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ABSTRACT
This paper outlines our contribution to the 2014 edition of
the AVEC competition. It comprises classification results
and considerations for both the continuous affect recogni-
tion sub-challenge and also the depression recognition sub-
challenge. Rather than relying on statistical features that
are normally extracted from the raw audio-visual data we
propose an approach based on abstract meta information
about individual subjects and also prototypical task and la-
bel dependent templates to infer the respective emotional
states. The results of the approach that were submitted to
both parts of the challenge significantly outperformed the
baseline approaches. Further, we elaborate on several is-
sues about the labeling of affective corpora and the choice
of appropriate performance measures.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Applications; H.1.2 [User/
Machine Systems]: [Human factors, Software psychology]

General Terms
AVEC 2014

Keywords
AVEC 2014; affect recognition; depression recognition; meta
knowledge

1. INTRODUCTION
Human-computer interfaces that go beyond the normal

question-answer mechanism have received increasing atten-
tion in computer science. An interesting new channel for
these interfaces is the automatic recognition of human dispo-
sitions [35, 2, 48]. The AVEC challenge has been established
as a source of benchmarking data collections and also for the
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evaluation of classifier and machine learning approaches [51,
58]. This enables the development of various novel classifi-
cation and regression approaches that are able to succeed in
this challenging application [7, 11, 42, 19, 8, 20, 23, 53].

This paper presents our contribution to the fourth edition
of the AVEC challenge. We argue that the consideration
of background knowledge, meta-data about the subject and
distinct knowledge about the respective application are the
key factors for the recognition of target labels for the pro-
vided data set, where the affective expressiveness of the test
subjects is low and the variance between the subjects is high.
This entails the circumstances of the recording of the data
set as well as the procedure of its annotation with appropri-
ate labels.

The paper is structured as follows: in section 2, we will
discuss the applications of affective human-computer inter-
action and the construction of respective corpora. This leads
to the automatic classification and regression approaches,
that are described and also numerically evaluated in section
3. Finally, section 4 offers some conclusions.

2. GENERAL CONSIDERATIONS
The automatic recognition of human affective states is

a very challenging task [19]. This holds particularly true,
when not only acted emotional patterns are considered, but
also realistic expressions as they might as well occur in ev-
eryday live or during an interaction with a technical system
[17].

The different branches of research in affective computing
and related fields usually comprise three main steps: the
design of (multi-modal) affective corpora, the creation of
reliable ground truth labels (for example by self-rating or
remote annotation), and the analysis of the recorded data.
This analysis step can be conducted in various ways. The
spectrum ranges from statistical evaluation of (self-assessed)
categorical or meta data (e.g., from questionnaires) to highly
sophisticated machine learning algorithms leveraging multi-
modal sensory input (e.g., audio, video, physiology) to create
robust estimators using complex architectures comprising
feature calculation, selectively trained classifiers and infor-
mation fusion schemes [40, 48].

2.1 Affective Computing
Affective states and dispositions can be inferred from a

broad spectrum of sensory input. One of the most com-
monly used signal domains is the audio channel and hence
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human speech including its content and prosodic character-
istics [47, 4]. For the recognition of emotions from speech,
various approaches have been introduced. A main topic of
research is the computation of meaningful features. Differ-
ent feature sets have since been introduced such as linear
predictive coding (LPC) [33], PLP [13] and RASTA-PLP
[14]. More recently, it has been found that for the task of
emotion recognition features such as MFCC [36, 32, 31] and
LFPC [34, 24] seem to outperform other choices.

Additionally to the analysis of audio signals, many differ-
ent approaches have been followed on emotion recognition
from visual input for example in the form of facial expres-
sions, movement cues [57] and body gestures [5]. Further,
significant efforts have been made to develop feasible fea-
ture descriptors, localization and robust tracking of facial
features and classification and information fusion techniques
based on one or more feature sets [22, 50].

Another interesting channel for the detection of affective
states is bio-physiology including heart rate, skin conductiv-
ity, electromyography (EMG), electroencephalography (EEG)
and breathing rate. The reason for this is that the activity of
the autonomous nervous system is directly correlated with
emotional response, especially with respect to the arousal di-
mension in the VAD space [39], which can be inferred more
or less directly from body measurements [25, 44, 21, 45].

Reliable affect recognition in each of those modalities is
however still an ongoing topic of research and far from be-
ing solved [60, 25, 61]. As with each sensor input’s char-
acteristics there are also drawbacks that impede successful
predictions and have to be kept in mind when dealing with
a particular input modality. Audio based recognition for
example is unavailing if there is no detectable speech [31].
Video based recognition heavily depends on the successful
detection of the face. Intense movements and rotations com-
plicate this step and may lead to false detections and there-
fore unsuitable inputs for predictions [42]. Bio-physiological
measurements are also prone to movement artifacts (because
of the physically attached sensors) and have the additional
drawback that often a long time window is needed (>30 sec-
onds) to make reliable estimations [40]. One possible way
to circumvent those problems is to make predictions based
on multi-modal input signals.

Multi-modal recognition of affective states most commonly
deals with audio visual data, as it is also the case for the
AVEC 2014 competition. The trend however goes towards
an additional incorporation of bio-physiology, either solely
combined with video, as found for example in the DEAP
corpus [27] or combined with both audio and video, as e.g.
found in the EmoRec II [59], Recola [37] or HCI Tagging
[55] corpora.

In real world applications, systems based on multiple modal-
ities generally outperform systems based on a single modal-
ity only [40, 19]. The question that remains to be answered is
how to combine predictions of different modalities so that an
actual improvement is achieved [48, 41, 10]. This question
is not easily answerable and there are research fields that
focus solely on the combination of information from multi-
ple sources [28, 26]. Various ways exist to combine different
input modalities. One possibility is to directly concatenate
features of different modalities before training a classifier
(this process is known as early fusion).

Analogously, fusion can be carried out after individual
classification results are available (late fusion) for example

Figure 1: Exemplary recording situation for the
AVEC data set. Audio-visual data is collected using
a retail webcam and a headset in an unconstrained
inquiry-response cycle.

static aggregation rules (e.g., sum or product rule), or by
training of an additional classifier on top [28, 52]. More
sophisticated fusion methods exist that exploit additional
characteristics such as time continuity, classifier confidence,
and sampling rates. Algorithms that fall in this category are
the Markov Fusion Network (MFN) [7, 9], which allows to
assign confidence measures for each classifier decision to be
combined using the so called data potential or the Kalman
filter [6], which infers the decision for a new sample based
on a model estimated from already seen data and a mea-
surement step which also contributes to the model update.

For the fusion of multi-modal signals in time continuous
space, the use of recurrent neural networks has also become
appealing. Their dynamic nature allows the exploitation of
nonlinear time dependencies between feature vectors of dif-
ferent modalities in a sequence. Popular choices include re-
current neural networks that are not affected by the vanish-
ing gradient problem [15] which can be trained over longer
time periods such as Long Short-Term Memory Networks
(LSTM) [16] and Echo State Networks (ESN) [18]. Both
approaches have successfully been employed for the fusion
of audio visual signals. In [61] an LSTM network has been
used in the context of affect recognition while in [49] ESN
have been employed for the audio-visual detection of laugh-
ter in conversations.

In social signals, emotional events often occur only rarely
or without clear attribution to one of the given classes.
Hence there is usually a large amount of recorded mate-
rial that does not directly influence the training of classi-
fiers. It has been shown that despite the lack of reliable
label information, additional information in this form can
be highly profitable for classification algorithms that lever-
age techniques of semi-supervised learning (SSL) [54] for
their training. In [43, 46] for example, the authors applied
an unsupervised preprocessing step using unlabeled data to
transform the labeled samples into another representation
which improves the classification rates. Other examples for
SSL include semi-supervised annotation of corpora using Co-
training with Tri-Class SVMs [12] or combinations of active
learning and self-training [4].



2.2 Annotation
A further non-trivial issue for the assembly of affective

corpora is the annotation of the recorded materials with la-
bels that reflect a user’s state adequately. There are mainly
three different approaches that are followed to assign labels
in this application. They all try to circumvent the fact that
the true state is commonly unknown and also not exactly
assessable.

The most straightforward approach to determine the af-
fective state is to query it from the respective subject. For
this purpose different questionnaires and pictographic tech-
niques have been developed to infer emotional states. It is
however not really possible to reflect short or medium term
changes of affective states using this technique as it is desir-
able for human-computer interaction scenarios.

One rather popular method is to design different external
stimuli that are presented to the test subject in order to
elicit a desired affective state [60, 38]. This comprises often
different difficulties of a given task or making the interaction
with the technical system more difficult, e.g., by impairing
the reactions to the given commands. Hence, the different
target states are one after the other processed in a carefully
designed experimental protocol.

An alternative approach is to manually label the material
after the recording step [58]. As mentioned before, it is very
difficult to infer an emotional state of a subject from the
outside when the affective display is only subtle. Hence a
large number of raters is required in order to average out
the errors that the individual raters are assumed to com-
mit. A further issue is that there is not really a convenient
procedure for the annotation process. Using a continuous
annotation method where a label value is manipulated in
real time might lead to a comparably fast annotation pro-
cess but might suffer from the individual attentiveness and
the reaction times of the respective rater. The annotation of
categorical labels is even more complex and commonly re-
quires a large amount of navigating in the assigned material
[30, 48].

2.3 Corpora
Notable multi-modal data collections that have been con-

structed in the application of human-computer interaction
are outlined in the following. One general approach is to in-
struct a test subject to solve a specific task using a computer.
An Example for this kind of data collection is the EmoRec
II corpus, where a subject is playing multiple rounds of a
card game using a voice controlled dialog system [59]. Dif-
ferent user states are elicited by giving positive or negative
feedback to the subject by using different difficulty levels
for the game. The corpus comprises a variety of different
modalities with audio and video data but also physiologi-
cal recordings. Another example for a task driven approach
is the last minute corpus where a subject [38] is coopera-
tively interacting with a dialog system. Different user states
are hence induced by a malfunctioning user interface or the
constraints, that are imposed by the task.

A quite contrary approach is to allow an interaction with
a computer that is as unconstrained as possible. One ex-
ample for such a data set is the sensitive artificial listener
data set, that has been used for the first two editions of
the AVEC competition [51]. The test subject is situated in
front of a computer screen displaying an artificial avatar and
a more or less natural conversation about general issues is

conducted. Different emotional colored avatars were used to
elicit various emotions of the human interlocutor, for exam-
ple anger or happiness. A second example is the PIT corpus
where two subjects are conducting a dialog to agree on a
specific restaurant to go to [56]. A computer assistant with
an integrated dialog system is added to the conversation to
assist the main user in this process.

The approach for the present and the preceding edition of
the AVEC challenge comprises in a sense both approaches
as there are different tasks to conduct by the test subjects
(for example counting or reading out loudly) but also parts
of comparably free speech that is almost like a therapeutic
session.

2.4 Conclusions
With this said and acknowledging the scientific progress

in the affective computing community, we still argue that
the emotional status of a subject is normally hidden in a
manifold of different dispositions of the subject and also the
circumstances of the distinct recording. This could be due to
different display rules or the individual biases of the raters of
a sequence. For example the Beck Depression Inventory-II
queries many different personal circumstances to determine
the depression of a patient that are probably per se not
detectable by only watching a video with the subject talking.

Hence, in order to automatically detect the severity of de-
pression of a subject is arguably more feasible to use high-
level information about a subject rather than statistical low-
level features. Another quite obvious issue that has been
already touched earlier is that the procedure of the record-
ing and the degrees of freedom of its annotation strongly
determine the a-priori probability of a label and also of the
shape of a continuous annotation. In the following these
circumstances are used for the development of classification
techniques for the continuous affect sub-challenge and the
depression sub-challenge.

3. APPROACHES & RESULTS
The classification approaches and the respective results

of the numerical evaluations for the two sub-challenges are
presented in this section.

3.1 Depression Recognition
For the automatic estimation of the depressive state of

the subject, we extracted a variety of high-level features and
also a number of coarse features from the raw signals that
are provided with the challenge. As classification approach,
a Random Forest [1] with 1000 regression trees was used. A
Random Forest was chosen because of its robustness against
over-fitting and insensitivity against parameter choices.

Concretely, we evaluated the following features for the
recognition of the depressive state in a 10-times repeated
leave-one-subject-out cross validation (resulting MAE/RMSE
values for each feature in parentheses):
1. The id of the subject as a real number as it is provided

with the data (10.1130/ 12.6560).
2. The length of the 2.1. Freeform video (9.3160/ 11.1781)

2.2. Northwind video (9.5330/ 11.4917) in frames.
3. The movements of the subject computed by the average

pixel difference of two successive images in the
3.1. Freeform (9.7410/ 12.3516) and the
3.2. Northwind (10.3030/ 12.8922) videos.



4. The variance of the average pixel differences of two im-
ages in the 4.1. Freeform (11.1600/ 13.6456) and the
4.2. Northwind (11.448/ 13.6582) videos.

5. The quantiles of the average pixel differences of two im-
ages in the 5.1. Freeform (8.5780/ 10.6770) and the 5.2.
Northwind (8.2570/ 10.7342) videos.

6. The gender of the subject (10.2410/ 12.2066).
7. Abnormality of the weight of the subject (10.3750/

12.2651).
8. The estimated age (11.1900/ 13.7971).
9. Estimated information about the socio-economic status

of the subject (10.3170/ 12.4397).
10. Ambiance of the recording (10.0910/ 12.0471).
11. Estimated personality trait “facial attractiveness” [29]

(10.3140/ 12.3851).
12. Estimated personality trait “likability” [29] (8.9470/

10.9406).
13. Semantic content of the Freeform video (9.8320/

11.2804).
14. The relative portion of frames for which the Viola-Jones

cascade finds a face in the 14.1. Freefrom (10.2920/
12.5498) and in the 14.2. Northwind (11.0220/ 13.2478)
videos.

15. The relative portion of voiced speech frames [3] in the
15.1. Freeform (10.0410/ 11.9037) and in the 15.2. North-
wind (9.3460/ 12.2439) videos.

16. Compression ratio of the 16.1. Freeform (9.7150/
11.9632) and of the 16.2. Northwind (10.6990/ 12.8464)
videos with the zip algorithm.

17. Projection on an appearance based high dimensional
pixel subspace, whose span constitutes the variations along
a manifold that is parametrized by what could be consid-
ered a distinct human face computed on the 17.1. Free-
form (8.6060/ 10.1949) and the 17.2. Northwind (9.9800/
11.9970) videos.

18. A posteriori probability of the audio recording of the
18.1. Freeform (10.9530/ 12.8445) and of the 18.2. North-
wind (11.3690/ 13.4097) video tested against a hidden
Markov model (8 states, 1 Gaussian) that was constructed
using publicly available speech.

19. Basic text mining features (i.e., letter appearance statis-
tics) generated via the automatic speech recognition soft-
ware “Dragon NaturallySpeaking” on the 19.1. Freeform
(10.5880/ 12.6451) and on the 19.2. Northwind (9.7930/
11.5020) videos.

20. The global audio functionals provided with the chal-
lenge data for the 20.1. Northwind (9.9540/ 11.8554)
and for the 20.2. Freeform (8.4480/ 10.0821) videos.

21. The raw pixel data of the first image of the Freeform
videos (8.9660/ 10.6994).

An illustration of the connection of the true and the pre-
dicted depression scores using features 1–29 in leave-one-
speaker-out experiments is shown in Figure 2. It can be
seen that there is indeed a roughly linear correlation of the
prediction to the label.

Based on this, we compiled 5 different feature bags that
were submitted for evaluation on the test partition, which
are outlined in Table 1. The feature bags were assembled
based on results of a cross validation on the validation set
and to investigate the discrimination ability of specific fea-
ture groups. The bags were:

1. Features 1, 2.1, 3.1, 14.1, 15.1 and 17.1, which showed
the highest scoring results on the validation set.
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Figure 2: Scatter plot of the predicted value of the
depression scores using features 1 – 29 against the
true value.

2. Meta data only (1 − 19).
3. Only statistical moments of low-level audio descriptors

based on the whole recording (20).
4. Only annotated properties such as gender, approxi-

mate age, socio-economic status, background, person-
ality traits and approximate weight class (6 − 13).

5. 250 best features computed using permuted out-of-bag
samples from the Random Forest algorithm.

3.2 Continuous Affective Labels
The estimation of the continuous affective labels has been

carried out in a way that follows a different methodology
than usual learning tasks. Instead of independently clas-
sifying on a per-frame/per-segment basis, task dependent
pattern templates were created for each of the three dimen-
sions. The idea is based on the observation, that correct
frame/segment decisions are by no means uncorrelated but
rather highly dependent on the preceding trajectory and on
the fact that the respective performance measure rewards
a coarse agreement between the predicted label trajectories
and the ground truth more than many individual matching
classification results but an overall completely different tra-
jectory (for an illustration of this issue, the reader is referred
to Figure 4).

Considering this observation, it is apparent that a change
of objectives from estimating closely matching frame-wise
values to the robust estimation of the coarse trajectory of
the label track is necessary.

The analysis of the label tracks led to a set of distinct
prototypical label classes (called proto-labels in the follow-
ing). We evaluated different approaches to construct feasi-
ble proto-labels and found that the following two methods
led to models with the best performances on the validation
set. The first method is based on support vector regres-
sion (SVR) on time-continuous label subsequences. Model
parameters were learned to map the time axis to the label
values such that the prevailing trajectory is approximated.
The use of a suitable kernel function facilitates the regres-
sion algorithm to approximate arbitrary shapes of trajecto-
ries and in this case leading to very smooth results (compare
Figure 3). Adequate use of regularization suppresses oscil-
lations of higher frequency and prevents the deterioration of
the learned trajectory. Concretely, an RBF kernel was used



(1,2.1,3.1,14.1,15.1,17.1) (1–19) (20) (6–13) 250 best oob features video baseline
RMSE: 9.5802 9.1880 9.3488 9.1891 9.7098 10.859
MAE: 7.1400 7.1000 7.0800 7.2400 7.2800 8.857

Table 1: Results for the depression sub-challenge on the test partition.

and the respective hyper-parameter was optimized for each
task and category using cross-validation on the training set.

The second method is based on an eigenvalue decomposi-
tion (EVD) of the trajectory subsequence covariance matrix.
The eigenvectors denote different shape variations learned
from the label trajectories. The main difference to the SVR
method is that the EVD yields an orthogonal decomposition
of the trajectory space which can be used to generate proto-
labels by superposing the eigenvectors with adequate coeffi-
cients. Per task and affective dimension, a cross-validation
on the training set is used to determine suitable coefficients
for the eigenvectors to maximize correlation between the se-
lected labels and the respective proto-label. The result of
the template construction is a fixed curve that is re-sampled
to match the length of the respective test video. Examples
for concrete templates that are created using SVR and EVD
are shown in Figure 3 for the different categories and tasks.

In order to conduct a personalization of the affective recog-
nition templates, a subject clustering approach has been im-
plemented. We used the subset of the features that were de-
veloped for the classification of the depressive state compris-
ing features 1 – 29. Based on this, a hierarchical clustering
using Ward’s distance measure was conducted to divide the
available videos into three groups. For each group, both, an
EVD and an SVR based template are constructed and for
each test sample the more accurate template is chosen based
on some hold out data.

In Table 2, the results for the continuous affect recognition
sub-challenge are summarized. The 5 submissions are based
on the following experimental settings: (1) EVD and SVR
with subject clustering. (2) EVD without subject cluster-
ing. (3) SVR without subject clustering. (4) SVR with
subject clustering. (5) EVD with subject clustering.

4. BOTTOM LINE
This paper outlines our contribution to the AVEC 2014

challenge for the recognition of 3-dimensional affect labels
and the depression score for subjects that conduct different
tasks in front of a camera. We propose to use background
and meta knowledge about the subjects and the respective
task that they are going to execute to estimate the annota-
tions.

For the depression sub-challenge a number of additional
features were used to gather extra high-level features that
could easily be queried from the subject using standard ques-
tionnaires (e.g., age, weight, socio-economic status). An-
other type of feature we used is coarse meta-information that
is not directly linked to the depression of a subject at first
glance (e.g., the performance of the Viola-Jones cascade on
the material or the length of the video material per task).
Using this approach we clearly outperformed the baseline
results using standard regression techniques.

For the affect recognition sub-challenge we followed a sim-
ilar approach that reflects the continuous nature in a frame-
wise sense of the underlying problem. Hence we developed
task and dimension dependent proto-labels that model the

course of the video snippets. Two main approaches were
proposed for the construction of the labels: one using Eigen-
value decomposition of the training labels and one using
SVR for the timely progress of the affective labels, that ren-
dered smoother curves. Additionally a clustering procedure
on the information gathered for the depression sub-challenge
is conducted in order to partition the subjects into groups
based on similarity. For each of these groups, individual
proto-labels were constructed and test samples were evalu-
ated using the proto-label that performs better for the re-
spective cluster. Using these approaches the baseline results
were clearly outperformed by a factor of almost three.

Please keep in mind that these results were achieved with-
out investigating any kind of low-level features from the au-
dio or video material. Hence the reported errors can be
considered as some sort of a-priori curve analogous to us-
ing only the a-priori probability in traditional classification
approaches. This implies that any approach that uses ac-
tual low level/statistical data for the classification has to
render higher correlations than the ones outlined in this pa-
per to convincingly show that actual information about the
application has been obtained. One reason for this is the
choice of the correlation coefficients as performance mea-
sure, which is, while well established for the evaluation of
statistical regression methods, maybe not the best choice in
this application.
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(a) Freeform Arousal
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(b) Freeform Dominance
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(c) Freeform Valence
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(d) Northwind Arousal
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Figure 3: Task dependent label templates created with ε-SVR (blue) and EVD (red) for the different affective
labels.

0 1,000 2,000 3,000

−0.15

0

time

p
re

d
ic

te
d

va
lu

e

Correlation = 0.28

(a) Strongly overlapping trajectories

0 1,000 2,000 3,000

−0.15

0

time (frames)

p
re

d
ic

te
d

va
lu

e

Correlation = 0.91

(b) Coarsely matching trajectories

Figure 4: The left sub-figure illustrates a situation in which the output of a classifier (blue) exactly matches a
given label trajectory except for a transient condition in the beginning. Computing the correlation between
the two curves yields a value of 0.28 despite the curves being almost identical. The right sub-figure illustrates
a contrary example in which the same label is very coarsely estimated by a classifier (again blue). The
computed correlation between the curves results in a rather high value of 0.91 although the ground truth
curve is touched only occasionally. The coarsely matching trajectory however is enough to yield a high
correlation with the label.

Submission 1 Submission 2 Submission 3 Submission 4 Submission 5 Baseline
Arousal 0.6330 0.6013 0.5619 0.6266 0.6229 0.2062
Valence 0.5812 0.5412 0.3048 0.5869 0.4609 0.1879

Dominance 0.5697 0.5637 0.3931 0.5389 0.5675 0.1959
Mean 0.5946 0.5687 0.4199 0.5841 0.5504 0.1966

Mean RMS 0.1009 0.9906 0.0787 0.0842 0.1192 n/a

Table 2: Results for the continuous affective sub-challenge on the test partition.
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