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Abstract—In this paper, quaternion-valued multi-user MIMO
equalization is studied for the case of dual-polarized antennas.
Given the multi-user MIMO uplink scenario, the relationship
or transition between quaternion-valued arithmetic in transmit-
ter/receiver processing and both vertically- and horizontally-
polarized electromagnetic waves is discussed. A quaternion-
valued system and channel model as well as related signal con-
stellations are presented. Both linear and lattice-reduction-aided
linear equalization are extended to the problem in hand. For that
purpose, a quaternion-valued variant of the famous LLL lattice-
reduction algorithm is proposed, which we call QLLL. Its gains
in transmission performance and computational complexity over
real- and complex-valued LLL reduction are discussed. Besides,
the respective diversity orders are generalized to cope with the
quaternion-valued channel model. The theoretical studies are
complemented by results obtained from numerical simulations.

I. INTRODUCTION

In wireless communications, multiple-input/multiple-output
(MIMO) systems have enabled a large increase in data rates
and reliability in comparison to classical single-input/single-
output (SISO) transmission. Over the last decade, the focus has
especially been on multi-user MIMO communication, i.e., han-
dling the interference of several users that transmit at the same
time at the same frequency. For that purpose, lattice-reduction-
aided (LRA) equalization [19], [17] is a very powerful con-
cept, exploiting the MIMO channel’s diversity. However, as
this approach has extensively been studied in the literature,
cf., e.g., [16], [5], [14], the potential for further increases
in performance is limited. For the upcoming communication
systems (e.g., 5G), new strategies have to be found.

One promising strategy is the use of dual-polarized an-
tennas, which have recently been presented [3], [9]. Particu-
larly, (pairs of) antennas transmit or receive vertically and
horizontally polarized electromagnetic waves simultaneously.
Thereby, each polarization may be split into in-phase and
quadrature component, altogether leading to four orthogonal
basis functions, significantly increasing the spectral efficiency.

In the literature, it is well-known that the mathematical
structure of quaternions is suited to describe a transmission
in case of dual-polarized antennas [8], [18]. Based on that
principle, quaternion-valued (QV) space-time codes and their
maximum-likelihood decoding have been considered, e.g.,
in [13]. Besides, quaternions have been used to describe
complex-valued (CV) eigenvalue distributions of multi-user
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MIMO channels [11]. Adaptive beamforming strategies for
QV transmission have been proposed [10], however, imple-
mented via equivalent real-valued (RV) matrix operations.
Nevertheless, low-complexity equalization schemes for multi-
user MIMO transmission that directly employ QV arithmetic
are not available in the literature so far.

In this paper, we show how QV multi-user MIMO equaliza-
tion may be performed. To this end, we exemplarily consider
the uplink scenario, i.e., the MIMO multiple-access channel.
We define a suited transition between QV arithmetic and
CV transmission via dual-polarized antennas. Moreover, the
construction of QV signal constellations is presented. The con-
cepts of linear equalization (LE) and lattice-reduction-aided
linear equalization (LRA LE) are extended to QV channels,
including a discussion on the achievable diversity orders. For
the latter, we propose a QV variant of the LLL algorithm [12],
[16], [7], called QLLL algorithm. All theoretical derivations
are assessed by Monte-Carlo simulations.

The paper is organized as follows: In Sec. II, mathematical
properties of quaternions and related structures are reviewed.
A QV system and channel model is given in Sec. III; the
respective equalization strategies are proposed in Sec. IV. Nu-
merical results w.r.t. performance and complexity are provided
in Sec. V. The paper is summarized and concluded in Sec. VI.

II. PRELIMINARIES

In the following, we briefly review the most important prop-
erties of quaternions and related lattices, cf., e.g., [2], [18].

A. Quaternions
The set of quaternions is defined as

H = {u = u(1) + u(2)i + u(3)j + u(4)k | u(χ) ∈ R} , (1)

where u(χ), χ = 1, 2, 3, 4, are RV components and i, j, k are
quaternion units. The Hamilton equations [2] describe the
relations between these units; they are represented in Table I.

Addition (and subtraction) of two quaternions u and v are
performed componentwisely. The multiplication is defined by

u · v = (u(1)v(1) − u(2)v(2) − u(3)v(3) − u(4)v(4))
+ (u(1)v(2) + u(2)v(1) + u(3)v(4) − u(4)v(3)) i

+ (u(1)v(3) − u(2)v(4) + u(3)v(1) + u(4)v(2)) j

+ (u(1)v(4) + u(2)v(3) − u(3)v(2) + u(4)v(1)) k .

(2)

In Table I we can see the non-commutativity of the multipli-
cation over H, i.e., u · v 6= v · u has to be kept in mind.



TABLE I
HAMILTON EQUATIONS FOR u · v, WHERE u, v ∈ {i, j, k}.

u
v

i j k

i −1 +k −j
j −k −1 +i
k +j −i −1

The conjugate of u reads u∗ = u(1) − u(2)i− u(3)j− u(4)k
and its (Euclidean) norm is given by ‖u‖ =

√
uu∗ =

√
u∗u =√

(u(1))2 + (u(2))2 + (u(3))2 + (u(4))2. The inverse element
(w.r.t. multiplication) has to be calculated via u−1 = u∗/‖u‖2
to fulfill uu−1 = 1 (right inverse) and u−1u = 1 (left inverse).
Real part and imaginary part are defined by Re{u} = u(1) and
the tuple Im{u} = (u(2), u(3), u(4)), respectively.

The quaternions form an extension of the complex num-
bers C, i.e., H = C+C j, where j is an “additional” imaginary
unit. In particular, two complex numbers µ = µ(1)+µ(2) i and
ν = ν(1) +ν(2) i, where i is the imaginary unit of the complex
numbers, are extended according to

u = µ+ ν j = (µ(1) + µ(2)i) + (ν(1) + ν(2)i) j

= µ(1)︸︷︷︸
u(1)

+ µ(2)︸︷︷︸
u(2)

i + ν(1)︸︷︷︸
u(3)

j + ν(2)︸︷︷︸
u(4)

i · j︸︷︷︸
k

. (3)

Additionally, any quaternion u = µ + ν j can isomorphically
be expressed via the 2× 2 CV matrix

Ucv =

[
µ −ν
ν∗ µ∗

]
=

[
u(1) + u(2) i −u(3) − u(4) i
u(3) − u(4) i u(1) − u(2) i

]
, (4)

which translates (2) into a matrix representation.1 It is a
generalization of the real-valued description of a complex
number [17], [7]. Following the same philosophy, we can
represent any quaternion by the 4× 4 RV matrix

Urv =


u(1) −u(2) −u(3) u(4)

u(2) u(1) −u(4) −u(3)
u(3) u(4) u(1) u(2)

−u(4) u(3) −u(2) u(1)

 . (5)

B. Lipschitz Integers

The Lipschitz integers (LIs) are defined by the set

L = {u = u(1) + u(2) i + u(3) j + u(4) k | u(χ) ∈ Z} , (6)

i.e., as all quaternions with only integer coefficients. They
are isomorphic to the lattice Z4 and form a subring of H by
analogy with the Gaussian integers G = Z + Z i and C.

The number of nearest neighbors is κL = 8 [1], and
the minimum squared distance between two elements reads
d2L,min = 1. The Voronoi region of L is a four-dimensional
hypercube with 16 vertices, 32 edges, and 24 faces. For any
quaternion u ∈ H, the quantization to L is performed via

QL{u} = bu(1)e+ bu(2)e i + bu(3)e j + bu(4)e k , (7)

1Noteworthy, (4) is not a unique way to represent (2). Other variants can
be found in literature, e.g., in [11], with ν and −ν∗ on the counterdiagonal.

Algorithm 1 Quantization to Hurwitz integers û = QH{u}.
û = QUANT HURWITZ(u)

1: uq = bu(1)e+ bu(2)e i + bu(3)e j + bu(4)e k . QL{u}
2: ũq = bu(1)−1/2e+bu(2)−1/2e i+bu(3)−1/2e j+bu(4)−1/2e k

+ (1 + i + j + k)/2 . QL{u− εH}+ εH
3: if ‖u− uq‖ ≤ ‖u− ũq‖ then . Decide for closer point
4: û = uq . û ∈ L
5: else
6: û = ũq . û ∈ L+ εH
7: end if

where b·e denotes rounding w.r.t. Z (ties: rounding towards
+∞). The maximum squared quantization error is e2L,max = 1
and occurs if u ∈ L+ (1 + i + j + k)/2.

Unfortunately, the LIs do not form a Euclidean ring [2].
Specifically, for u, v, σ, ρ ∈ L, the right division with re-
mainder u = σ · v + ρ is not a Euclidean division (aka
division with small remainder) since for the case when uv−1 ∈
L+(1+i+j+k)/2, only the equality ‖ρ‖ = ‖v‖ is achieved.

C. Hurwitz Integers

The non-Euclidean property of the LIs can be avoided by
considering the ring of Hurwitz integers (HIs)

H = {u = u(1) + u(2) i + u(3) j + u(4) k |
(u(1), u(2), u(3), u(4)) ∈ Z4 ∪ (Z + 1/2)4} .

(8)

It contains all LIs, i.e., L ⊂ H, and the set of LIs shifted
by εH = (1 + i + j + k)/2. The additional elements ensure
that the HIs form a Euclidean ring; thus a division with small
remainder is ensured [2]. Nevertheless, d2H,min = 1 remains: if
balls with radius rb = 1/2 are centered at all LIs, there’s still
enough space to center additional balls at the points L+εH [2].
The nearest neighbors are tripled to κH = 24, though. The
HIs are isomorphic to the checkerboard or Schläfli lattice D4,
which has the densest packing in four dimensions [1].

The Voronoi region of H is a four-dimensional 24-cell with
24 vertices, 96 edges, and 96 faces [2]. A low-complexity
quantization w.r.t. H is, however, still possible and realized
in Algorithm 1. The maximum squared quantization error is
e2H,max = 0.5 and occurs, e.g., if u = 0.5 + 0.5 i.

III. SYSTEM AND CHANNEL MODEL

Subsequently, we present a system and channel model for QV
multi-user MIMO uplink transmission.

A. Quaternion-Valued System Model

We are interested in a QV multi-user MIMO transmis-
sion over the MIMO multiple-access channel, where K non-
cooperating transmitters (TXs) communicate to a joint receiver
(RX). The related discrete-time baseband model is depicted in
Fig. 1 and described by the QV system equation

y = Hx + n . (9)

In each time step, the K users radiate QV symbols, in vector
notation x = [x1, . . . , xK ]T ∈ HK . They are drawn from a
constellation A forming a subset of H, i.e., x ∈ AK ⊂ HK . Its
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Fig. 1. System model for quaternion-valued multi-user MIMO transmission.
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Fig. 2. Quaternion-valued multi-user MIMO transmission via pairs of polar-
ized antennas (vertical polarization: blue; horizontal polarization: green), each
antenna radiating/receiving a complex-valued symbol (baseband notation).

cardinality reads M = |A|. The MIMO channel is represented
by the QV matrix

H =
[
hl,k
]
l=1,...,L
k=1,...,K

∈ HL×K . (10)

The vector n = [n1, . . . , nL]T ∈ HL represents additive QV
noise that is present at the L ≥ K receiving units. They
provide the QV receive symbols y = [y1, . . . , yL]T ∈ HL.
After joint processing, we obtain the vector of estimated QV
symbols x̂ = [x̂1, . . . , x̂K ]T ∈ AK .

B. Equivalent Complex-Valued Dual-Polarized System Model

QV symbols are well-suited to model a CV transmission via
pairs of polarized (aka dual-polarized) antennas as illustrated
in Fig. 2 and originally described for the SISO case [8], [18].

To this end, we take advantage of the CV representation of
a quaternion (4). The equivalent system equation of (9) reads[

y(v)

(y(h))∗

]
︸ ︷︷ ︸

ycv

=

[
H(d) −H(c)

(H(c))∗ (H(d))∗

]
︸ ︷︷ ︸

Hcv

[
x(v)

(x(h))∗

]
︸ ︷︷ ︸

xcv

+

[
n(v)

(n(h))∗

]
︸ ︷︷ ︸

ncv

.

(11)
We have the CV transmit vectors x(v) = x(1) + x(2)i and
(x(h))∗ = x(3) −x(4)i, the noise vectors n(v) = n(1) +n(2)i
and (n(h))∗ = n(3) − n(4)i, as well as the receive vectors
y(v) = y(1) + y(2)i and (y(h))∗ = y(3) − y(4)i. Besides, sub-
channels H(d) = H(1) +H(2)i and (H(c))∗ = H(3)−H(4)i
are present. Thereby, x(χ), H(χ), n(χ), and y(χ) are the RV
components of the QV variables x, H , n, and y.

In order to realize a transmission according to (11), in
transmitter k = 1, . . . ,K, the QV data symbols are split into

xk =
(
x
(1)
k + x

(2)
k i︸ ︷︷ ︸

x
(v)
k

)
+
(
x
(3)
k − x

(4)
k i︸ ︷︷ ︸

(x
(h)
k )∗

)∗
j . (12)

Then, after modulation to radio frequency, the first CV part
x
(v)
k is radiated from an antenna where the electromagnetic

waves possess a vertical polarization. In contrast, the second
part (x

(h)
k )∗ is radiated via horizontally polarized waves from

another antenna, achieving orthogonality between them.
When considering pairs of polarized transmit/receive an-

tennas with index k and l and neglecting interference from
other transmitters (single-user point-to-point scenario), the QV
transmission (9) equivalently reads[

ỹ
(v)
l

(ỹ
(h)
l )∗

]
=

[
h
(d)
l,k −h(c)l,k

(h
(c)
l,k)∗ (h

(d)
l,k )∗

][
x
(v)
k

(x
(h)
k )∗

]
+

[
n
(v)
l

(n
(h)
l )∗

]
.

(13)
Thereby, h(d)l,k describes the CV gain for the direct links
between identically polarized antennas, and (h

(c)
l,k)∗ the cross

links to the antennas which are differently polarized.2 Com-
bining both into one quaternion, we obtain

hl,k =
(
h
(1)
l,k + h

(2)
l,k i︸ ︷︷ ︸

direct link h(d)
l,k

)
+
(
h
(3)
l,k − h

(4)
l,k i︸ ︷︷ ︸

cross link (h
(c)
l,k)
∗

)∗
j . (14)

At the receiver side, each of the L ≥ K units has one receive
antenna for vertical and one for horizontal polarization, i.e.,
for l = 1, . . . , L, we obtain the symbols

yl =
(
y
(1)
l + y

(2)
l i︸ ︷︷ ︸

y
(v)
l

)
+
(
y
(3)
l − y

(4)
l i︸ ︷︷ ︸

(y
(h)
l )∗

)∗
j . (15)

Besides, we have to deal with QV additive noise

nl =
(
n
(1)
l + n

(2)
l i︸ ︷︷ ︸

n
(v)
l

)
+
(
n
(3)
l − n

(4)
l i︸ ︷︷ ︸

(n
(h)
l )∗

)∗
j , (16)

representing the combined noise from both polarized antennas.

C. Channel Model

Throughout the paper, we assume a QV flat-fading model
[18], where the channel matrix is assumed to be constant over
a block of symbols (block-fading channel).

The i.i.d. channel coefficients in (10) consist of four
i.i.d. zero-mean RV Gaussian random variables with variance
σ2
h/4 = 1/4, or in an alternative point of view, two inde-

pendent CV random variables h
(d)
l,k and h

(c)
l,k with variance

σ2
h/2 = 1/2, cf. (14). Thereby, h(d)l,k represents fading for the

direct links, and h
(c)
l,k cross-polar scattering [18]. Given the

point-to-point scenario (13), both CV receive symbols ỹ
(v)
l,k

and
(
ỹ
(h)
l,k )∗ consequently possess a Rayleigh distribution.

The QV noise samples nl in (16) are assumed to be i.i.d.
and white over time and consist of four i.i.d. zero-mean RV
Gaussian components with variance σ2

n/4. Since two antennas
are required for each QV symbol, σ2

n = 2σ2
n,cv, where σ2

n,cv

is the CV noise variance. Defining the signal-to-noise ratio

2We see from (13) that a QV representation of a 2×2 CV MIMO channel
is possible if certain dependencies between the channel gains are present. In
particular, these dependencies occur if the polarization planes and quadrature
up-/down-mixing are kept orthogonal at both TX and RX [18].



(SNR) as transmitted energy per bit Eb,TX over the noise
power spectral density N0 and denoting σ2

a,cv and Mcv as the
constellation’s variance and cardinality in case of CV systems,

Eb,TX

N0
=

σ2
a,cv

σ2
n,cv log2(Mcv)

= 2 · σ2
a

σ2
n log2(M)

. (17)

D. Signal Constellation
We subsequently consider how the signal constellation A

can be chosen in case of QV data symbols.
1) Constellations over Lipschitz Integers: We extend the

philosophy of square QAM to four dimensions. Demanding
the minimum squared distance d2min = 1, we choose

AL = Ad +Ad i +Ad j +Ad k , (18)

with the zero-mean RV components

Ad =
{
m− (Md − 1)/2 | m ∈ {0, . . . ,Md − 1}

}
. (19)

Thereby, Md = 2ψ , ψ ∈ N, denotes the cardinality in each
RV dimension, i.e., the total cardinality reads M = M4

d =
16, 256, 4096, . . . We are able to map Rm = log2(M) = 4ψ
bits directly to the constellation points by extending the strat-
egy of Gray labeling to four dimensions. The data symbols’
variance reads σ2

x,L = (M2
d − 1)/3 = (

√
M − 1)/3, i.e.,

it is doubled in comparison to a square QAM constellation
AG = Ad +Ad i with the same Md. Coincidentally, the num-
ber of transmitted bits per symbols is doubled. Noteworthy, in
order to enable the zero-mean property in (18), AL ⊂ L+oL,
i.e., the offset oL = (1+i+j+k)/2 to the LI lattice is present.

2) Constellations over Hurwitz Integers: Taking advantage
of the HIs, we are able to construct constellations that are
more densely packed—preserving the same minimum squared
distance d2min = 1 (cf. Sec. II-C). Following (8), a zero-mean
HI-based constellation is composed of

AH = AL,1 ∪ AL,2 , (20)

i.e., two shifted LI-based constellations (partitions)

AL,1 = AL − (1 + i + j + k)/4 (21)
AL,2 = AL + (1 + i + j + k)/4 , (22)

with mutual distance εH = (1 + i + j + k)/2, as illus-
trated in Fig. 3. Choosing Md = 2ψ signal points per
dimension for each set, we hence obtain the cardinalities
M = 2M4

d = 32, 512, 8192, . . . The data symbols’ variance
now reads σ2

x,H = (M2
d−1)/3+0.25 = (

√
M/2−1)/3+0.25,

i.e., independently from Md or M the doubled cardinality
is achieved with only a very small increase in power.3 It
is worth mentioning that AH ⊂ H + oH, where the offset
oH = (1 + i + j + k)/4 to the HI lattice is present.

For these constellations, a Gray labeling is not possible
(κH = 24 vs. κL = 8; cf. Sec. II-C). Nevertheless, we
can employ the strategy depicted in Fig. 3: The leftmost
bit controls which partition is chosen; the remaining bits
determine the signal point within the selected partition AL,1
or AL,2. Thereby, a Gray labeling is applied for each subset.

3AH with cardinality M has the same variance as its M/2-ary partitions
AL,1, AL,2 plus an offset-related increase of 4 · 0.252 = 0.25.
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Fig. 3. Projection onto the first two components x1 and x2 of a 512-ary
zero-mean HI-based constellationAH (blue and red points represent partitions
AL,1 andAL,2, respectively). The projection of the HIs (gray; without offset)
and a suited bit labeling are additionally shown.

IV. QUATERNION-VALUED MULTI-USER MIMO
EQUALIZATION AND THE QLLL ALGORITHM

Given the above QV multi-user MIMO system and channel
model, we now discuss how the receiver/equalization part in
Fig. 1 may be implemented.

A. Linear Equalization

A simple way to handle the multi-user interference is the
LE via ỹ = Fy, where F ∈ HK×L is—for the channel model
in hand—a QV equalization matrix. For LE according to the
minimum mean-square error (MMSE) criterion, we consider

F̄ = H̄
+

= (H̄
H
H̄)−1H̄

H
, H̄ =

[
H√
ζI

]
, (23)

where H̄ ∈ H(L+K)×K is the augmented channel matrix with
inverse TX-side SNR ζ = σ2

n/σ
2
x and F̄ ∈ HK×(L+K) is its

left pseudo-inverse4 called augmented equalization matrix, cf.,
e.g., [4]. Then, F is given by the K × L left part of F̄ .

After equalization, the noisy symbols ỹ are decoded to
obtain estimates x̂ = DEC{ỹ} ∈ AK . The performance (or
the achievable rate in the coded case) is determined by the
row norms of F̄ = [f̄

H
1 , . . . f̄

H
K ]H, which yield the K noise

powers σ̃2
n,k = σ2

n‖f̄
H
k ‖2 at the input of the decoders.5

In the CV case, LE achieves the well-known diversity order6

∆LE,cv = L−K + 1, i.e., ∆LE,cv = 1 for K = L. However,
considering the QV channel (10), each coefficient possesses
four RV Gaussian random variables instead of two, i.e., the
diversity of the MIMO channel is doubled. Denoting Dch as the

4The Hermitian AH of a QV matrix A is its conjugated transpose (cf.
Sec. II). The inverse matrix A−1 may, e.g., be obtained via the Gauss-Jordan
procedure, taking non-commutative multiplications into account.

5It is worth mentioning that, using the CV or RV isomorphic representations
(4) or (5), we are able to equalize the QV system via CV/RV matrices. How-
ever, due to isomorphic calculations, all variants yield the same performance.

6Diversity order ∆ means that the error curve asymptotically decays ∆
decades for an increase in SNR of 10 dB, i.e., ∆ describes the error curve’s
slope on a double-logarithmic scale.
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Fig. 4. Receiver model of quaternion-valued lattice-reduction-aided equaliza-
tion for the K-user MIMO multiple-access channel.

number of components (dimension) per channel coefficient—
Dch = 1 for RV, Dch = 2 for CV, and Dch = 4 for QV
channels—we can generalize the diversity order of LE to7

∆LE = Dch/2 · (L−K + 1) . (24)

Hence, if K = L, we obtain diversity order “one half” for RV
channels [15], one for CV channels, and two for QV channels.

B. Lattice-Reduction-Aided Linear Equalization
To overcome the abovementioned diversity limitation of LE,

LRA LE has been proposed [19], [17]. In the following, we
discuss how LRA LE can be performed in the case of QV
transmission.

1) Receiver Model: In MMSE LRA LE, the augmented
equalization matrix is obtained via [5]

F̄ H︸︷︷︸
Gred

= (H̄
+

)H︸ ︷︷ ︸
G

ZH︸︷︷︸
T

. (25)

To this end, the Hermitian of H̄+ from (23) is interpreted as
the generator matrix G = (H̄

+
)H of a lattice, and the full-

rank integer matrix T = ZH ∈ ΛK×K
x describes a change

of basis [5], [14]. Choosing Z conveniently, the row norms
of GH

red = F̄ are lowered in comparison to LE (23), in turn
leading to an increased performance. The elements of Z are
taken from the signal-point lattice Λx (the lattice the data
symbols are drawn from neglecting an offset). For the QV
constellations (18) or (20) this means Λx = L or Λx = H.

The QV LRA receiver is depicted in Fig. 4. First, the noisy
receive symbols are linearly equalized via the K×L left part of
F̄ obtained from (25). Subsequently, the channel decoding is
performed (DEC).8 To that purpose, the offset induced by the
signal constellation, particularly given by Zo = Z [o, . . . , o]T

with o = oL or o = oH, has to be removed to obtain valid
lattice points, cf., e.g., [17]. Then, the change of basis is
reversed via Z−1. After adding the offset o, we obtain the
estimated symbols x̂1, . . . , x̂K ∈ A.

We still have to clarify how to choose Z conveniently. From
the CV case (Λx = G), it is known that the successive minima
of the lattice spanned by G = (H̄

+
)H optimally solve (25),

cf., e.g., [5], [14]. For the situation in hand, the successive
minima w.r.t. Λx = L or Λx = H are required. Unfortu-
nately, their determination is an NP-hard problem, resulting
in a huge computational effort. Instead, we consider how the
polynomial-time Lenstra-Lenstra-Lovász (LLL) algorithm can
be adapted to the QV case, approximately solving (25) by
obtaining a unimodular integer matrix (|det(Z)| = 1).

7Due to space limitations, formal proofs are omitted in this paper.
8In the uncoded case, we have a simple quantization w.r.t. Λx. A coded

transmission is, e.g., possible via multi-level codes, cf. [6].

2) LLL Reduction over Lipschitz Integers: The LLL algo-
rithm can be interpreted as a generalization of the Euclidean
algorithm [12]. It operates on the decomposition Gred = QR,
Q = [q1, . . . , qK ] an L×K matrix with orthogonal columns
and R = [rl,k] a K × K upper triangular matrix with unit
main diagonal. It has originally been defined for the RV case
(RLLL; Λx = Z), forcing the size-reduction condition

|rl,k| ≤ 1/2 =̂ QZ{rl,k} = 0 , 1 ≤ l < k ≤ K , (26)

followed by the Lovász condition (swapping condition)

‖qk‖2 ≥ (δ − ‖rk−1,k‖2)‖qk−1‖2 , k = 2, . . . ,K . (27)

The quality parameter δ controls the trade-off between strength
of reduction and complexity. As the maximum squared quan-
tization error of QZ{·} = b·e is e2Z,max = 1/4 and hence
‖rk−1,k‖2 ≤ 1/4 after (26), we have to demand δ ∈ (1/4, 1]
for (27). If δ ≤ 1/4, (27) may be fulfilled independently from
qk and qk−1, resulting in an inoperative reduction.

The RLLL has been extended to the CV case [7] (CLLL;
Λx = G). Thereby, the Lovász condition (27) is kept un-
changed, but the size reduction (26) is adapted to

|r(1)l,k | ≤ 1/2 ∩ |r(2)l,k | ≤ 1/2 =̂ QG{rl,k} = 0 . (28)

Since e2G,max = 2 · (0.5)2 = 1/2 and hence ‖rk−1,k‖2 ≤ 1/2
after size reduction, we now have to demand δ ∈ (1/2, 1].

If the size reduction is extended to the LIs (Λx = L), the
condition reads QL{rl,k} = 0, cf. (7). We know from Sec. II
that e2L,max = 1, i.e., even if the maximum parameter δ = 1
is chosen, (27) may become inoperative since ‖rk−1,k‖2 ≤ 1.
Hence, an LLL reduction over the LIs cannot be defined,9

which is a consequence of the non-Euclidean property of L.
3) LLL Reduction over Hurwitz Integers: Considering the

HIs (Λx = H), the size-reduction condition (26) reads

QH{rl,k} = 0 , 1 ≤ l < k ≤ K , (29)

cf. Algorithm 1. We know that e2H,max = 1/2, i.e., after size
reduction, ‖rk−1,k‖2 ≤ 1/2 is valid. This allows us to use a
parameter δ ∈ (1/2, 1] in (27). Since H is a Euclidean ring,
the LLL reduction is properly defined.10 Following the abbre-
viations RLLL and CLLL, we call this strategy and the related
algorithm QLLL (Q for quaternions). Noteworthy, as L ⊂ H,
the QLLL is also suited for LI-based constellations (18).

Obeying the rules of QV arithmetic, the QLLL can be
realized by analogy with the CLLL [7] as implemented in
Algorithm 2: First, Q and R are calculated via Gram-Schmidt
orthogonalization (GSO) with pivoting; the pivoting speeds up
the reduction [4] (Lines 3–13). Then, the reduction is per-
formed (Lines 15–27). In SIZE REDUCE, QH{·} is applied.

9In the case of QV channels and LI-based constellations (18), we are able
to employ the RLLL to the 4L×4K RV representation (5) of G = (H+)H,
or the CLLL to the 2L× 2K CV one (4), respectively. Then, the QV system
is decomposed into its RV/CV components and all operations are performed
in RV/CV arithmetic, counteracting the idea of QV equalization.

10The LLL reduction for Euclidean rings like G or H has mathematically
been discussed in [12] even before the CLLL was proposed. However, these
considerations were restricted to the “standard” parameter δ = 0.75, without
giving the practically-relevant conditions (28) or (29) and related algorithms.



Algorithm 2 QLLL reduction of G with parameter δ∈(0.5, 1].
[Gred, Q, R, T ] = QLLL(G, δ) . G = [g1, . . . , gK ]

1: Gred = G, Q = G, R = I, T = I, k = 1
2: ω = [‖q1‖2, . . . , ‖qK‖2] . ω = [ω1, . . . , ωK ]
3: while k ≤ K do . GSO with pivoting
4: k̃ = argminm=k,...,K ωm . pivoting
5: if k̃ 6= k then
6: move column k̃ to position k in Gred, Q, R, T , ω
7: end if
8: for l = k + 1, . . . ,K do . orthogonal projection
9: rk,l = qH

kql/ωk . kth row and lth column of R
10: ql = ql − qk rk,l , ωl = ωl − ωk ‖rk,l‖2
11: end for
12: k = k + 1 . next step
13: end while
14: k = 2
15: while k ≤ K do . QLLL reduction
16: [Gred, R, T ] = SIZE REDUCE(k − 1, k, Gred, R, T )
17: if ωk < (δ − ‖rk−1,k‖2)ωk−1 then . Lovász condition
18: swap columns k − 1 and k in Gred and T
19: [Q, R, ω] = UPDATE QR(Q, R, ω, k)
20: k = max{2, k − 1} . back to step k − 1
21: else
22: for l = k − 2, k − 3, . . . , 1 do . residual size-reduction
23: [Gred,R, T ] = SIZE REDUCE(l, k,Gred,R, T )
24: end for
25: k = k + 1 . next step
26: end if
27: end while
[Gred, R, T ] = SIZE REDUCE(l, k, Gred, R, T )

1: ρ = QUANT HURWITZ(rl,k) . QH{·}, cf. Algorithm 1
2: if ρ > 0 then . already size-reduced if ρ = 0
3: gred,k = gred,k − gred,l ρ
4: r1:l,k = r1:l,k − r1:l,l ρ . upper l rows of R
5: tk = tk − tl ρ
6: end if

[Q, R, ω] = UPDATE QR(Q, R, ω, k) . update GSO, cf. [7]
1: q̃k−1 = qk−1, R̃ = R, ω̃k−1 = ωk−1, ω̃k = ωk

2: qk−1 = qk + qk−1 rk−1,k , ωk−1 = ωk + ωk−1 ‖rk−1,k‖2
3: rk−1,k = r∗k−1,k ω̃k−1/ωk−1

4: qk = q̃k−1 − qk−1 rk−1,k , ωk = ω̃k−1 − ωk−1 ‖rk−1,k‖2
5: for l = k + 1, . . . ,K do
6: rk−1,l = rk−1,k rk−1,l + ω̃k/ωk−1 rk,l
7: rk,l = r̃k−1,l − r̃k−1,k rk,l
8: end for
9: for l = 1, . . . , k − 2 do

10: rl,k−1 = rl,k
11: rl,k = r̃l,k−1

12: end for

If the Lovász condition is triggered (Line 17), the columns are
swapped and the GSO has to be updated (UPDATE QR).

4) Diversity Order: LRA LE has been proven to completely
utilize the CV MIMO receive diversity ∆LRA,cv = L [16], [7].
Since in case of the QV channel (10) the number of random
variables is doubled (cf. Sec. IV-A), LRA LE exploits the QV
channel’s receive diversity 2L. In general, we have7

∆LRA = Dch/2 · L , (30)

i.e., a decrease of L/2, L, and 2L decades per 10dB increase
in SNR is present for RV, CV, and QV channels, respectively.
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Fig. 5. Average BER over the SNR in dB in for CV (Dch = 2) and QV
(Dch = 4) multi-user MIMO fading channels. Variation of MIMO dimensions
K = L and constellation A. Top: Equalization via MMSE LE. For reference,
results for the AWGN scenario are shown. Bottom: Equalization via MMSE
LRA LE. CLLL for Dch = 2 and QLLL for Dch = 4, both with δ = 0.75.

V. NUMERICAL RESULTS

In the following, we provide numerical results, particularly
the average over 106 channel realizations and 103 symbols
per channel. All variants of the LLL algorithm are applied
with the standard parameter δ = 0.75. Since we focus on the
diversity behavior, we restrict to uncoded transmission.

Fig. 5 (Top) shows the bit error rate (BER) over the SNR.
For reference, the CV and the QV AWGN channel are com-
pared. The 16QAM constellation AG (CV; Dch = 2) and the
256-ary LI-based one AL (QV; Dch = 4), each with Md = 4,
possess the same BER. Hence, the bandwidth efficiency is
doubled while the power efficiency stays the same. The 512-
ary HI-based constellation AH only leads to a slight decrease
in performance, caused by the marginally higher variance σ2

x

and the non-Gray labeling. Besides, the results for the multi-
user MIMO fading channel and MMSE LE via (23) are given.
Independently from the number of users/antennas, the diversity
is determined by Dch, i.e., ∆LE = 1 for CV and ∆LE = 2
for QV channels, cf. (24). In contrast, increasing the MIMO
dimensions only results in a very small SNR gain.

In Fig. 5 (Bottom), MMSE LRA LE is applied to the
multi-user fading scenario. To that end, the CLLL (AG) and
the QLLL (AL, AH) have been employed. We clearly see
that the diversity is doubled by utilizing QV instead of CV
channels as expected according to (30). We may, e.g., achieve
∆LRA = 4 via Dch = 2 and K = L = 4, or alternatively by
choosing Dch = 4 and K = L = 2. As for both AL and AH
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the quantization in the receiver has to be performed w.r.t. H
(cf. Fig. 4), they nearly perform the same. If K = L = 8, all
curves are already close to the AWGN ones (Fig. 5 (Top)).

In Fig. 6, we restrict to QV channels (Dch = 4), MMSE
LRA LE, and the 256-ary constellation AL. We compare the
curves obtained by the QLLL (Fig. 5 (Bottom)) with the ones
obtained via RLLL or CLLL (implemented by analogy with
Algorithm 2), utilizing the RV or CV representations of the
QV channel matrices according to (5) or (4), respectively.
While all variants achieve full diversity, the QLLL additionally
provides an SNR gain right up to 1 dB. It is caused by
QH{·} in the size-reduction step: As H has the densest four-
dimensional packing [1], the average quantization error is
reduced in relation to the lattice Z4 (RLLL) or G2 (CLLL).
In other words, the next lattice point may be located closer.
Thus, the average noise enhancement of the remaining non-
integer equalization via F̄ is lowered. We call this property
the factorization gain of the QLLL algorithm.

In Fig. 7, the expectation of the maximum squared row norm
of F̄ is depicted over the expected number of RV multipli-
cations in the R/C/QLLL (computational complexity, cf. [4]),
varying K = L. In the case of CV channels (Dch = 2), RLLL

(via RV representation) and CLLL nearly perform the same,
but the CLLL lowers the complexity, cf. [7]. For QV channels
(Dch = 4), the same is valid when comparing RLLL and
CLLL. In contrast, the QLLL not only lowers the complexity
but also enables the abovementioned factorization gain.

VI. SUMMARY AND CONCLUSIONS

Multi-user MIMO equalization over QV arithmetic has been
discussed. To this end, the transition to a CV transmission
with dual-polarized antennas has been established. Given the
QV channel model, the related diversity orders are doubled
in comparison to the CV one. Besides, LLL reduction over
quaternions (QLLL reduction) has been proposed utilizing the
set of Hurwitz integers. It not only reduces the complexity in
relation to RLLL or CLLL reduction, but additionally provides
a factorization gain due to a denser packing of the lattice.
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