denotes the quantization (Voronoi cell) w.r.t. Λp.

It is common practice to choose the precoding lattice as a

scaled version of the signal-point lattice [14], i.e., Λp = ψΛa,

where ψ is the scaling factor. M -ary square-QAM constella-

tion are, e.g., obtained via Λp =
√
M G. As a consequence,

the related modulo function reads

MODA,QAM{z} = z −Q√
M G

{z}

= z −
√
M QG

{

z√
M

}

,
(13)

i.e., it can be realized with a simple quantization to G.

When applying precoded LRA LE, before decoding we

obtain the cascade

MODA{Υdec} = MODA
{

FHMODA{Z−1A}
}

= A .
(14)

Thus, precoded LRA LE has the big advantage that the decoder

may directly operate on (modulo-congruent) data symbols

instead of their linear combinations as in case of LRA LE.

As a consequence, conventional (square-)QAM constellations

and non-linear coded-modulation schemes like BICM can be

applied.



In order to perform precoded LRA LE according to the zero-

forcing (ZF) criterion, we calculate the channel factorization

(10) by applying the polynomial-time Lenstra-Lenstra-Lovász

algorithm,2 specifically its complex-valued variant CLLL [7].

We obtain Ntx decoupled modulo-AWGN channels with noise

variance σ̃2
n,l = σ2

n ‖fH
l ‖2, l = 1, . . . , Ntx, i.e., the (squared)

row norms determine the transmission performance. In par-

ticular, when applying the same code and rate for each of the

streams, the performance is dominated by the maximum noise

variance

σ̃2
n,max = max

l=1,...,Ntx

σ2
n ‖fH

l ‖2 . (15)

IV. SOFT-DECISION DECODING

In the following, we briefly describe how to perform a soft-

decision decoding when the equalization schemes from Sec. III

are applied. Particularly, since binary source symbols are

present, we restrict to transmission via SVD and precoded

LRA LE.

In both cases, the decoding is performed according to

Fig. 5. The Ntx blocks in the matrix of equalized symbols

R̃ = [r̃H1 , . . . , r̃
H
Ntx

]H ∈ CNtx×Nbl are used to calculate the log-

likelihood ratios (LLRs) of the related bits (denoted as L and

discussed below). We obtain the vectors of LLRs ℓl ∈ Rnc/Ntx ,

l = 1, . . . , Ntx. For simplicity, we write nbl = nc/Ntx.

These vectors are serialized to one block ℓ ∈ Rnc . After

deinterleaving via Π−1, channel decoding is performed. It

finally results in the vector of estimated bits ĉ ∈ F
kc
2 .

R
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Fig. 5. System model of the receiver. After equalization (EQU), the Ntx

vectors of LLRs ℓl are calculated in dependency of the equalization scheme.
They are serialized to one vector ℓ. After reverting the interleaving, channel
decoding is performed to obtain the vector of estimated bits ĉ.

The metric calculation depends on the actual equalization

scheme. In particular, for the SVD, we have to deal with

decoupled AWGN channels and in case of precoded LRA LE,

decoupled modulo-AWGN channels are present.

A. LLRs for Singular Value Decomposition

Given the case of Ntx decoupled AWGN channels with

noise variance σ2
n,l = σ2

n/ς
2
l , the LLRs of the related bits

n = 1, . . . , nbl are calculated via

ℓl,n = log

(
∑

s∈S
(0)
ν

e−|r̃l,µ−s|2ς2l /σ2
n

∑

s∈S
(1)
ν

e−|r̃l,µ−s|2ς2
l
/σ2

n

)

, (16)

where µ = ⌊n/ log2(M)⌋+1 and ν = (nmod log2(M)) + 1.

Thereby, S
(0)
ν and S

(1)
ν denote the sets of constellation points

2Instead of factorizing the channel matrix directly according to (10), it
is advantageous to factorize H+H = F HZ−H, i.e., the Hermitian of the
pseudo-inverse of H . Then, the reduction criteria directly operate on the
non-integer equalization matrix F , which may improve the transmission
performance. This is known as dual-lattice approach, cf. [15], [5].

where the bit at position ν = 1, . . . , log2(M) within the µth

symbol of the block is zero or one, respectively.

B. LLRs for Precoded Lattice-Reduction-Aided Linear Equali-

zation

For the case of Ntx decoupled modulo-AWGN channels

with noise variance σ2
n,l = σ2

n‖fH
l ‖2, the situation is more

complicated. Specifically, due to the transmitter-side modulo

operation, an infinite number of modulo-congruent constel-

lation points has to be incorporated when calculating the

optimal soft information. Since this is not possible in practice,

approximative approaches have to be applied. In the mid-to-

high SNR regime, the nearest-neighbor approximation [3] is

very close to the optimal performance, i.e., only the clos-

est modulo-congruent point is considered. Incorporating the

nearest-neighbor approximation and the adapted noise variance

into (16), we obtain

ℓl,n = log

(
∑

s∈S
(0)
ν

minλ∈Λp
e−|r̃l,µ−s+λ|2/(σ2

n ‖fH
l ‖2)

∑

s∈S
(1)
ν

minλ∈Λp
e−|r̃l,µ−s+λ|2/(σ2

n ‖fH
l
‖2)

)

.

(17)

Then, the precoding lattice Λp describes all points were the

periodic repetitions of the signal constellation are centered.

If square-QAM constellations are employed, Λp =
√
M G

represents the periodic repetitions (cf. Sec. III).

V. NUMERICAL SIMULATIONS

Numerical simulations were conducted for an Nrx = 100
uniform linear antenna array at the base station, employing

omni-directional antenna elements. The base station coverage

angle is Θ = 2
3π, i.e., the array can see users having an angle

of arrival ϑ ∈
[

−π
3 ,

π
3

]

. The focusing parameter ∆ = 5 is

chosen. The SNR is represented via

Eb

N0
=

σ2
x

σ2
n log2(M)Rc

, (18)

where Eb is the average energy per transmitted information bit

and N0 the (two-sided in ECB domain) noise-power spectral

density.

The user device is equipped with Ntx = 4 antennas, with

an inter-antenna spacing dt = λ. It is placed at an angle

ϑ = −0.48Θ. A 16-QAM alphabet is used for transmission.

In case of coded transmission, the rate Rc = 1/2 LDPC code

(dimension kc = 32400, length nc = 64800) from the DVB-

S2 standard [2] is employed. This results in a block length of

Nbl,coded = 4050 symbols. In case of uncoded transmission,

a block length of Nbl,uncoded = 2025 symbols is used. Belief-

propagation decoding is applied with a maximum number of

50 iterations per block.

The channel remains constant for each burst of transmit

symbols, and perfect channel knowledge is assumed at the

receiver. The same channel coefficients are used for the coded

and uncoded case. An angular spread factor σ2
φ = 0.14 was

chosen, which corresponds to an angular spread of 5◦. The

value was chosen as such according to measurement data from

[10].
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Fig. 7. Bit-error rate performance vs. SNR for the point-to-point MIMO
scenario. σ2

φ
= 0.14. Spatially correlated channel model with inter-antenna

spacing da = 2λ. Focusing parameter ∆ = 5. Precoded LRA LE (blue) vs.
SVD (red). Solid: coded; dashed: uncoded.

First, we set the base station inter-antenna distance da =
100λ, which results in an i.i.d. channel scenario, and measure

the bit-error rate of the precoded LRA system vs. the system

employing the SVD. The numerical results are plotted in

Fig. 6. In case of uncoded transmission, we see that the

LRA system with precoding (blue, dashed) shows a gain in

the higher SNR regime, since precoding achieves maximum

diversity and linear precoding does not.

On the other hand, in case of coded transmission, the SVD

shows a gain of approximately 1 dB at BER = 10−5 when

compared to the LRA case. This is a direct result of the LLR

calculation method used for soft-input decoding. In case of

the SVD, the log-likelihood ratios are calculated optimally by

comparing Euclidean distances, while in case of precoding,

modulo distances are required resulting in a performance loss.

Although the i.i.d. channel model is usually used as a

performance baseline, for this scenario it is not realistic. This is
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Fig. 8. Bit-error rate performance vs. SNR for the point-to-point MIMO
scenario. σ2

φ
= 0.52. Spatially correlated channel model with inter-antenna

spacing da = λ/2. Focusing parameter ∆ = 5. Precoded LRA LE (blue) vs.
SVD (red). Solid: coded; dashed: uncoded.
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Fig. 9. Bit-error rate performance vs. SNR for the point-to-point MIMO
scenario. σ2

φ
= 0.14. Spatially correlated channel model with inter-antenna

spacing da = λ/2. Focusing parameter ∆ = 5. User positioned at ϑ = 0.
Precoded LRA LE (blue) vs. SVD (red). Solid: coded; dashed: uncoded.

due to the fact that, to ensure spatially decoupled channels, this

results in a physically very large and unfeasible system. This

is also true even when using carrier frequencies in the order

of GHz (taking into account the spread factor σ2
φ = 0.14).

Therefore, a compromise must be made to ensure that the

system can be implemented.

To achieve this, the inter-antenna spacing at the base station

must be reduced. In our case, we choose a spacing of da = 2λ,

which results in spatially correlated channels to be seen at

the receiver. Again both the precoded system and the one

employing the SVD are compared and the results are plotted in

Fig. 7. This time, we see that in case of uncoded transmission,

the system employing precoding has a significant gain over the

one using the SVD. Moreover, in case of coded transmission,

the SVD cannot cope with the correlated channels, which leads

to a performance loss larger than the one incurred by the

nonoptimal LLR calculation used in the case of precoding, and



even an error floor is exhibited. We now see that the increased

complexity required for LRA precoding overcomes the losses

from the channel.

Next, in Fig. 8, we simulate a system using da = λ/2 spaced

antenna elements under typical urban environment conditions,

i.e., a scenario with a high spread factor of σ2
φ = 0.52. On the

one hand, we see that in the uncoded case, the LRA precoding

scheme still shows a significant gain over the SVD scheme.

On the other hand, in case of coded transmission, both LRA

precoding and SVD show similar performance. One could

argue that when employing a coded transmission system, the

reduced complexity of the SVD is favorable. However, this

would only apply when the channel conditions are good. If

the channel gets worse, a performance similar to that of Fig. 7

is expected.

Finally, in Fig. 9, the simulation results when the user is

positioned at ϑ = 0 (i.e., in the antenna array boresight)

are plotted. In this scenario the antennas are closely spaced

(da = λ/2) and the spreading factor is chosen as σ2
φ = 0.14.

We see in the uncoded system that the performance lies

between that of the i.i.d. case and the correlated channels

case, while in the coded case, there is a marginal difference

in performance between LRA precoding and SVD. When

placed at boresight, according to the channel model definition

(cf. (1)), the first antenna experiences an i.i.d. channel, and

the others weakly correlated channels (as the angle deviates

less from boresight, the number of off-diagonal entries in the

channel covariance matrix Cl becomes smaller, and hence

the channel correlation is reduced). This again supports our

previous statement; even in the best-case scenario, the higher

complexity of LRA precoding would still be justifiable.

VI. CONCLUSIONS

In this paper, we have presented an extension to the EM-

lens-enabled (massive) MIMO uplink system, by increasing

the number of transmitter-side antennas. With such exten-

sion, equalization strategies that are suited for classical (non-

massive) MIMO are enabled. We have shown that lower-

complexity equalization strategies (such as equalization via the

SVD) result in significant losses in the case of spatially corre-

lated channels. By employing precoded LRA equalization, the

diversity of the MIMO channel is exploited which, especially

in the case of correlated channels, offers a large increase in

power efficiency. We have also shown that, although the LLR

calculation on the modulo-AWGN channel is not optimal for

LDPC codes in the i.i.d. case, BICM with precoded LRA LE

suffers from lower losses compared to the SVD case when the

channels are spatially correlated.
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