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5. Summary 
 
An associative memory based simplified cortex model that we have developed shall be im-
proved and used as a "brain" of an autonomous agent that 
i) generates a representation of the agent's situation by combining information from different  
 sensory modalities and can thereby 
ii) predict and evaluate future situations, depending on the agent's actions and 
iii) generate actions and action sequences, i.e. appropriate behavior of the agent. 
 



6. Research plan 
 
We want to develop an artificial "brain" for behavioral control of an autonomous agent. The 
idea is to combine representations of several sensory modalities as well as motor actions 
and short action sequences in different "areas" or "modules" to generate a representation of 
the present situation, including the agent's body and its surrounding, that can be used to pre-
dict future development and the consequences of actions. These representations and their 
combination are developed in a neurobiologically plausible fashion based on a "simplified 
cortex model" (1), where the areas or modules consist of populations of spiking neurons and 
sparse activation patterns are used for representation and fixed by auto-associative synaptic 
connections (2); the areas interact by cortico-cortical connections (3) between these areas, 
which are formed by hetero-association (4). This framework takes up old ideas about neural 
representation in terms of cell assemblies (5) and more recent ideas about the more exact 
temporal relationships among spikes (action potentials) of the individual neurons (synchro-
nicity, (6), temporal order, (7), etc.). There is a solid theoretical background concerning the 
representational and memory efficiency of such binary associative memories with sparse 
distributed representations (8), and some of these ideas have already been used in practical 
applications (9).  
 
This particular approach is not only interesting as a model of the cerebral cortex, but also has 
a potential impact on a number of issues that are currently discussed in the technical orien-
ted literature on autonomous or cognitive systems or robots in artificial intelligence or artificial 
neural networks. Some of these issues are listed below. 
 
1. Coordination and planning of actions and action sequences. Here the extensive use of 

associative memories supports memory intensive methods (e.g.reinforcement learning, 
neural networks, in particular sparse associative memories) vs. computation intensive 
methods (e.g. inverse cinematics or planning), thereby fostering properties like learna-
bility, flexibility and adaptivity. Perhaps the best-known learning paradigm in this context is 
reinforcement-learning or adaptive critic design (10). We have used quite similar ideas in 
the past based on sparse associative memories (11) and we have also worked on the 
combination of reinforcement learning and neural networks (12). In the more complex 
system to be built here we anticipate that a trade-off between different objectives (e.g. for 
food, drink, social contacts, but also new experiences and predictability or safety) be-
comes relevant. So our models may also contribute to the new developing field of multi-
objective reinforcement learning (13). 

 
2. Information and sensor fusion. In our architecture we use neural networks and neural 

associative memories for information fusion from different modalities (14) and recurrent 
connections for state transition modeling (15). This supports the representation and 
processing of uncertain information (16) and, in particular, the consideration of situation-
dependent temporal variation in the certainty or reliability of different sensors or informa-
tion sources. The combination of information fusion and sequence processing is a topic of 
active research in pattern recognition (17). 

 
3. Learning in recurrent neural networks. Early work on this topic (18) created the impression 

that learning in feedforward architectures is practically much more useful than learning in 
feedback architectures. Some first spectacular results of echo-state networks or reservoir 
computing (19) showed that it can be useful (again for time-series processing) to combine 
a fixed recurrent "reservoir" network with a perceptron-like learning in the output neurons. 
More recently, the optimization or at least refinement of the reservoir by some kind of 
neural or synaptic plasticity becomes a topic of interest again (20). We have started to 
work on this topic (21) and want to use it for learning the appropriate sparse represen-
tations in higher (non-sensory, non-motor) cortical areas. 

 



4. Further development of a theory of cell assemblies. Donald Hebb initiated the idea of a 
cortical representation of objects in terms of cell assemblies, i.e. groups of co-activated 
neurons that are strongly interconnected by excitatory synapses that had been streng-
thened by Hebbian synaptic plasticity (i.e. by coincident activation of the two neurons that 
are connected by the synapses). This classical idea (22) is at the basis of most modern 
theories of global brain function (e.g. 23). We have elaborated on this idea in terms of the 
theory of associative memory (24), in particular of auto-association in local recurrent 
networks (modules) and of bidirectional hetero-association (25) that may occur in cortico-
cortical connections between areas or modules. This has led to some predictions 
concerning the size of assemblies (26) and to a first global cortex model (27). In this 
enterprise we also created a structured C++-framework for building up a useful inter-
modular connectivity structure for very large networks of spiking neurons and running a 
simulation of this network (28). 

 
5. The potential functionality of emotions and empathy in autonomous agents. This can be 

seen as a problem of human computer interaction, however, more fundamentally, this 
topic asks for the biological function of emotions and empathy and its behavioral realiza-
tion in social animals (mammals) and humans. Clearly these properties can be useful for 
the species, but are they also useful for the individual? I have mentioned these issues and 
some related ideas in a recent paper (29). Biologically, emotions may be understood as 
specific sets of tuning parameters for the animal's sensory and motor systems for certain 
rare situations that are important for survival (fleeing, chasing, fighting, reproduction, etc.). 
A more psychological version of this idea is advocated by Dörner and his school (30). 
Socially, this tuning is accompanied by noticeable physiological signs like heavier breath-
ing, higher blood pressure, enhanced locomotory activity, quick shifts of gaze, and the 
like. These signs can be interpreted as social signals and may even be independently 
produced in social interactions, perhaps leading to specific gestures and facial ex-
pressions in humans. Based on this kind of understanding of emotions, one can also 
develop a functional theory of empathy. In this context the concept of mirror-neurons (31) 
has to be mentioned, it is related to the idea that we may use our own emotional system 
to simulate and thereby predict the development of emotions in others (32). Of course 
there are also a lot of psychological accounts of emotions, mostly on a more pheno-
menological level, for example describing emotions in terms of basic emotion categories 
(33) or emotionally relevant dimensions like valence and arousal (34), or modeling 
emotions on a cognitive level (35). Mechanisms for emotions and empathy can be imple-
mented by modeling the corresponding cortical areas (and some subcortical nuclei) 
following the abundant neurophysiological results and some recent modeling approaches 
(36). It will also be useful to integrate such areas into our cortex model in order to develop 
a biologically founded model for the (multiple) evaluation signals that are needed for rein-
forcement learning (37) and similar approaches to sequence generation and planning (see 
point 1). 

 
6. Language understanding. We have demonstrated that our associative-memory-based 

cortex model can be used for language understanding from speech (38). It may also be 
useful in language (and speech) production due to the physiological principle called the 
motor theory of speech perception (39), by which it seems plausible that the same cortical 
areas can be used both for understanding and for production of language and speech. In 
connection with emotional understanding and empathy (point 5) this unified cortical 
approach to language understanding may eventually even be useful for human-computer 
dialogue systems in the development of companion technology as in our current colla-
borative research center, SFB-TR 62: "A companion technology for cognitive technical 
systems" at the universities of Ulm and Magdeburg. We have developed such a system 
for the understanding of simple command sentences (40) and exchanged our views with 
neuroscientists (e.g. V. Gallese, G. Rizzolatti, F. Pulvermüller) during and following up on 
our European project MirrorBot (41). There is again a close link between our approach to 



language understanding and ideas on the relation between human language understand-
ing, sign languages, monkey hand and arm movements and social interaction that came 
up in the discussion of mirror neurons (see point 5) and are probably best explained in the 
recent articles by Michael Arbib (see 42). 

 
The concrete work we propose to do in order to contribute to all these topics of active re-
search, is simply to extend our current cortex model which consists of a number of cortical 
modules locally interconnected by auto-associative synaptic connectivity and globally con-
nected by (mostly) bidirectional hetero-associative long-range connections (43). This model 
has been developed in cooperation with my previous (Rebecca Fay, Zöhre Kara-Kayikci, 
Andreas Knoblauch, Heiner Markert) and current (David Bouchain, Florian Hauser, Iuliana 
Varvaruca) PhD students (44). For the extension we can use our own simulator framework 
and a reasonable spiking neuron model (for example as in 45). The extension essentially 
comprises the realization and integration of further cortical areas or modules as specified in 
the workpackages (WPs) below.  
 
In order to imbed this model into an autonomous agent, it will not be necessary to use a 
physical robot as in our MirrorBot project or in our NeuroBotic laboratory (46), but it may be 
simpler, cheaper and more flexible to develop a simulation of the agent's environment at a 
higher level than a detailed physical simulation and of the agent's body that provides the in-
terface to the cortical input (sensory) and output (motor) areas of the cortex model. 
 
The functionality of the associative cortical model depends essentially on the pattern repre-
sentations in the different areas or modules. For example, for a visual area we have to 
generate a reasonable visual representation in terms of a group of co-active neurons for 
each object. Visually similar objects should get similar, i.e. overlapping representations. This 
can be achieved by representing certain visual features in the activation of single neurons in 
the visual areas. Similar ideas can be used for other sensory modalities, but also for the 
higher areas where inputs from several sensory (or motor) areas are combined. 
 
In our institute we have a lot of experience in generating such representations based on 
artificial neural networks, through our work on pattern recognition and sensor or information 
fusion (47). I have a particular long-standing interest in visual cortical representations (48) 
and keep following the experimental literature. In our group Prof. Neumann is active in 
modeling the visual system (49). We also did some physiologically motivated modeling in the 
auditory system (50), but we have not yet modeled emotional systems, although we recently 
did some work on the recognition of human emotions (51). This kind of work is also part of 
our current collaborative research center (SFB-TR 62). 
 
In the following I give a brief description of the concrete implementation work to be done in 
terms of workpackages (WPs). 
 
WP 1: Conception, realization and implementation of one or two simulation scenarios for 

the agent's environment. 
 Here we could start from an open-source game-playing environment like (52) or 

from a simple robot simulator like (53). 
 
WP 2: Construction of neural control systems (54) that realize basic senso-motoric loops to 

create a "simulated agent body" that interfaces the somatosensory and motor areas 
with the simulated environment. 

 Recently we have gained some experience with this, both in simulations and with 
real robots (55). Although we are planning to use a rather high-level simulation of 
the environment we may need to consider a more fine-graned control for the 
generation of appropriate representations in the somatosensory and motor areas. 

 



WP 3: Modeling of the agent's sensory inputs (vision, audition) and design of the corres-
ponding cortical representations (in terms of local assemblies). 

 Here we can rely on previous experience in the MirrorBot project and in modeling of 
the visual and the auditory system including speech (56). 

 
WP 4: Improvement of the existing associative cortex model and extension by adding and 

integrating further modules. 
a) realization and integration of a somatosensory area (see WP 2), 
b) further development of the existing motor and premotor areas, 
c) further development of the existing speech and language areas (see point 6), 
d) further development of areas for action planning and sequence learning based on 

the existing simple planning areas and on value-based actor-critic schemes. 
 

WP 5: Intrinsic plasticity in recurrent neural networks for the generation or improvement of 
neural assembly representations in higher cortical areas. 

 Higher cortical areas are areas without direct sensory input or motor output. These 
areas get their input (mostly) from other cortical areas by hetero-associative con-
nections. In our previous implementation we just used sparse random patterns (of 
co-activated neurons) to represent different items. Now we want to generate 
patterns which are similar for similar input activation. We can achieve this by acti-
vating the higher area by randomly initialized cortico-cortical connections from their 
input areas and stabilizing these patterns by auto-association (as well as bidirec-
tional hetero-association in the cortico-cortical connections). For this stabilization by 
local synaptic plasticity we want to try more realistic spike-time dependent me-
chanisms (57) in addition to simple Hebbian correlation learning. Another interesting 
possibility is to use an additional "motivational" or "confirmational" signal (probably 
from the thalamic nucleus corresponding to the cortical area) to stabilize the learned 
synaptic changes (58). Similar mechanisms are also discussed in the context of 
reservoir computing (see point 3 above). 

 
WP 6: Realization of emotional mechanisms and corresponding modules. 
 We want to integrate one module (at least) which represents emotional states of the 

agent (like, for example, the amygdala). There are two reasons for this: First such 
an area or module can be understood as part of the multi-objective value system in 
reinforcement learning (see point 1 above) and therefore be useful for learning 
motor sequences and more complex behaviors (59). Secondly, such an area can be 
useful or even necessary  for an understanding of empathy in relation to the mirror 
neurons (see point 5 above). In this way our cortical model could be used for a 
simulation and better understanding of the mirror neuron idea not only with respect 
to communication and language, but also with respect to emotions and empathy. 

 
WP 7: Further development of the simulated environment to allow for multiple interacting 

agents and more complex planning problems. 
 This will become necessary for investigating and testing the emotional mechanisms 

built in WP 6. 
 
Of course, there is already a sufficient amount of work in the main core of the project, i.e. in 
WP 1 - 5, but once this model is working, it would provide an ideal opportunity to study the 
very demanding and speculative ideas of Rizzolatti, Arbib and others concerning emotions 
and empathy. Today it is very hard to predict, how far we will get with the two additional 
workpackages 6 and 7. 
 
The core working group envisaged for this project consist of myself and two Ph.D. students. 
 



i) One student should focus on the realization and simulation of the basic associative 
cortical structure, the development and simulation of intrinsic synaptic plasticity me-
chanisms in the higher areas and (thereby) the realization of state-based representations 
for behavioral learning in (at least) one of these areas. 

 
ii) The other student should focus on the development of language, language learning, im-

provements of our current cortical language model and possibly modeling of emotional 
mechanisms, empathy and social interaction in small groups of autonomous agents. 

 
After getting acquainted and familiarized with our current cortical model and the general state 
of the art in neural modeling, student (i) can start working on WP 1, 2, and 3. The main work 
will then be contained in WP 4 and 5. Student (ii) will probably need more time to get fami-
liarized not only with our cortical model, but also with the neurophysiological, psychological, 
and neuro-linguistical background. This will involve visits to some of the leading experts, both 
on the experimental and the modeling side (e.g. G. Rizzolatti, P. Dayan, F. Pulvermüller, but 
also people that are more easily accessable through our SFB, like A. Brechmann, F. Ohl, H. 
Traue). After that, and of course partially in parallel, work on WP 4 (in cooperation with 
student (i)) and on WP 6 and 7 can be taken up. 
 
For this kind of project application I am asked to point out the special nature of this proposal 
which may prevent it from being successful in the usual DFG Normalverfahren.  
 
I believe this project is special in its very broad interdisciplinarity between computer science 
and neuroscience, with respect to both its goals and its methods. For typical reviewers from 
just one of these two disciplines it is usually hard to be convinced that such a project can 
achieve a clear direct publishable benefit within the estimated time. 
 
Among computer scientists there is still a common prejudice that neuronal realizations may 
not be most efficient compared to more conventional approaches. This may indeed often be 
the case, but there are also many examples of efficient practical solutions that have been 
found by inspiration from neuroscience, e.g. our work on sparse associative memories (60). 
Among neuroscientists global brain or cortex models aiming at a large-scale functional or 
systemic understanding run against the usual scientific method of "downward explanation", 
i.e. going into the microscopic direction, from neurons down to synapses and from synapses 
down to channels and transmitter molecules. Another problem is that higher cognitive func-
tions, in particular language, can hardly be studied in most animals. So this kind of work is 
regarded as extremely speculative, and it is indeed hard to make concrete detailed experi-
mental predictions which follow from such a modeling approach in a reasonable way. 
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7. Funds requested 
 
The estimated total cost of the project is 750.000 Euro for 5 years, i.e. 150.000 Euro per year 
on average. This comprises 2 PhD students (or postdocs), wage level TV-L EG 13W, travel 
expenses, and means for additional processing power (e.g. cloud computing) if necessary. 
Of course, the necessary working space and desk-top computers (plus additional central 
computing opportunities) for the two persons will be provided by the Institute of Neural 
Information Processing. In addition, there will be costs for some student assistants (about 
80.000 Euro for 5 years) and for printing and publication.  
 
We expect relatively high travel expenses for the 3 persons involved, since individual lab 
visits to selected groups or experts will have to be organized in addition to the usual travel 
expenses for conferences. 
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Fellow at the Institute for Advanced Studies, Berlin 
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Research professor, Technical University of Darmstadt 
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Director of the Institute of Neural Information Processing, University of Ulm 
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9. Sonstige Angaben 
 
Untersuchungen an Menschen, Tierversuche, gentechnische Experimente oder ähnliches 
sind nicht vorgesehen. 
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 Ich verpflichte mich, mit der Einreichung des Antrags auf Bewilligung eines Reinhart 
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und zum Literaturverzeichnis (III.6) beachtet. 

 Ich werde den Vertrauensdozenten der Universität Ulm, Herrn Prof. Bossert, von der 
Antragsstellung unterrichten. 
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