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Abstract—Lattice-reduction-aided decision-feedback equaliza-
tion (LRA DFE) and successive integer forcing are MIMO
detection schemes which combine the equalization in a suited
basis with the principle of successive interference cancellation
(SIC). To this end, the reduction algorithm not only has to find
a suited basis, but it should also provide an optimized detection
order for SIC: the V-BLAST ordering, known to be optimal for
conventional DFE. How these two tasks can be solved jointly
has so far remained unclear in the literature. In this paper, we
describe how the Lenstra-Lenstra-Lovász (LLL) reduction has to
be adapted to achieve this aim. Moreover, we propose a weakened
variant of the Hermite-Korkine-Zolotareff (HKZ) reduction that
optimally solves both tasks jointly. Results obtained from nu-
merical simulations complement the theoretical derivations.

I. INTRODUCTION

For quite some time, multiple-input/multiple-output (MIMO)
transmission is a major topic in communication theory. Ini-
tially employed for the point-to-point scenario, it has been
extended to the multi-user case. The scenario that several
users simultaneously transmit their data to one central receiver
(uplink) is known as MIMO multiple-access channel.

To handle the multi-user interference—instead of a linear
channel equalization—decision-feedback equalization (DFE)
can be applied, incorporating the principle of successive in-
terference cancellation (SIC). The V-BLAST algorithm [11]
optimizes the detection order for SIC—of great relevance
in the multi-user case—according to the worst-link perfor-
mance. Some low-complexity alternatives have been proposed,
e.g., [12], but with suboptimal ordering. Nevertheless, the error
curves of all these strategies flatten out to diversity order one.

To overcome this diversity limitation, lattice-reduction-
aided (LRA) equalization has been introduced [14], [10],
where the channel is equalized in a suited basis. To this
end, the channel matrix is split into a unimodular integer-
interference matrix and a residual non-integer part, e.g., via
the (complex-valued) Lenstra-Lenstra-Lovász (LLL) reduc-
tion [4]. Stronger criteria like Hermite-Korkine-Zolotareff
(HKZ) or Minkowski (MK) reduction have been employed
subsequently [16], [5]—accompanied by a higher complexity.

In LRA linear equalization, the non-integer part is linearly
equalized. In LRA DFE [10], where SIC is applied instead,
the situation is more complicated: the channel factorization not
only has to result in a suited basis, but it should also contain
a suited ordering. In the initial papers, e.g., [10], these tasks
have been solved in sequence. In the sequel, schemes were
proposed to combine these problems [13], [2], [7], all of them
resulting in a suboptimal ordering, though.
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Recently, integer-forcing (IF) linear equalization [15] has
become popular, which performs channel decoding followed
by integer interference cancellation over a finite field [3]. IF
has relaxed the unimodularity to a full-rank constraint, leading
to a factorization via the successive minima problem (SMP)
[3], [9]. This relaxation turned out be possible for the LRA
receiver, too [3]. However, for successive integer forcing [8]—
the SIC variant of IF—pure finite-field processing is not
feasible: to perform SIC, the complex-valued distortions are
“recovered” [8] from the finite-field elements after decoding
(remapping). This actually results in the philosophy of LRA
DFE, i.e., the same factorization task is present, cf. [3]. For
successive IF, the optimality of the HKZ reduction has been
stated [8], though without a direct connection to V-BLAST.

In this paper, based on an alternative interpretation of
V-BLAST [6], we transfer its philosophy to LRA DFE (or
successive IF). We adapt the LLL reduction to incorporate the
V-BLAST ordering and clarify the relation between V-BLAST
and the HKZ reduction. Moreover, we show why a weak-
ened variant thereof—called effective HKZ reduction—results
in the optimal integer matrix, which is always unimodular.
Numerical results are provided that support our considerations.

The paper is structured as follows: Sec. II provides the
system model for all variants of DFE. Factorization strategies
for conventional DFE—including V-BLAST—are reviewed in
Sec. III. In Sec. IV, we discuss how the V-BLAST strategy
can be extended to LRA DFE, and Sec. V presents numerical
results. The paper is summarized and concluded in Sec. VI.

II. SYSTEM MODEL

Throughout the paper, a discrete-time complex-baseband trans-
mission is considered, where variants of DFE are applied.1 The
related system model is depicted in Fig. 1.
K uncoordinated single-antenna transmitters send their data

to a joint receiver equipped with N ≥ K antennas. In each
time step, the transmission is mathematically expressed by

y = Hx+ n . (1)

The users’ transmit symbols are denoted by xk, k = 1, . . . ,K,
in vector notation x = [x1, . . . , xK ]T ∈ AK . They are drawn
from a zero-mean signal constellation A with variance σ2

a,
i.e., σ2

x = E
{
|xk|2

}
= σ2

a. We restrict to QAM constellations
A − o ⊂ G = Z + jZ, where G denotes the Gaussian
integers, and o a constant offset, cf. [10]. The coefficients

1Notation: E{·} denotes expectation. AT is the transpose and AH the
Hermitian of a matrix A. Its left pseudoinverse reads A+ = (AHA)−1AH,
where A+H = (A+)H. If A is square, A−H = (A−1)H = (AH)−1 is
valid. I denotes the identity matrix and 0 the (all-)zero vector or matrix.
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Fig. 1. System model of decision-feedback equalization for the MIMO
multiple-access channel, where Z describes a channel transformation.

of the MIMO channel matrix H ∈ CN×K are assumed to
be i.i.d. zero-mean unit-variance complex Gaussian. A block-
fading channel is considered, i.e., H is constant over a burst
of symbols. Additive white Gaussian noise is present at each
receive antenna. The noise components are combined into
n = [n1, . . . , nN ]T ∈ CN . They are assumed to be i.i.d.
zero-mean complex Gaussian with variance σ2

n. The vector
of receive symbols finally reads y = [y1, . . . , yN ]T ∈ CN .

To obtain the receiver matrices, the channel matrix has to
be factorized: the augmented channel matrix [12] defined by
H =

[
H√
ζI

]
∈ C(N+K)×K , ζ = σ2

n/σ
2
x, is transformed into

HZ = F+B . (2)

The matrix Z describes a channel transformation which will be
specified subsequently. The transformed channel is split into
the either upper or lower triangular matrix B ∈ CK×K with
unit main diagonal2 and the pseudoinverse of the augmented
feedforward matrix F = [fH

1 , . . . ,f
H
K ]H ∈ CK×(N+K). As its

rows f1, . . . ,fK are orthogonal, F+ has orthogonal columns.
Given (2), the SIC is performed in the following way:

Since the cascade FHZ = B shapes the interference to
have a causal structure (described by B), the receive symbols
are linearly equalized to ỹ = Fy = [ỹ1, . . . , ỹK ]T ∈ CK .
Thereby, the K×N left part of F yields the feedforward ma-
trix F according to the minimum mean-square error (MMSE)
criterion.3 Following this, the causal interference is canceled
via the feedback part depicted in Fig. 1. To this end, the vector
of decoded symbols is initially set to x̃ = [x̃1, . . . , x̃K ]T = 0.
Then, x̃k = DEC{ỹk−bkx̃} is calculated successively, where
bk denotes the kth row of B = [bH1 , . . . , b

H
K ]H and DEC{·}

the decoding operation.4 Finally, the channel transformation is
reversed, resulting in the vector of estimated transmit symbols
x̂ = Zx̃ = [x̂1, . . . , x̂K ]T ∈ AK .

The feedforward part is the crucial point regarding trans-
mission performance. It determines the mean-square error
σ2
e,k = σ2

n ‖f
H
k‖22 of each symbol ỹk, k = 1, . . . ,K, before

decoding (neglecting error propagation from SIC). Hence, the
row norms of F should be minimized,5 i.e., ‖fH

k‖22 → min.

2If B has a lower triangular structure, the SIC is performed in the order
k = 1, . . . ,K. Otherwise, the order has to be reversed to k = K, . . . , 1.

3The zero-forcing (ZF) variant is simply obtained by setting ζ = 0 in (2).
This is equivalent to a factorization according to HZ = F+B.

4In case of uncoded transmission, DEC{·} is a simple quantization to G.
5In the literature, e.g., [11], [2], the equivalent task 1/σ2

e,k → max is
often considered, i.e., maximizing the signal-to-interference-plus-noise ratio.

III. CONVENTIONAL DFE AND V-BLAST
We briefly review important aspects of conventional DFE and
the V-BLAST strategy, where the only degree of freedom is
the detection order for SIC. To this end, in (2), Z is restricted
to be a permutation matrix, i.e., Z ∈ PK×K , where PK×K
denotes the set of permutation matrices6 (matrices with only
a single one per row and column) of size K ×K.

The required equalization matrices (including optimized
ordering) can be obtained via the sorted QR factorization

GT = QR , (3)

where G = [g1, . . . , gK ] is the matrix to be decomposed
and T ∈ PK×K . Q = [q1, . . . , qK ] is the Gram-Schmidt
orthogonal matrix of GT with orthogonal columns and R is
an upper triangular K ×K matrix with unit main diagonal.

This factorization can be realized via the Gram-Schmidt or-
thogonalization (GSO) with pivoting according to Algorithm 1
(reduce = false). In particular, it is a greedy strategy where
the columns of Q and the rows of R are calculated succes-
sively, initially setting Q = G. In each step k = 1, . . . ,K,
the sorting (kth column of T ) is chosen in such a way that the
kth column of Q has the minimum norm among the columns
qk, . . . , qK after step k − 1 (Lines 3–6 in Algorithm 1).
Subsequently, the remaining columns qk+1, . . . , qK are pro-
jected onto the orthogonal complement of the chosen vector qk
(Lines 7–10). Hence, qk is a shortest vector of the projection
onto the orthogonal complement of q1, . . . , qk−1, i.e., the
column norms of Q are greedily minimized, cf., e.g., [2], [7].

A. Detection Order of Sorted QR Decomposition

The GSO with pivoting has initially been proposed to
straightly factorize G = H according to (3), i.e., HT = QR.
This strategy is known as sorted QR decomposition [12];
we abbreviate the related sorting with “SQRD”. It directly
corresponds to (2), with Z = T , F+ = Q, and B = R.

Unfortunately, SQRD has a significant drawback: since the
column norms of Q = F+ are greedily minimized in order
k = 1, . . . ,K, the related row norms ‖fH

k‖22 are maximized.7

B. Detection Order of V-BLAST

SQRD has been proposed as a low-complexity alternative
to classical V-BLAST [11]. In the V-BLAST algorithm, the
rows of F are successively calculated via the inversion of an
“updated” version of H. In particular, in the kth step, the k−1
columns of H which correspond to the already incorporated
data symbols are set to zero. The shortest row of its inverse is
taken as the kth row of F ; Z and B are updated accordingly.

In [6], it was shown that the classical V-BLAST procedure
is equivalent to a GSO with pivoting, if G = H+H instead
of G = H is decomposed according to (3). Specifically, this
corresponds to the factorization

H+HZ−H = FHB−H , (4)

6If Z is a permutation matrix, Z = Z−H is valid.
7Although this strategy is generally not optimal, an acceptable performance

is reached in practice [12], [2] as the SIC is conducted in reversed order
k = K, . . . , 1 (B = R is upper triangular).



Algorithm 1 GSO with pivoting (reduce = false), optionally
with CLLLdeep reduction (reduce = true).
[Q, R, T ] = GSO CLLLD(G, reduce, δ) . G = [g1, . . . , gK ]

1: Q = G, R = I, T = I, k = 1 . R ∈ CK×K , T ∈ GK×K

2: while k ≤ K do
3: µ(k) = argminm=k,...,K ‖qm‖22 . Q = [q1, . . . , qK ]

4: if µ(k) 6= k then . insert column if necessary
5: [Q, R, T ] = INSERTION(µ(k), k, Q, R, T )
6: end if
7: for l = k + 1, . . . ,K do . GSO
8: rk,l = q

H
kql/‖qk‖22 . kth row and lth column of R

9: ql = ql − rk,l qk . projection onto orth. compl. of qk
10: end for
11: if reduce then . CLLLdeep reduction if desired
12: [k, Q, R, T ] = CLLLD REDUCE(k, δ, Q, R, T )
13: end if
14: k = k + 1 . next step
15: end while
[Q, R, T ] = INSERTION(i, j, Q, R, T )

1: insert column i between column j − 1 and j in Q, the upper
j − 1 rows of R, and T

2: delete old column i in Q, the upper j − 1 rows of R, and T

[k, Q, R, T ] = CLLLD REDUCE(k, δ, Q, R, T )

1: for l = k − 1, k − 2, . . . , 1 do . size reduction of kth column
2: if |Re{rl,k} | > 1/2 or |Im{rl,k} | > 1/2 then
3: tk = tk − brl,ke · tl . T = [t1, . . . , tK ]
4: rk = rk − brl,ke · rl . R = [r1, . . . , rK ]
5: end if
6: end for
7: for m = 1, . . . , k − 1 do . check if deep insertion needed
8: if

∑k
l=m |rl,k|

2‖ql‖22 < δ · ‖qm‖22 then
9: for l = K,K − 1, . . . ,m+ 1 do

10: ql = ql +
∑min(k,l−1)

i=m ri,l qi . remove projections
11: end for
12: [Q, R, T ] = INSERTION(k, m, Q, R, T )
13: for l = m+ 1, . . . ,K do . GSO
14: rm,l = q

H
mql/‖qm‖22

15: ql = ql − rm,l qm . new projection
16: end for
17: k = m . go back to mth step
18: break
19: end if
20: end for

i.e., Algorithm 1 results in T = Z−H, Q = FH, and
R = B−H. Briefly speaking, instead of inverting the channel
K times as in classical V-BLAST, it is inverted once in the
beginning. Thereby, the projections of the GSO correspond to
the strategy of inverting the updated versions of H with erased
columns. For the mathematical details, we refer to [6]. Most
important, the GSO with pivoting then greedily minimizes
the columns of Q = FH, and hence the row norms ‖fH

k‖22
in detection order k = 1, . . . ,K according to the V-BLAST
philosophy (since B = R−H is now lower triangular).

In the initial V-BLAST paper [11], it has been proven that
this sorting strategy minimizes the maximum norm of F , i.e.,

ZV−BLAST = argmin
Z−H∈PK×K

max
k=1,...,K

‖fH
k‖22 . (5)

Hence, V-BLAST sorting enables an optimal worst-link per-
formance, usually dominating the overall system performance.

Algorithm 2 Lattice-reduction-aided variant of GSO or alter-
natively effective CHKZ lattice basis reduction.
[Q, R, T ] = GSO LRA(G) . G = [g1, . . . , gK ]

1: Q = G, R = I, T = I, k = 1 . R ∈ CK×K , T ∈ GK×K

2: while k ≤ K do
3: µ(k) = SHORTEST VECTOR(k, Q)
4: if ‖µ(k)‖22 6= ‖qk‖22 then . basis update if necessary
5: [Q, R, T ] = BASIS UPDATE(µ(k), k, Q, R, T )
6: end if
7: for l = k + 1, . . . ,K do . GSO
8: rk,l = q

H
kql/‖qk‖22 . kth row and lth column of R

9: ql = ql − rk,l qk . projection onto orth. compl. of qk
10: end for
11: k = k + 1
12: end while
[µ(k)] = SHORTEST VECTOR(k, Q)

1: Q(k) = [qk, . . . , qK ]
2: find a shortest vector µ(k) in the lattice Λ(Q(k))

[Q, R, T ] = BASIS UPDATE(µ(k), k, Q, R, T )

1: update qk, . . . , qK , the upper k − 1 columns of rk, . . . , rK ,
and tk, . . . , tK in such a way that qk = µ(k) and the lattice
Λ(QR) = Λ(G) is preserved

IV. LATTICE-REDUCTION-AIDED DFE AND V-BLAST
We extend our considerations to lattice-reduction-aided DFE
[10], [2]. In LRA equalization, the (augmented) channel is
interpreted as the generator matrix G = H of a complex
lattice Λ(G) [9, Eq. (1)]. Via lattice basis reduction, the equal-
ization is performed in a reduced basis Hr = HZ, where
Z ∈ GK×K is a unimodular integer matrix (|det(Z) = 1|)
describing the change of basis. The unimodularity ensures the
existence of a (Hermitian) integer inverse8 Z−H ∈ GK×K .

We can divide the most important reduction criteria (cf.,
e.g., [16], [9]) into two categories: the ones which directly
minimize the norms of the reduced basis Gr, particularly the
MK reduction and the (possibly non-unimodular) solution to
the SMP—and the criteria which consider its QR factorization
Gr = GT = QR, especially the CLLL or CHKZ reduction.9

In analogy to the sorted QR factorization (3), it is quite
evident that the QR-based reduction schemes directly yield
the matrices required for DFE—with the difference that
T ∈ GK×K is a unimodular integer matrix instead of a
permutation matrix. In particular, following the strategy of the
sorted QR decomposition by reducing G = H, we obtain the
channel factorization (2). Following the V-BLAST philosophy
via G = H+H instead, a factorization according to (4) is
present. In accordance with Sec. III, the lattice Λ(H+H)—
called the dual lattice [6] of Λ(H)—is considered and the
lattice-reduction algorithm directly operates on Q = FH.

In LRA DFE, two tasks have to be solved: i) Z should
describe the transformation to a “suited basis”; ii) Z should

8Recently, this unimodularity constraint has been relaxed [15], [3]. Indeed,
lattice decoding is still possible if Z is any matrix with full-rank (Hermitian)
integer inverse, i.e., Z−H ∈ GK×K and rank(Z−H) = K. To this end, the
factorization approach (4) is compulsory, cf. [3].

9Since complex lattices are present, we consider the complex variants
thereof [9], which are indicated by a “C” in the abbreviations.



include an optimized sorting for SIC. Since these tasks seem
to be contrary, in the initial papers, e.g., [10], they have been
solved in sequence: after lattice basis reduction, an additional
sorted QR factorization based on Gr (e.g., V-BLAST) has
been performed, cascading both transformation matrices. This
may not only cause redundant computations, but is obviously
a handicap for optimally solving both tasks. In the litera-
ture, combined factorization approaches have been proposed,
e.g., in [13], [2], [7], though, not resulting in the (optimal)
V-BLAST sorting. Below, we show how this is achieved.10

A. LLL Reduction and V-BLAST Sorting

First, we consider the most famous type of reduction: the
(C)LLL reduction [4]. A basis G = QR is CLLL-reduced, if
R = [rl,k], with rk,k = 1, is size-reduced according to

|Re{rl,k}| ≤ 0.5 ∩ |Im{rl,k}| ≤ 0.5 , 1 ≤ l < k ≤ K, (6)

and if the Lovász condition with quality parameter 0.5 < δ ≤ 1∑k

l=k−1
|rl,k|2‖ql‖22 ≥ δ · ‖qk−1‖22 , 1 < k ≤ K , (7)

is fulfilled.11 In order to achieve a CLLL-reduced basis with
optimized sorting in accordance with Sec. III, each column
qk, k = 1, . . . ,K, additionally has to constitute a shortest
vector of the projection onto the orthogonal complement
of q1, . . . , qk−1. Unfortunately, the Lovász condition only
compares column qk with qk−1; even if δ = 1 (optimal
CLLL reduction [9]) it is too weak to keep the shortest-vector
property after the size reduction [4] of rk−1,k. This problem
has been solved in [7]: the Lovász condition is “extended” to
all previous positions m = 1, . . . , k − 1, i.e.,∑k

l=m
|rl,k|2‖ql‖22 ≥ δ · ‖qm‖22 , 1 ≤ m < k ≤ K , (8)

is demanded, requiring a full size reduction. If δ = 1 is chosen,
(8) turns out to be the sorting condition of the GSO with
pivoting, as shown in [7] along with a proof of convergence.
Hence, the shortest-vector property is kept.

The condition (8) is actually known from the (C)LLL with
deep insertions (CLLLdeep), which has been proposed for
joint factorization earlier [2], [7]. The GSO with pivoting
can easily be extended to perform a CLLLdeep reduction,
cf. Algorithm 1 (reduce = true): following the kth pro-
jection of the GSO, the related size reduction (Lines 1–6
in CLLD REDUCE) is performed. Then, condition (8) is
checked for all previous columns q1, . . . , qk−1. If it is violated
at index m, i.e., a shorter vector is found, all previously
calculated projections up to this position are removed. After
the insertion of this shorter vector at index m, its projection
is calculated. The GSO finally continues with step k = m+1.

In [7], the authors concluded that the optimal CLLLdeep
reduction (δ = 1) not only results in a CLLL-reduced basis of

10Evidently, the successive minimization of the norms of Gr (CMK/CSMP)
is in contradiction to this task. We hence restrict to the QR-based criteria.

11The size reduction has no direct impact on LRA DFE, as it doesn’t operate
on Q (cf. Lines 1–6 of CLLLD REDUCE in Algorithm 1). Though, it is
needed for the Lovász condition (7), where the size reduction of the elements
of R above its main diagonal suffices, called effective (C)LLL reduction [7].

TABLE I
OVERVIEW ON THE SORTING AND OPTIMALITY OF DIFFERENT

FACTORIZATION APPROACHES FOR DECISION-FEEDBACK EQUALIZATION.

Based on H Based on H+H

Sort. Opt. Sorting Optimality

GSO with pivoting SQRD 7 V-BLAST argmin
Z−H∈PK×K

max
k
‖fH

k‖22

(eff.) CHKZ SQRD 7 V-BLAST argmin
Z−H∈GK×K

rank(Z−H)=K

max
k
‖fH

k‖22

CLLLdeep, δ=1 SQRD 7 V-BLAST 7

CLLLdeep, δ < 1 7 7 7 7

(eff.) CLLL, CMK 7 7 7 7

CSMP not possible 7 7

Λ(H), but that Z also includes the SQRD ordering. Taking
advantage of the alternative interpretation of V-BLAST, we
can transfer this to the dual lattice Λ(H+H): the optimal
CLLLdeep reduction of G = H+H always results in an integer
matrix inherently containing the V-BLAST ordering.

B. LRA V-BLAST and its Relation to HKZ Reduction

Nevertheless, the optimal CLLLdeep reduction only ensures
that the CLLL-reduced basis fulfills the sorting condition. It
does not guarantee that Z ∈ GK×K optimizes the worst-link
performance in the V-BLAST sense in analogy to (5).

To achieve this aim, we transfer the greedy philosophy of
the GSO with pivoting to lattices as shown in Algorithm 2:
instead of choosing a shortest vector of Q(k) = [qk, . . . , qK ]
after step k−1, a shortest vector in the lattice Λ(Q(k)) is taken
(Line 3). This can be implemented via the sphere decoder [1]
using the real-valued representation of a lattice [10], or via
[5, Algorithm 2]. Since this vector is chosen to be the kth

column of Q, the basis of the lattice has to be updated
accordingly (Line 5), e.g., via the transformation strategy
in [16]. Then, in accordance with the GSO with pivoting,
the columns qk+1, . . . , qK are projected onto the orthogonal
complement of qk, and the algorithm continues with step k+1.

This strategy, an “LRA GSO”, is closely related to the
CHKZ reduction: a basis G = QR is CHKZ-reduced [5],
if i) R is size-reduced according to (6), and if ii) qk is a
shortest vector in Λ(G(k)), G(k) = [0, . . . ,0, qk, . . . , qK ]R,
for k = 1, . . . ,K. The bases obtained from Algorithm 2 turn
out to fulfill the second condition: as R is gradually obtained
in Algorithm 2, Q(k)=̂G(k) after step k − 1. In contrast, the
size-reduction property is not present, which is actually not of
relevance since the size reduction does not operate on Q (cf.
effective CLLL). Moreover—different from (7)—condition ii)
does not depend on it. We call this strategy of skipping the
ineffective size reduction effective (eff.) CHKZ reduction.

If we reduce G = H with Algorithm 2, it is quite evident
that T = Z contains the SQRD ordering. If G = H+H is
taken instead, we not only obtain the V-BLAST sorting, but
the columns of T = Z−H are greedily chosen to minimize the
columns of FH. Thus, the reduced basis has an optimal worst-
link performance in analogy to (5). As the shortest-vector
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Fig. 2. BER of (LRA) MMSE DFE for N = K = 8 and uncoded 16QAM
(Gray labeling) in dependency of Eb,TX/N0 in dB. Variation of the factoriza-
tion strategy. Top: comparison of SQRD and V-BLAST sorting (H vs. H+H).
Bottom: comparison of CHKZ reduction with other strategies, Λ(H+H).

transformations in Algorithm 2 are changes of basis, Z−H is
unimodular—the relaxation rank(Z−H) = K is not required.

The optimality of the (full) CHKZ reduction of G = H+H

has recently been stated for successive IF in [8]. Instead of
deriving the optimality with a discussion on the relations to
V-BLAST as above, the authors mathematically proved that

ZCHKZ = argmin
Z−H∈GK×K

rank(Z−H)=K

max
k=1,...,K

‖fH
k‖22 . (9)

The proof is lead in analogy to one of (5) in [11]. In Table I,
the properties of all mentioned strategies are summarized.

V. NUMERICAL RESULTS

We finally provide numerical results for the high-diversity case
N = K = 8. In Fig. 2, the average bit-error rate (BER) of
uncoded 16QAM transmission is shown over the signal-to-
noise ratio (SNR) as TX-side energy per bit over the noise
power density Eb,TX/N0 = σ2

x/(σ
2
n log2(16)). It has been

averaged over a large number of channel/noise realizations.
First, we consider Fig. 2 Top, where we compare the SQRD

with the V-BLAST sorting strategy (H vs. H+H). Considering
conventional DFE, both curves flatten out to diversity one,
but V-BLAST achieves a gain of several dB in the high-SNR
regime. In contrast, all curves of LRA DFE exhibit diversity
order eight. Thereby, the right choice of the lattice is more
important than the reduction criterion: whereas the dual lattice
enables a gain of 0.2–0.3 dB, the CLLLdeep reduction of H+H

with δ = 1 is already almost optimal ((eff.) CHKZ, H+H).
In Fig. 2 Bottom, we restrict to Λ(H+H) and compare

the (eff.) CHKZ reduction—which is 2.5–3 dB away from
maximum-likelihood detection via the sphere decoder [1]—
to other approaches with non-optimal sorting. In particular,

the CLLLdeep reduction with standard parameter δ = 0.75
performs about 0.5 dB worse than the one with δ = 1, but is
still significantly better than the (eff.) CLLL with δ = 0.75.
The unsorted QR factorization of the non-unimodular solution
to the CSMP—optimal for LRA linear equalization—performs
about the same like the CLLL with δ = 1. When cascading
both approaches with a V-BLAST (re)sorting, a gain in SNR is
achieved, but the optimal integer matrix is not always obtained.

VI. SUMMARY AND CONCLUSION

We have discussed how the philosophy of V-BLAST can be
transferred to LRA DFE (or successive IF). Via the dual-lattice
approach, the optimal CLLLdeep-reduced basis inherently
contains the optimal ordering for SIC. Besides, a weakened
CHKZ reduction—called effective CHKZ reduction—achieves
the optimal worst-link performance among all full-rank integer
transformations. Simulations have revealed that the optimal
CLLLdeep and (eff.) CHKZ reduction are almost equivalent.

Future research could deal with complexity comparisons or
the dualization to the MIMO broadcast channel, cf. [10], [2].
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