Theorem 1 (Shannon). Let $\mathcal{C}_{A B}$ be a discrete memoryless channel from A to B with capacity \mathbf{c}. Let \mathcal{U} be a stationary process on the alphabet C satisfying the a.e.p. asymptotic equipartition property and $I(\mathcal{U})=r<\mathbf{c}$. Then for any $\delta>0$ there is an $n \in \mathbb{N}$ and a mapping $m: C^{n} \rightarrow A^{n}$ such that the values of \mathcal{U} can be determined from the outputs of the combined channel $\mathcal{C}_{A B} \circ m$ with an error probability less than δ.

Proof. For the proof we first consider an input process \mathcal{X} on A, which is i.i.d. and has $\mathcal{T}(\mathcal{X}, \mathcal{Y})=\mathbf{c}\left(\right.$ and $\left.\mathcal{C}_{A B}: \quad \mathcal{X} \rightsquigarrow \mathcal{Y}\right)$.

From the a.e.p. we can infer that for any $\epsilon>0$ there is an $n \in \mathbb{N}$ such that

1. $p\left[\left|\frac{1}{n} \cdot \mathcal{N}\left(\widetilde{X}_{1} \cap \ldots \cap \widetilde{X}_{n}\right)-I(\mathcal{X})\right|>\epsilon\right]<\epsilon$
2. $p\left[\left|\frac{1}{n} \cdot \mathcal{N}\left(\widetilde{Y}_{1} \cap \ldots \cap \tilde{Y}_{n}\right)-I(\mathcal{Y})\right|>\epsilon\right]<\epsilon$
3. $p\left[\left|\frac{1}{n} \cdot \mathcal{N}\left(\widetilde{X}_{1} \cap \ldots \cap \widetilde{X}_{n} \cap \widetilde{Y}_{1} \cap \ldots \cap \widetilde{Y}_{n}\right)-I(\mathcal{X}, \mathcal{Y})\right|>\epsilon\right]<\epsilon$
4. $p\left[\left|\frac{1}{n} \cdot \mathcal{N}\left(\widetilde{U}_{1} \cap \ldots \cap \widetilde{U}_{n}\right)-I(\mathcal{U})\right|>\epsilon\right]<\epsilon$

From Prop. ?? we can also estimate the number of the corresponding highprobability sequences, i.e. $N=\#\left(A_{n, \epsilon}\right), \#\left(B_{n, \epsilon}\right), M=\#\left(C_{n, \epsilon}\right)$, and also the number P of high-probability pairs.

Now the idea is to consider only the high-probability elements in C^{n}, A^{n}, B^{n} and $A^{n} \times B^{n}$, and to map each high-probability element $c=\left(c_{1}, \ldots, c_{n}\right) \in C_{n, \epsilon}$ onto a different randomly chosen $a=\left(a_{1}, \ldots, a_{n}\right)$ that is the first element in a high-probability pair (a, b). This procedure will work, if there are more such $a^{\text {'s }}$ than there are high-probability c^{\prime} s, and if the probability of finding the first element a from the second element b in a high-probability pair (a, b) is sufficiently high. In this case we can guess first a and then c from the channel output b. In order to carry out the proof we now have to estimate the number of these a 's appearing in high-probability pairs (a, b).

1. Given a high-probability a, we estimate the number N_{a} of high-probability pairs (a,b) containing a as follows:
We use the abreviations $X=\left(X_{1}, \ldots, X_{n}\right), \quad Y=\left(Y_{1}, \ldots, Y_{n}\right)$ and $U=\left(U_{1}, \ldots, U_{n}\right)$, and consider only high-probability elements $\omega \in \Omega$. Then

$$
p(\widetilde{Y} \mid \widetilde{X})=\frac{p(\widetilde{X, Y})}{p(\widetilde{X})} \geq 2^{-n(I(\mathcal{X}, \mathcal{Y})-I(\mathcal{X})+2 \epsilon)}
$$

Thus

$$
1 \geq \sum_{b \in B^{n}} p(b \mid a) \geq N_{a} 2^{-n(I(\mathcal{X}, \mathcal{Y})-I(\mathcal{X})+2 \epsilon)} \quad \text { and } \quad N_{a} \leq 2^{n(I(\mathcal{X}, \mathcal{Y})-I(\mathcal{X})+2 \epsilon)} .
$$

Now we have to make sure that

$$
M \leq \frac{P}{2^{n(I(\mathcal{X}, \mathcal{Y})-I(\mathcal{X})+2 \epsilon)}} \leq \frac{P}{N_{a}}
$$

Because of the estimates for M and P from Prop. ?? this is true if

$$
2^{n(I(\mathcal{U})+\epsilon)} \leq(1-\epsilon) 2^{n(I(\mathcal{X})-3 \epsilon)} .
$$

Since $\mathcal{I}(\mathcal{X}) \geq \mathcal{T}(\mathcal{X}, \mathcal{Y})=c>r=\mathcal{I}(\mathcal{U})$ this is certainly true for sufficiently small ϵ.
2. Given a high-probability $b \in B^{n}$, we estimate the number N_{b} of highprobability pairs (a, b) in $A^{n} \times B^{n}$ containing b similarly to i):

$$
p(\widetilde{X} \mid \widetilde{Y})=\frac{p(\widetilde{X, Y})}{p(\widetilde{Y})} \geq 2^{-n(I(\mathcal{X}, \mathcal{Y})-I(\mathcal{Y})+2 \epsilon)}
$$

Thus
$1 \geq \sum_{a \in A^{n}} p(a \mid b) \geq N_{b} 2^{-n(\mathcal{I}(\mathcal{X}, \mathcal{Y})-\mathcal{I}(\mathcal{X})+2 \epsilon)} \quad$ and $\quad N_{b} \leq 2^{n(\mathcal{I}(\mathcal{X}, \mathcal{Y})-\mathcal{I}(\mathcal{X})+2 \epsilon)}$.
This number we use to estimate the probability that there is at most one $m(c)$ occurring as first component among the N_{b} pairs, for each of the high-probability b 's at the channel output. More exactly, for a fixed high probability c we take $a=m(c)$ as channel input and obtain b as channel output. Now we ask for the probability p_{f} that there is another c^{\prime} such that $\left(m\left(c^{\prime}\right), b\right)$ is also a high-probability pair. For fixed b let n_{b} be the number of codewords $m\left(c^{\prime}\right)$ such that $\left(m\left(c^{\prime}\right), b\right)$ is a high-probability pair. Now we can estimate

$$
\begin{aligned}
p_{f} \leq p\left[n_{b} \geq 1\right] & <E\left(n_{b}\right) \\
& =M \cdot \frac{N_{b}}{N} \\
& \leq 2^{n(I(\mathcal{U})+I(\mathcal{X}, \mathcal{Y})-I(\mathcal{Y})-I(\mathcal{X})+4 \epsilon)} \\
& =2^{n(4 \epsilon+r-c)}
\end{aligned}
$$

Since $\mathcal{I}(\mathcal{U})+\mathcal{I}(\mathcal{X}, \mathcal{Y})-\mathcal{I}(\mathcal{Y})-\mathcal{I}(\mathcal{X})=r-c<0$, this probability is sufficiently small for sufficiently large n and sufficiently small ϵ.
This means that a high-probability c will be coded into a channel input a in such a way that with high probability a can be determined from the channel output b, and from a one can determine c. What is the error probability in this procedure?
An error may occur when c is not in the high-probability group, or (a, b) is not in the high-probability group, or b is not in the high-probability group, or if there is more than one $m(c)$ in N_{b}. Otherwise, we know which a we have chosen to correspond to the output b and we know which c has been mapped by m onto a.
Taking our various estimates together, the probability of error is at most $3 \epsilon+2^{n(4 \epsilon+r-c)}$ and it remains to choose ϵ sufficiently small and n sufficiently large to finish the proof of the theorem.

