
Theorem 1 (Shannon). Let CAB be a discrete memoryless channel from A to
B with capacity c. Let U be a stationary process on the alphabet C satisfying
the a.e.p. asymptotic equipartition property and I(U) = r < c. Then for any
δ > 0 there is an n ∈ N and a mapping m : Cn → An such that the values of U
can be determined from the outputs of the combined channel CAB ◦m with an
error probability less than δ.

Proof. For the proof we first consider an input process X on A, which is i.i.d.
and has T (X ,Y) = c (and CAB : X  Y).

From the a.e.p. we can infer that for any ε > 0 there is an n ∈ N such that

1. p
[∣∣∣ 1n · N (X̃1 ∩ . . . ∩ X̃n

)
− I(X )

∣∣∣ > ε
]
< ε

2. p
[∣∣∣ 1n · N (Ỹ1 ∩ . . . ∩ Ỹn

)
−I(Y)

∣∣∣ > ε
]
< ε

3. p
[∣∣∣ 1n · N (X̃1 ∩ . . . ∩ X̃n ∩ Ỹ1 ∩ . . . ∩ Ỹn

)
− I(X ,Y)

∣∣∣ > ε
]
< ε

4. p
[∣∣∣ 1n · N (Ũ1 ∩ . . . ∩ Ũn

)
− I(U)

∣∣∣ > ε
]
< ε

From Prop. ?? we can also estimate the number of the corresponding high–
probability sequences, i.e. N = #(An,ε), #(Bn,ε), M = #(Cn,ε), and also the
number P of high–probability pairs.

Now the idea is to consider only the high–probability elements in Cn, An, Bn

and An×Bn, and to map each high–probability element c = (c1, . . . , cn) ∈ Cn,ε
onto a different randomly chosen a = (a1, . . . , an) that is the first element in a
high–probability pair (a, b). This procedure will work, if there are more such
a‘s than there are high–probability c‘s, and if the probability of finding the
first element a from the second element b in a high–probability pair (a, b) is
sufficiently high. In this case we can guess first a and then c from the channel
output b. In order to carry out the proof we now have to estimate the number
of these a‘s appearing in high–probability pairs (a, b).

1. Given a high–probability a, we estimate the number Na of high-probability
pairs (a,b) containing a as follows:
We use the abreviations X = (X1, . . . , Xn), Y = (Y1, . . . , Yn) and
U = (U1, . . . , Un), and consider only high–probability elements ω ∈ Ω.
Then

p(Ỹ |X̃) =
p(X̃, Y )

p(X̃)
≥ 2−n(I(X ,Y)−I(X )+2ε) .

Thus

1 ≥
∑
b∈Bn

p(b|a) ≥ Na2−n(I(X ,Y)−I(X )+2ε) and Na ≤ 2n(I(X ,Y)−I(X )+2ε) .

Now we have to make sure that

M ≤ P

2n(I(X ,Y)−I(X )+2ε)
≤ P

Na
.
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Because of the estimates for M and P from Prop. ?? this is true if

2n(I(U)+ε) ≤ (1− ε)2n(I(X )−3ε) .

Since I(X ) ≥ T (X ,Y) = c > r = I(U) this is certainly true for sufficiently
small ε.

2. Given a high-probability b ∈ Bn, we estimate the number Nb of high–
probability pairs (a, b) in An ×Bn containing b similarly to i):

p(X̃|Ỹ ) =
p(X̃, Y )

p(Ỹ )
≥ 2−n(I(X ,Y)−I(Y)+2ε) .

Thus

1 ≥
∑
a∈An

p(a|b) ≥ Nb2−n(I(X ,Y)−I(X )+2ε) and Nb ≤ 2n(I(X ,Y)−I(X )+2ε) .

This number we use to estimate the probability that there is at most one
m(c) occurring as first component among the Nb pairs, for each of the
high–probability b’s at the channel output. More exactly, for a fixed high
probability c we take a = m(c) as channel input and obtain b as channel
output. Now we ask for the probability pf that there is another c′ such
that (m(c′), b) is also a high–probability pair. For fixed b let nb be the
number of codewords m(c′) such that (m(c′), b) is a high-probability pair.
Now we can estimate

pf ≤ p[nb ≥ 1] < E(nb)

= M · Nb
N

≤ 2n(I(U)+I(X ,Y)−I(Y)−I(X )+4ε)

= 2n(4ε+r−c) .

Since I(U) + I(X ,Y) − I(Y) − I(X ) = r − c < 0, this probability is
sufficiently small for sufficiently large n and sufficiently small ε.

This means that a high-probability c will be coded into a channel input
a in such a way that with high probability a can be determined from the
channel output b, and from a one can determine c. What is the error
probability in this procedure?
An error may occur when c is not in the high-probability group, or (a, b)
is not in the high-probability group, or b is not in the high-probability
group, or if there is more than one m(c) in Nb. Otherwise, we know which
a we have chosen to correspond to the output b and we know which c has
been mapped by m onto a.
Taking our various estimates together, the probability of error is at most
3ε + 2n(4ε+r−c) and it remains to choose ε sufficiently small and n suffi-
ciently large to finish the proof of the theorem.
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