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Abstract—In state-of-the-art fiber-optical systems and up-
coming wireless standards, transmission over both planes of
polarization of electromagnetic waves is an important approach

to increase the spectral efficiency. To this end, four-dimensional
modulation schemes are suited. In this paper, coded modulation
for signal constellations over the Hurwitz integers, an isomorphic
representation of the four-dimensional checkerboard lattice, is
studied. In particular, a two-stage coding strategy is proposed
where the components of the four-dimensional signal are prepro-
cessed jointly before conventional coded-modulation techniques
like bit-interleaved coded modulation or multistage decoding are
applied individually per dimension. The theoretical capacities as
well as numerical results from simulations with LDPC codes show
that the proposed approach enables a performance gain over the
straightforward application of ASK constellations per dimension
or QAM constellations per polarization.

I. INTRODUCTION

In order to satisfy the growing demand for ultra-high data-

rate transmission, modulation techniques that enable a very

high bandwidth efficiency are required. A straightforward but

effective strategy is to use both (orthogonal) planes of polar-

ization of electromagnetic waves. In fiber-optical transmission,

this approach has already been used for quite some time.

Recently, in the field of wireless communications, so-called

dual-polarized antennas for the radiation of both horizontally-

and vertically-polarized waves have been proposed [5] and

become more and more popular, cf., e.g., [11], [13].

Taking advantage of radio-frequency modulation in both

planes of polarization, four orthogonal components are avail-

able in equivalent baseband domain. This can be modeled as a

quaternion-valued (QV) transmission [8], [13], [18], i.e., with

signal points from the set of quaternions [4]. Then, the system

performance may not only benefit from a doubled spectral

efficiency, but also from QV modulation formats. In particular,

instead of choosing the signal set from the four-dimensional

(4D) integer lattice Z4—represented by the QV set of Lipschitz

integers [4]—it is more advantageous to take a subset of

the checkerboard lattice D4—represented by the QV set of

Hurwitz integers [3], [4]: the densest 4D packing [3] reduces

the constellation’s variance and hence the transmit power.

In fiber-optical transmission, constellations based on the

Lipschitz integers are well studied and known as polarization-

multiplexed quadrature-amplitude modulation (PM-QAM). In
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addition, constellations from the lattice D4 have been pro-

posed, e.g., [10] gives an overview on 4D modulation in

optical communication. Nevertheless, the central issue of the

latter is the combination with channel coding schemes, i.e.,

the development of a strategy for coded modulation (CM).

Particularly, bit-interleaved coded modulation (BICM) [2] is

not suited, cf. [1], as—due to an increased number of nearest

neighbors [3]—a Gray labeling does not exist. A straightfor-

ward capacity-approaching CM strategy in combination with

state-of-the-art channel codes is still an open problem.

To overcome this problem, in this paper, we propose a novel

CM approach for signal sets based on Hurwitz integers. Fol-

lowing the concept of capacity-achieving multistage decoding

(MSD) [16], the encoding and hence the corresponding decod-

ing are split into two main stages: The first stage handles the

4D (QV) signal as a whole. Based thereon, in the second main

stage, it is split into its four components where conventional

CM schemes are applied—either BICM with Gray labeling

in the style of multistage bit-wise (MSBW) receivers [17],

or multilevel coding (MLC) by continuing the philosophy

of MSD. For both cases, based on the capacities of the

equivalent channels [16], we explain how to choose the rates

of the component codes to maximize the performance over the

additive white Gaussian noise (AWGN) channel. On that basis,

numerical simulations with low-density parity-check (LDPC)

codes show the benefits of the proposed strategies.

The paper is structured as follows: Sec. II reviews 4D

lattices and related signal constellations. Two-stage dimension-

wise CM for Hurwitz-integer constellations is proposed in

Sec. III and related numerical results are provided in Sec. IV.

The paper closes with a summary and outlook in Sec. V.

II. FOUR-DIMENSIONAL LATTICES AND CONSTELLATIONS

In digital transmission, it is common practice to draw the data

symbols from a regular grid, in particular a lattice [3]. In

the following, we will briefly review the most important 4D

lattices and related signal constellations.

A. Four-Dimensional Lattices

We consider 4D lattices of the form

Λ(G) =
{
v = Gu | u ∈ Z

4
}

, (1)

where G ∈ R
4×4 denotes the generator matrix of the lattice

that produces lattice points v = [v1, v2, v3, v4]
T ∈ R

4.



If 2D lattices are considered—especially in case of com-

plex baseband processing of (single-polarized) radio-frequency

signals—it may be convenient to employ (scalar) complex

numbers instead of 2D vectors. Transferring this concept to

the 4D (dual-polarized) case, the set of quaternions [3], [4]

H = {v = v(1) + v(2)i + v(3)j + v(4)k | v(1,2,3,4) ∈ R} (2)

with the imaginary units i, j, and k (where i2 = j2 =
k2 = ijk = −1) enables an equivalent scalar representation

of the lattice vectors according to (1). Noteworthy, this QV

representation is well suited to describe a rotation and/or

crosstalk between the polarization planes, cf., e.g., [8], [18].

1) Lipschitz Integers (Lattice Z
4): The simplest 4D lattice

is the integer lattice Z
4 with the 4×4 identity generator matrix

G = I . It is isomorphic to the QV set of Lipschitz integers [4]

L = {v = v(1) + v(2)i + v(3)j + v(4)k | v(1,2,3,4) ∈ Z} , (3)

i.e., all quaternions that only consist of integer components.

All elements of L (or Z4) have eight nearest neighbors at the

minimum (squared) distance d2min = 1.

2) Hurwitz Integers (Lattice D4): The checkerboard or

Schläfli lattice D4 is the densest packing in four dimensions,

particularly achieving a packing gain of 1.51 dB w.r.t. Z4 [3],

[7]. One possible generator matrix thereof reads [3]

G =







1 0 0 1/2
0 1 0 1/2
0 0 1 1/2
0 0 0 1/2







. (4)

The lattice D4 according to (4) is isomorphically expressed

by the QV set of Hurwitz integers [3], [4]

H = {v = v(1) + v(2)i + v(3)j + v(4)k |

[v(1), v(2), v(3), v(4)]T ∈ Z
4 ∪ (Z+ 1/2)4}

= L ∪ (L+ (1 + i + j + k)/2) .

(5)

The Hurwitz integers (and the lattice D4) can be split into

two disjunct sets: i) the set of Lipschitz integers and ii) the

set of Lipschitz integer shifted by 1/2 in each component. In

comparison to L (or Z
4), the number of nearest neighbors is

tripled to 24 [3], but the related minimum (squared) distance

remains d2min = 1. Graphically, in four dimensions, there is

enough space to place additional lattice points in between the

(Lipschitz) integers without decreasing the minimum distance.

B. Four-Dimensional Signal Constellations

In digital transmission, the set of data symbols A (signal

constellation) can be chosen to be a (zero-mean) subset of a

lattice—the so-called signal-point lattice [7]—with cardinality

M = |A| and variance σ2
a. In the 4D case, both abovemen-

tioned types of lattices are suited and discussed below.

1) Lipschitz Constellations: Following the concept of (1D)

amplitude-shift keying (ASK) and (2D) square QAM constel-

lations, signal constellations based on the Lipschitz integers

as the signal-point lattice are defined by [13]

AL = Ad +Ad i +Ad j +Ad k , (6)
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Fig. 1. 2D projection (first two components) of the Lipschitz constellations
AL with M = 24 = 42 = 16 (red boundaries; b = 4 bit), M = 44 =
162 = 256 (blue boundaries; b = 8 bit), and M = 84 = 642 = 4096 (green
boundaries; b = 12 bit).
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Fig. 2. 2D projection (first two components) of the Hurwitz constellations
AH with M = 2·24 = 2·42 = 32 (red boundaries; b = 5 bit), M = 2·44 =
2·162 = 512 (blue boundaries; b = 9 bit), and M = 2·84 = 2·642 = 8192
(green boundaries; b = 13 bit). Subset AL,1: circles filled white; subset
AL,2: circles filled black.

with the zero-mean Md-ary independent components

Ad =
{
m− (Md − 1)/2 | m ∈ {0, . . . ,Md − 1}

}
. (7)

In Fig. 1, where the 2D projections of some Lipschitz-based

constellations are shown, we see that the data symbols are

located within a hypercube. If non-scaled versions thereof are

chosen (i.e., d2min = 1), the variance per component reads

σ2
a,d = (M2

d − 1)/12. In total, we have σ2
a = 4 σ2

a,d. It is con-

venient to choose Md = 2bd , where bd ∈ N\0 is the number of

bits to be transmitted per dimension. Then, the total cardinality

reads M = M4
d = 24bd = 16, 256, 4096, . . . , and the total

number of bits per symbol b = 4 bd = 4, 8, 12, . . . . These

parameters are summarized in Table I. Noteworthy, since Md

is even, the offset oL = (1 + i + j + k)/2 to the Lipschitz

integers L is required to be zero-mean, i.e., AL ⊂ L+ oL.



TABLE I
VARIANCE AND NUMBER OF BITS OF (ZERO-MEAN) LIPSCHITZ AND

HURWITZ CONSTELLATIONS IN TOTAL AND PER DIMENSION.

Type M Md σ2
a σ2

a,d b bd

AL 16 2 1 0.25 4 1
AH 32 2.3784 1.25 0.3125 5 1.25

AL 256 4 5 1.25 8 2
AH 512 4.7568 5.25 1.3125 9 2.25

AL 4096 8 21 5.25 12 3
AH 8192 9.5137 21.25 5.3125 13 3.25

2) Hurwitz Constellations: If the Hurwitz integers are

taken as the signal-point lattice we can take advantage of

the abovementioned packing gain. Since they consist of two

Lipschitz-based subsets, the straight-forward construction [13]

AH = AL,1 ∪ AL,2 (8)

can be applied, where we have the two Lipschitz-based subsets

AL,1 = AL − (1 + i + j + k)/4 (9)

AL,2 = AL + (1 + i + j + k)/4 . (10)

In Fig. 2, the 2D projections of some Hurwitz constellations

are shown. We see that two Lipschitz-based signal sets (9) and

(10) with the offset ±oH = ±(1 + i + j + k)/4 to AL are

actually present; however, the minimum (squared) distance of

the resulting Hurwitz constellation (8) is still d2min = 1. In

particular, we have AH ⊂ H + oH, where the offset ensures

that the resulting constellation is zero-mean.

In comparison to the Lipschitz constellations, the number

of signal points is doubled within the same boundary regions

(cf. Fig. 1 vs. Fig. 2). It is quite obvious that, given Lipschitz-

based subsets with 16, 256, or 4096 signal points, we obtain

the cardinalities M = 32, M = 512, or M = 8192, cf. Table I.

As a consequence, one additional bit can be transmitted (in

total), or one quarter bit per dimension. Due to the same

boundaries, the constellations’ variances remain nearly the

same in comparison to the subsets. As can be seen from

Table I, only a slight increase of 0.0625 per dimension or

0.25 in total is present, caused by oH [13]. Nevertheless, due

to 24 nearest neighbors, a Gray labeling is not possible and a

straightforward application of BICM is not promising.

In optical transmission, these constellations are also known

as M -ary set-partitioned QAM (M -SP-QAM) [10], which re-

sult from the extension1 of two independent
√

M/2-ary QAM

constellations via the addition or subtraction of the 4D offset

(two set partitions). In contrast to the QV representation, they

are usually represented as (shifted) subsets of the lattice D4.

C. Capacities over the AWGN Channel

In order to assess the system performance in case of

coded transmission, the coded-modulation (or constellation-

constrained) capacity over the AWGN channel CCM is a

1Moreover, another type of D4-based constellations can be obtained by
a technique called reduction [10], which, however, prevents independent
modulation per partition and dimension (by analogy with rectangular vs. non-
rectangular QAM). In this paper, we restrict to extended constellations.
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Fig. 3. Coded-modulation capacities CCM in bit/symbol vs. signal-to-noise
ratio over the AWGN channel for Lipschitz (dashed) and Hurwitz (solid)
constellations. The Shannon limit is given as gray solid line.

relevant quantity. It can be obtained by means of numerical

integration [14], e.g., via Gauss-Hermite quadratures [12].

In Fig. 3, the capacities of the above Lipschitz and Hurwitz

constellations are shown over the signal-to-noise ratio (SNR)

in dB. It is represented as

Es

N0
=

σ2
a,d

2 σ2
n,d

= 2
σ2
a

σ2
n

, (11)

where σ2
n,d denotes the variance of real-valued zero-mean

white Gaussian noise within each dimension and σ2
n the total

variance of the 4D noise representation (with independent

components). We clearly see that, in the high-SNR regime,

one additional bit is achieved by applying the Hurwitz instead

of the Lipschitz constellations. Besides, if a target rate close

to a Lipschitz-constellation’s maximum capacity is desired,

e.g., 7 bit with M = 256, it is more advantageous to

choose the related Hurwitz constellation (M = 512) since the

power efficiency may be increased (here: SNR gain of about

0.5 dB). A similar gain may also be achieved by choosing the

next (hypercube) Lipschitz constellation, however, with the

cost of a tremendously higher processing and decoding effort

(M = 4096 vs. M = 512 signal points).

III. CODED MODULATION AND LABELING

In this section, we discuss how channel coding can be ef-

ficiently combined with 4D modulation based on Hurwitz

constellations. To that end, we will propose a straightfor-

ward two-stage dimension-wise (TD) CM scheme for Hurwitz

constellations and discuss how to determine the rates of the

component codes via the respective level capacities of the

equivalent channels [16].

A. Two-Stage Dimension-Wise Coded Modulation

The proposed CM scheme is motivated by the construction

of the Hurwitz constellation according to (8) via two interlaced

Lipschitz subsets. In the following, the TD scheme is tailored

jointly with the binary labeling rule M : c 7→ a, which

maps the address2 vector c = [c1, . . . , cb] ∈ F
b
2 to the data

2Symbols over the finite field F2 are typeset in Fraktur font, e.g., q, c.
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Fig. 4. Two-stage dimension-wise coded modulation transmitter (a) and receiver (b) for the four-dimensional Hurwitz constellation AH with M = 512 (i.e.,
b = 9 binary address levels cl). The lowest bit level with l = 1 is protected by a low-rate code C1 and selects via the mapping M between the two subsets
AL,1 and AL,2. A dimension-wise encoding is performed for the remaining levels, i.e., with four independent stages each following either the MLC or BICM
(c,d) paradigm and resembling a one-dimensional ASK constellation Ad with Md = 4 and bd = 2. On the receive side, the lowest level is decoded first
requiring a single, quaternion-valued (4D) computational step on the receive symbol y ∈ H. In a second step, each MLC/BICM stage operates independently
on the real-valued component y(·) and calculates its likelihood-values Λl after the lowest level is already decoded.

symbols a ∈ AH. The corresponding inverse function is given

by M−1(a) and the function M−1
l (a) returns the lth bit of

the symbol a, i.e., M−1
l (M([c1, . . . , cb])) = cl.

The additional bit obtained by packing the two Lipschitz

subsets selects between the two alphabets AL,1 and AL,2, i.e.,

it encodes the sign of the 4D offset oH. As a result, the set

AH is divided into two subsets with the same minimum intra-

subset Euclidean distance. This is in accordance with the well-

known fact that in 4D set partitioning (SP) the intra-subset

distance only increases in every second partitioning step [15].

Due to the isomorphism between L and the lattice Z
4,

each Lipschitz subset AL,1 and AL,2 can be interpreted as

the Cartesian product of four Md-ary ASK constellations Ad,

cf. (6). As a consequence, Gray labeling in each dimen-

sion is possible, i.e., binary labels of adjacent ASK signal

points only differ in a single bit position. This allows the

straightforward (independent) application of BICM in each

of the four dimensions. Alternatively, the four Md-ary ASK

constellations can be labeled according to the SP strategy and

MLC with MSD can be applied per dimension. The mapping

rule Md : { 0, 1 }bd 7→ a(χ) maps tuples of bd address

bits to the χth quaternion component a(χ) ∈ Ad ± od with

χ = 1, 2, 3, 4. The dimension-wise offset od = 1/4 is either

subtracted (c1 = 0) or added (c1 = 1) to the one-dimensional

ASK constellation Ad to select between AL,1 and AL,2.

The corresponding structure of the TD CM scheme is shown

in Fig. 4 by example of AH with M = 512 signal points.

The source bits q are drawn from the binary field F2 and

demultiplexed into 5 levels (i.e, one for the offset and four

for each dimension) with block lengths equivalent to the

dimension of the successive codes. The lowest source bit

stream q1 is encoded (ENC) with the error-correcting code

C1 of rate Rc,1 to obtain the lowest address bit level c1. The

remaining four source bit streams q2, . . . , q5 correspond to the

four one-dimensional Md-ary ASK constellations Ad. Each bit

stream is encoded independently according to either the MLC

or BICM paradigm3, cf. Fig. 4 (c). Tuples of bd = 2 address

3For BICM—due to the successive demultiplexing—the codeword length
Nc,2 in each stage must satisfy the relation Nc,2 = bdNc,1.

bits4 are then mapped (Md) to an Md-ary ASK constellation

Ad in each quaternion component a(χ). SP labeling is used in

conjunction with MLC and Gray labeling is used with BICM.

On the receive side, the lowest bit level is decoded first.

The calculation of the log likelihood ratio (LLR) reads

Λ1 = Lc1 (y) = log

(∑

a∈AL,1
fY |A(y | a)

∑

a∈AL,2
fY |A(y | a)

)

, (12)

where fY |A(y | a) is the QV conditional probability density

function (PDF) which in case of the AWGN channel can be

isomorphically expressed as a multivariate normal distribution

with zero mean and separate components over the four di-

mensions. The decoder (DEC) delivers the estimate ĉ1 which

is used for the LLR calculation of the remaining levels l ≥ 2
according to5

Λl = Lcl
(y | ĉ1) = log

(∑

a∈A
(0)
l

fY |A(y | a)
∑

a∈A
(1)
l

fY |A(y | a)

)

, (13)

where A
(u)
l = { a ∈ AH | M−1

l (a) = u ∩ M−1
1 (a) = ĉ1 }

and u ∈ { 0, 1 }. Due to independent components concerning

signal modulation and noise the calculation can independently

be performed on the distribution of each real-valued compo-

nent y(χ) ∈ R via

Λl = log





∑

a(χ)∈A
(0)
d,l

fY (χ)|A(χ)(y(χ) | a(χ))
∑

a(χ)∈A
(1)
d,l

fY (χ)|A(χ)(y(χ) | a(χ))



 , (14)

where A
(u)
d,l = { a(χ) ∈ Ad ± ôd | M−1

d,ld
(a(χ)) = u } and ld

is the bit-level index in dimension χ. The offset ôd = 1/4 is

either subtracted (̂c1 = 0) from or added (̂c1 = 1) to Ad. The

PDF per component reduces to the one-dimensional normal

distribution. After parallel decoding of the upper stages the

estimate q̂ is obtained. Hence, the calculation in (12) is in fact

the only QV (i.e., 4D) operation in the TD receiver structure.

4The ordering of bit levels l is done here by the common convention in
MLC that the bit-level capacities Cl increase with l, cf. the next subsection.

5Here, we only explicitly state the LLR calculation for the BICM receiver.
The extension to MSD is, however, straightforward.



AL , D-BICM

AH , TD-BICM

AH , TD-MLC

l ∈ {6, 7, 8, 9}

l ∈ {2, 3, 4, 5}

l = 1

10 log10(Es/N0) [dB] −→

C
l

[b
it

/s
y
m

b
o
l]
−
→

C
[b

it
/s

y
m

b
o
l]
−
→

2 6 10 14 18 22

0

0.2

0.4

0.6

0.8

1

0

1

2

3

4

5

6

7

8

9

Fig. 5. Bit-level capacities Cl (left axis, black) for two-stage dimension-
wise (TD) CM of the Hurwitz constellation AH with cardinality M = 512.
MLC-MSD with SP (dotted) and BICM with Gray labeling (solid) is done
in each one-dimensional 4ASK stage. Total capacities C (right axis, blue)
are contrasted to dimension-wise (D)-BICM (dashed) using the Lipschitz
constellation AL with M = 256. Target rate is Rm = 7 bit/symbol;
required SNR for TD-MLC/BICM is 13.94 dB and for D-BICM 14.41 dB.
Markers indicate rates of the component codes for BICM (star) and MLC-
MSD (crosses) while the lowest level has the same rate in both cases (circle).

B. Bit-Level Capacities

According to the chain rule of information theory [16],

the coded-modulation capacity CCM, shown in Fig. 3, can be

decomposed into the mutual information (MI) of its equivalent

channels l via6

CCM = I(Y ;A) = I(Y ;C1,C2, . . . ,Cb) (15)

=

b∑

l=1

I(Y ;Cl | { 1, 2, . . . , l− 1 }) , (16)

where I(Y ;Cl | I) = I(Y ;Cl | {Ci | i ∈ I }) gives the MI of

the lth bit given the bits in the set I.

1) Lipschitz Constellation: Transferring this concept to the

dimension-wise (D) decoding of Lipschitz constellations we

have for MLC with MSD

CD−MLC =
4∑

n=1

∑

l∈Dn

I (Y ;Cl | I ∩ Dn)
︸ ︷︷ ︸

C
D−MLC
l

=
b∑

l=1

CD−MLC

l , (17)

where D = {D1, . . . ,D4 } partitions the bit-level indices

into sets of equal size |Dn| = bd, i.e., each Dn collects all

indices l that are associated with the nth dimension. The

coded-modulation capacity can be achieved if the code rate

Rc,l in level l equals the corresponding level capacity CD−MLC

l .

Similarly, the achievable rate of the BICM scheme can be

given as the sum of the unconditioned MIs in each dimension,

particularly

CD−BICM =
4∑

n=1

∑

l∈Dn

I(Y ;Cl)
︸ ︷︷ ︸

C
D−BICM
l

=
b∑

l=1

CD−BICM

l , (18)

6In the context of information-theoretic elements, upper case letters indicate
random variables, i.e., here A, Y , C.

TABLE II
CODE RATES FOR BICM AND MLC FOR DIMENSION-WISE (D) CM OVER

LIPSCHITZ CONSTELLATIONS OR TWO-STAGE DIMENSION-WISE (TD) CM
OVER HURWITZ CONSTELLATIONS ACCORDING TO THE CAPACITY RULE.

Scenario A M CM Rc,1 Rc,2 Rc,3 Rc,4

Rm = 3.5
AL 16 − − 0.8750 − −
AH 32 TD 0.4909 0.7523 − −

Rm = 7
AL 256

D-BICM − 0.8750 − −
D-MLC − 0.7507 0.9993 −

AH 512
TD-BICM

0.3103
0.8362 − −

TD-MLC 0.6763 0.9962 −

Rm = 10.5
AL 4096

D-BICM − 0.8750 − −
D-MLC − 0.6302 0.9948 1

AH 8192
TD-BICM

0.1734
0.8606 − −

TD-MLC 0.5911 0.9906 1

and the rate of the code Cn in each dimension is Rc,n =
∑

l∈Dn
CD−BICM

l /bd. The rate loss of (18) in comparison

to (17) depends on the actual labeling. Gray labeling is known

to perform well in the high-SNR regime.

2) Hurwitz Constellation: For the TD CM scheme applied

to the Hurwitz constellations and under the premise that the

lowest level encodes the 4D offset between both Lipschitz

subsets, we have

CTD−MLC = I (Y ;C1)
︸ ︷︷ ︸

C
TD−MLC
1

+

4∑

n=1

∑

l∈Dn

I (Y ;Cl | (I ∩ Dn) ∪ C1)
︸ ︷︷ ︸

C
TD−MLC
l

,

(19)

and similarly for BICM applied in each dimension

CTD−BICM = I (Y ;C1)
︸ ︷︷ ︸

C
TD−BICM
1

+

4∑

n=1

∑

l∈Dn

I (Y ;Cl | C1)
︸ ︷︷ ︸

C
TD−BICM
l

. (20)

The bit-level capacities for the Hurwitz-based approach with

M = 512 are shown in Fig. 5. Both variants, i.e., TD-MLC

with SP labeling and TD-BICM with Gray labeling, perform

well at the target rate of Rm = 7. The SNR gain w.r.t.

the Lipschitz approach is about 0.5 dB. Note that TD-BICM

approaches the performance of D-BICM in the low-SNR

regime. The rates of the component codes can be deduced from

the level capacities, cf. the markers in Fig. 5. In Table II, they

are listed together with the ones for some other cardinalities

and target rates.

IV. NUMERICAL RESULTS

Results obtained from numerical simulations are provided to

complement our theoretical considerations. To this end, LDPC

codes, particularly the subclass of irregular repeat-accumulate

codes [9], have been constructed. The left (non-staircase)

part of the parity-check matrix has randomly been chosen

according to a predefined degree distribution (90 % of the

columns have weight 3 and 10 % weight 4). In case of BICM,

the block interleaver from the DVB-S2 standard [6, Sec. 5.3.3]

is applied. Codes of length Nc = 64800 as in DVB-S2 are

employed; the average over 105 codewords is taken. The large

code length ensures a sufficient number of redundancy bits

even in case of very high code rates above 0.99. In practice,



these code rates can alternatively be realized by algebraic

codes. To enable a fair comparison, we display the results over

Eb/N0 = 2 σ2
a/(Rm σ2

n), where Rm is the abovementioned

CM rate, i.e., the number of information bits per QV symbol.

We consider the scenarios listed in Table II. The proposed

Hurwitz-based CM strategies are contrasted to the Lipschitz-

based ones, i.e., ASK per component, for the same CM rates.

This is equivalent to neglecting the first stage in Fig. 4, i.e.,

the first level is unused and thus the 4D offset deactivated.

In Fig. 6, the bit error ratio (BER) is depicted. Given the first

scenario with target rate Rm = 3.5, we see an SNR gain of

about 0.8 dB for the TD Hurwitz approach with M = 32 over

the dimension-wise Lipschitz one with M = 16. This complies

with the capacities (cf. Fig. 3); the required SNRs for this

target rate are additionally shown. Due to the additional offset

bit, the code rate in the second (i.e., 1D) stage Rc,2 can be

lowered, improving the total performance. In this stage, CM

is straightforward as only one bit per dimension is present.

Going over to the second scenario with Rm = 7, both

Hurwitz-based approaches (M = 512) enable a gain of about

0.5 dB over the respective Lipschitz ones (M = 256). This

is again in accordance with the SNR gap w.r.t. the theoretical

capacities. In both cases, MLC/MSD performs slightly better

than BICM even though the total capacities in Fig. 5 are

nearly the same. The degradation is present since the LLR-

values are not completely independent—as actually required

for BICM. However, the effect can be reduced if channel code

and interleaver are optimized jointly. In contrast, the shorter

code length in the first stage of the TD-BICM strategy does

not play a significant role if the codes are already very long.

Moreover, compared to the difference between AL and AH,

the gap induced by BICM instead of MLC is rather negligible.

Considering the third scenario with Rm = 10.5, the same

conclusions can be drawn. However, in that case, the SNR

gain of the Hurwitz approaches reduces to roughly 0.2 dB in

accordance with the theoretical capacities. Nevertheless, given

the 8192-ary Hurwitz constellation, a gain of up to 1 dB over

the 4096-ary Lipschitz one may be achieved if the target rate

is increased to more than 11 bit, cf. Fig. 3.

V. SUMMARY AND OUTLOOK

CM strategies for Hurwitz constellations, i.e., signal sets with

elements drawn from the checkerboard lattice D4, have been

discussed. More specifically, applying a 4D preprocessing in a

first stage, state-of-the-art CM approaches like BICM or MLC

can be applied in a second stage. The related capacities over

the AWGN channel as well as numerical simulations have

revealed that—when compared with conventional integer con-

stellations like ASK or QAM ones—significant performance

gains are possible. Thereby, the low-complexity approach of

BICM performs almost as well as the MSD of MLC which is

optimal in an information-theoretic point of view.

Future work deals with the implementation and assessment

of the proposed coding strategies in fiber-optical systems

where not only noise but also non-linearities may be present,

or the application in dual-polarized wireless fading channels.
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Fig. 6. Coded BER vs. Eb/N0 in dB over the AWGN channel using
dimension-wise (D) BICM or MLC for Lipschitz and two-stage dimension-
wise (TD) CM for Hurwitz constellation. Parameters according to Table II.
The respective CM capacity limits are shown as vertical lines.
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