Informationstheorie SS 2009

Prof. Günther Palm • Institut für Neuroinformatik

10. Aufgabenblatt (Abgabe: 08.07.2009)

33. Aufgabe: (4 Punkte)

Es wird ein Spiel mit 5 (bzw. 6) gleichverteilten Ausgängen wiederholt gespielt. Das Spielergebnis soll binär übermittelt werden, dabei stehen maximal 2,5 bit pro Spielergebnis zur Verfügung. Für welches $n \in \mathbb{N}$ gibt es einen passenden n-Tupel Code?

34. Aufgabe: (6 Punkte)

Für einen homogenen Markov-Prozeß $(X_n)_{n\in\mathbb{N}}$ sei $p_0=(\frac{1}{2},\frac{1}{2})$ und die folgende Übergangsmatrix gegeben:

$$P = \begin{pmatrix} \frac{4}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{4}{5} \end{pmatrix}$$

- Berechnen Sie die Potenzen P^n für $n \in \{2, 4, 8\}$.
- Bestimmen Sie die Transinformation $T(X_1, X_n)$ für $n \in \{2, 4, 8\}$.
- Es sei $T(X_i, X_k | X_j) = I(X_i | X_j) + I(X_k | X_j) I(X_i, X_k | X_j)$ mit $i, j, k \in \mathbb{N}$. Berechnen Sie $T(X_1, X_3 | X_2)$.

35. Zusatzaufgabe: (6 Punkte)

Seien $(X_i)_{i\in\mathbb{N}}$ unabhängig identisch verteilte Zufallsvariablen auf einer endlichen Menge A mit $p[X_1=a]\neq 0$ für alle $a\in A$. Wie hoch ist die Wahrscheinlichkeit dafür, dass in einer Folge $(X_i)_{i\in\mathbb{N}}$ jedes Wort aus A^* unendlich oft vorkommmt? Dabei ist A^* die Menge aller endlichen Wörter über A, gegeben durch

$$A^* = \bigcup_{i \in \mathbb{N}} A^i$$

mit
$$A^i = \{a_1 a_2 \dots a_i : a_j \in A \text{ für } j \in \{1, \dots, i\}\}.$$

Hinweis: Bestimmen Sie die Wahrscheinlichkeit dafür, dass ein bestimmtes Wort $w \in A^*$ nur endlich oft vorkommt.