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I. What is Ergodic Theory?

The notion “ergodic” is an artificial creation, and the newcomer to “ergodic
theory” will have no intuitive understanding of its content: “elementary ergodic
theory” neither is part of high school- or college- mathematics (as does “algebra”)
nor does its name explain its subject (as does “number theory”). Therefore it might
be useful first to explain the name and the subject of “ergodic theory”. Let us begin
with the quotation of the first sentence of P. Walters’ introductory lectures (1975,

p.- 1):

“Generally speaking, ergodic theory is the study of transformations and flows
from the point of view of recurrence properties, mixing properties, and other global,
dynamical, properties connected with asymptotic behavior.”

Certainly, this definition is very systematic and complete (compare the beginning
of our Lectures III. and IV.). Still we will try to add a few more answers to the
question: “What is Ergodic Theory ?”

Naive answer: A container is divided into two parts with one part empty and the
other filled with gas. Ergodic theory predicts what happens in the long run after
we remove the dividing wall.

First etymological answer: epyodnc=difficult.

Historical answer:

1880 - Boltzmann, Maxwell

ergodic hypothesis

1900 - Poincaré - recurrence theorem

1931 - von Neumann - mean ergodic theorem

1931 - Birkhoff - individual ergodic theorem

1958 - Kolmogorov - entropy as an invariant

1963 - Sinai - billiard flow is ergodic

1970 - Ornstein - entropy classifies Bernoulli shifts
1975 - Akcoglu - individual LP-ergodic theorem

Naive answer of a physicist: Ergodic theory proves that time mean equals space
mean.

I.E. Farquhar’s [1964] answer: “Ergodic theory originated as an offshot of the
work of Boltzmann and of Maxwell in the kinetic theory of gases. The impetus
provided by the physical problem led later to the development by pure mathemati-
cians of ergodic theory as a branch of measure theory, and, as is to be expected,
the scope of this mathematical theory extends now far beyond the initial field of
interest. However, the chief physical problems to which ergodic theory has rel-
evance, namely, the justification of the methods of statistical mechanics and the
relation between reversibility and irreversibility have been by no means satisfacto-
rily solved, and the question arises of how far the mathematical theory contributes
to the elucidation of these physical problems.”



Physicist’s answer:
Reality

Physical model

Mathematical consequences

A gas with n particles
at time ¢t = 0 is given.

The “state” of the gas is a
point z in the “state space”
X =R

Time changes

Time change is described by
the Hamiltonian differential
equations. Their solutions
yield a mapping ¢ : X —
X, such that the state xo
at time t = 0 becomes the
state £1 = p(zo) at time
t=1.

Theorem of Liouville:

¢ preserves the (normal-
ized) Lebesgue measure p
on X.

the long run behavior
is observed.

Definition: An observable
is a function f : X — R,
where f(z) can be regarded
as the outcome of a mea-
surement, when the gas is
in the state € X.

Problem:
Find lim f (o™ (z))!

1st objection:

Time change is much
faster than our obser-
vations.

2nd objection: In
practice, it is impos-
sible to determine the
state x.

Modified problem: Find
the time mean M;f(x) :=

lim - 3755 £(' (2))!

Additional hypothesis
(ergodic hypothesis): Each
particular motion will pass
through every state consis-
tent with its energy (see
P.u.T. Ehrenfest 1911).

“Theorem” 1: If the er-
godic hypothesis is satis-
fied, we have M;f(z) =
§ f dp = space mean, which
is independent of the state
T.

“Theorem” 2: The er-
godic hypothesis is “never”
satisfied.

Ergodic theory looks for better ergodic hypothesis and better “ergodic theorems”.

Commonly accepted etymological answer:

gpyov = energy

-0060¢ = —path

(P. and T. Ehrenfest 1911, p. 30)



“Correct” etymological answer:

goyov = energy

~&dne = -like (Boltzmann 1884/85, see also II1.)

K. Jacobs’ [1965] answer:

“... als Einflihrung fiir solche Leser gedacht, die gern einmal erfahren mdchten,
womit sich diese Theorie mit dem seltsamen, aus den griechischen Wortern ep-
yov (Arbeit) und odoc (Weg) zusammengesetzten Namen eigentlich beschéftigt.
Die Probleme der Ergodentheorie kreisen um einen Begriff, der einerseits so viele
reizvolle Spezialfalle umfafit, dafl sowohl der Polyhistor als auch der stille Geniefler
auf ihre Kosten kommen, andererseits so einfach ist, daf sich die zentralen Ergeb-
nisse und Probleme der Ergodentheorie leicht darstellen lassen; diese einfach zu
formulierenden Fragestellungen erfordern jedoch bei naherer Untersuchung oft de-

rartige Anstrengungen, dafl harte Arbeiter hier ihr rechtes Vergniigen finden wer-
den.”

J. Dieudonne’s [1977] answer:

“Le point de départ de la théorie ergodique provient du développement de la
mécanique statistique et de la theorie cinétique des gaz, o l'expérience suggere
und tendence a I’ “uniformite”: si I'on considére a un instant donné un mélange
hétérogene de plusieurs gaz, ’évolution du mélange au cours du temps tend a le
rendre homogéne.”

W. Parry’s [1981] answer:

“Ergodic Theory is difficult to characterize, as it stands at the junction of so many
areas, drawing on the techniques and examples of probability theory, vector fields
on manifolds, group actions on homogeneous spaces, number theory, statistical
mechanics, etc...”” (e.g. functional analysis; added by the authors).

Elementary mathematical answer:

Let X be a set, ¢ : X — X a mapping. The induced operator T,, maps functions
f:X - Rinto T, f := f oe. Ergodic theory investigates the asymptotic behavior
of o™ and T for n € N.

Our answer:

More structure is needed on the set X, usually at least a topological or a measure
theoretical structure. In both cases we can study the asymptotic behavior of the
powers 1™ of the linear operator 7' = 7T, defined either on the Banach space
C(X) of all continuous functions on X or on the Banach space L'(X, %, u) of all
p-integrable functions on X.



II. Dynamical Systems

Many of the answers presented in Lecture I indicate that ergodic theory deals
with pairs (X, ¢) where X is a set whose points represent the “states” of a physical
system while ¢ is a mapping from X into X describing the change of states after
one time unit. The first step towards a mathematical theory consists in finding
out which abstract properties of the physical state spaces will be essential. It is
evident that an “ergodic theory” based only on set-theoretical assumptions is of
little interest. Therefore we present three different mathematical structures which
can be imposed on the state space X and the mapping ¢ in order to yield “dynamical
systems” that are interesting from the mathematical point of view. The parallel
development of the corresponding three “ergodic theories” and the investigation of
their mutual interaction will be one of the characteristics of the following lectures.

I1.1 Definition:

(i) (X, X, u; ) is a measure-theoretical dynamical system (briefly: MDS) if (X, X, p)
is a probability space and ¢ : X — X is a bi-measure-preserving transforma-
tion.

(ii) (X;¢) is a topological dynamical system (TDS) if X is a compact space and
¢ : X — X is homeomorphism.

(i) (E;T) is a functional-analytic dynamical system (FDS) if E is a Banach space
and T : E — FE is a bounded linear operator.

Remarks:

1. The term “bi-measure-preserving” for the transformation ¢ : X — X in (i) is
to be understood in the following sense: There exists a subset Xy of X with
1(Xo) = 1 such that the restriction ¢g : Xo — X of ¢ is bijective, and both g
and its inverse are measurable and measure-preserving for the induced o-algebra
20 = {AﬁXOSAGE}.

2. If ¢ is bi-measure-preserving with respect to u, we call 4 a p-invariant measure.

3. As we shall see in (I1.4) every MDS and TDS leads to an FDS in a canonical
way. Thus a theory of FDSs can be regarded as a joint generalization of the
topological theory of TDSs and the probabilistic theory of MDSs. In most of
the following chapters we will either start from or aim for a formulation of the
main theorem(s) in the language of FDSs.

4. DDSs (“differentiable dynamical systems”) will not be investigated in these lec-
tures (see Bowen [1975], Smale [1967], [1980]).

Before proving any results we present in this lecture the fundamental (types of)
examples of dynamical systems which will frequently reappear in the ensuing text.
The reader is invited to apply systematically every definition and result to at least
some of these examples.

I1.2. Rotations:

(i) Let I' = {z € C : |z| = 1} be the unit circle, ¥ its Borel algebra, and m the
normalized Lebesgue measure on I'. Choose an a € I" and define

va(z):=a-z forall zeT.

Clearly, (I'; p,) is a TDS, and (T, B, m; ¢,) an MDS.



(i)

11.3.

(i)

A more abstract version of the above example is the following: Take a compact
group G with Borel algebra B and normalized Haar measure m. Choose h € G
and define the (left)rotation

on(g) :==h-g forallgeG.
Again, (G; pp) is a TDS, and (G, B, m; @) an MDS.

Shifts:

“Dough-kneading” leads to the following bi-measure-preserving transforma-
tion

or in a more precise form: if X := [0,1]? , B the Borel algebra on X, m the
Lebesgue measure, and

2z, Y for 0 <z < 2,
p(a,y) = {( 2) 2

(Zz—l,@ for7<x<1,

we obtain an MDS, but no TDS for the natural topology on X.
“Coin-throwing” may also be described in the language of dynamical systems:
Assume that somebody throws a dime once a day from eternity to eternity.
An adequate mathematical description of such an “experiment” is a point

T = (In)neZ

in the space X = {0, 1}2, which is compact for the product topology.

Tomorrow, the point (z,) = (...... yT1,T0, L1, L2, - - )
!
will be ($n+1) = (...,1‘,1,l‘0,l‘1,]}2, ...... )

where the arrow points to the current outcome of the dime-throwing experi-
ment. Therefore, time evolution corresponds to the mapping

T: X > X, (Tn)nez — (Tni1)nez-

()?;7') is a TDS, and 7 is called the (left)shift on X. Let us now introduce
a probability measure [i on X telling which events are probable and which
not. If we assume firstly, that this measure should be determined by its
values on the (measurable) rectangles in X (see A.17), and secondly, that the
probability of the outcome should not change with time, we obtaln that [ is
a shift invariant probability measure on the product o-algebra S on X and
that (X,Z,,u, 7) is an MDS.

On X there are many T-invariant probability measures, but in our concrete
case, it is reasonable to assume further that today’s outcome is independent
of all the previous results, and that the two possible results of “coin throwing”
have equal probabilities p(0) = p(1) = % Then ()A(, f], 1) is the product space
({0,1},P{0,1}, p)Z (see A.17).

Exercise: Show that (i) and (ii) are the "same” ! (Hint: see (VI.D.2))

(iii)

Again we present an abstract version of the previous examples. Let (X, X, p)
be a probability space, where X :={0,...,k—1}, k > 1, is finite, ¥ the power
set of X and p = (po, ..., pxk—1) a probability measure on X.
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Take X = X7, the product o-algebra S on X, the product measure ji and
the shift 7 on X. Then we obtain an MDS (X, X, i; 7), called the Bernoulli
shift with distribution p and denoted by B(po,- .. ,Pk—1)-

I1.4. Induced operators:

Very important examples of FDSs arise from TDSs and MDSs as follows:

(1) Let (X; ¢) be a TDS and let C(X) be the Banach space of all (real- or complex-
valued) continuous functions on X (see B.18). Define the “induced operator”

Ty, :fr fop for feC(X).

It is easy to see that T, is an isometric linear operator on C(X), and hence
(C(X);T,) is an FDS. Moreover, we observe that T, is a lattice isomorphism (see
C.5) and thus a positive operator on the Banach lattice C'(X) (see C.1 and C.2).
On the other hand, if we consider the complex space C(X) as a C*-algebra (see
C.6 and C.7) it is clear that T, is a #-algebra isomorphism (see C.8).

(2) Let (X, X, u; ) be an MDS and consider the function spaces LP(X, 3, u), 1 <
p < o (see B.20). Define

To: frfop for felP(X, %, p),

or more precisely: T, f= f\STp where f denotes the equivalence class in LP(X, %, 1)
corresponding to the function f. Again, the “induced operator” T, is an isometric
(resp. unitary) linear operator on LP(X, %, i) (resp. on L?(u)) since ¢ is measure-
preserving, and hence (LP(X, X, u);T,) is an FDS. As above, T,, is a lattice iso-
morphism if we consider LP(X, ¥, 1) as a Banach lattice (see C.1 and C.2). Finally,
the space L™ (X, 3, ) is a commutative C*-algebra and the induced operator T,
on L™ (X,X, p) is a =-algebra isomorphism.

Remark: Via the representation theorem of Gelfand-Neumark the case (L% (u); Ty,)
in (2) may be reduced to the situation of (1) above (see ??). Therefore we are able
to switch from measure-theoretical to functional-analytic or to topological dynam-
ical systems. This flexibility is important in order to tackle a given problem with
the most adequate methods.

I1.5. Stochastic matrices:

An FDS that is not induced by a TDS or an MDS can be found easily: Take
(E;T), where FE is R¥ = C({0,...,k —1}) and T is a k x k-matrix. We single
out a particular case or special interest in probability theory: Let T be stochastic,
ie. T = (a;;) such that 0 < a;; and Zf;é a;; = 1 for i =0,1,...,k —1. Then
(E;T) is an FDS and 71 = 1 where 1 = (1, ...,1). The matrix T" has the following
interpretation in probability theory. We consider X = {0,1,...,k—1} as the “state
space” of a certain system, and T  as a description of time evolution of the states in
the following senses a;; denotes the probability that the system moves from state
i to state j in one time step and is called the “transition probability” from i to
j. Thus T (resp. (E;T)) can be regarded as a “stochastic” version of a dynamical
system. Indeed, if every row and every column of T' contains a 1 (and therefore
only zeros in the other places), then the system is “deterministic” in the sense that
T is induced by a mapping (permutation) ¢ : X — X (resp. (F;T) is induced by a
TDS (X, ¢)).
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I1.6. Markov shifts:
Let T : R* — R¥ be a stochastic matrix (a;;) as in (IL5). Let g = (po,...,pr—1)"
be an invariant probability vector, i.e.

k—1
pi=0, Y pi=1
1=0

and p is invariant under the adjoint of T, i.e. Zf:_ol a;jp; = p; for all j (it is
well known and also follows from (IV.5) and (IV.4).e that there are such non-
trivial invariant vectors). We call u the probability distribution at time 0, and the
probabilistic interpretation of the entries a;; (see IL.5) gives us a natural way of
defining probabilities on

X:={0,1,....k = 1}2 = {(z:)iez : 2 € {0,1,... .k —1}}

with the product o-algebra S . For0<I<k— 1, pr[z¢ =[] denotes the probability
that z € X is in the state [ at time 0. We define

pr{zo = 1] := p
pr{zo =1, x1 = m] := paim,
prlzo = lo, 1 = l1, ..., 2t = l] 1= piy @i, Q1yty ** A1y, -
Moreover, since p is invariant,
k—1 k—1
pr[zy = 1] = Y prlzo =di,a1 = 1] = ). piai = pi = pr[ao = 1],
i=0 i=0
pr{xz: =1] = p; = pr[zg =1], and finally
(*) prizs =lo, Zsp1 =11, Tspe = le] = ProQugr, ary1y -+~ 1, _y1, =
pr[zo = lo,x1 =l1,...,2, =] for any choice of s€ Z, t e Ny

and lo,...,l; €{0,...,k — 1}

The equation (%) gives a probability measure on each algebra F,, := {4 € T
A=N"_ [zie A],A; € X}. By (A.17) this determines exactly one probability
measure p on the product o-algebra S on X. This measure w is obviously invariant
under the shift

7 () = (Tnt)

on X. Therefore ()2', f),ﬁ;T) is an MDS, called the Markov shift with invariant
distribution p and transition matriz T

Note that the examples (I1.5) and (I1.6), although they describe the same sto-
chastic process, are quite different, because the operator T of (I1.5) is not induced
by a transformation of the state space {0,1, ...,k —1}, whereas in (II.6) the shift 7
is defined on the state space {0,1,...,k — 1}2. We have refined (i.e. enlarged) the
state space of (II.5) to make the model “deterministic”.

An analogous construction can be carried out in the infinite-dimensional case for
so-called Markov-operators (see App. U and X), or for transition probabilities (see
Bauer).



This construction is well-known in the theory of Markov processes; its functional-
analytic counterpart, the so-called dilation, will be presented in App. U.

Exercise: The Bernoulli shift B(py,...,pr—1) is a Markov shift. What is its in-
variant distribution and its transition matrix?

II.D Discussion

I1.D.1. Non-bijective dynamical systems:

It is clear, that the Definitions (II.1.i,ii) make sense not only for bijective but also
for arbitrary measure-preserving, resp. continuous transformations, but we prefer
to sacrifice this greater generality for the sake of simplicity. Such non-bijective
transformations also induce FDSs by a procedure similar to that in (I1.4). Examples
are the mappings

¢ :[0,1] = [0,1] defined by

2t for0<t <3
gp(t) = 1
or o(t) 1= 4t(1 —t).

I1.D.2. Banach algebras vs. Banach lattices:

The function spaces used in ergodic theory, i.e. C(X) and LP(X, X, i), are Banach
lattices and the induced operators T,, are lattice isomorphisms (see II.4 and App.C).
Therefore, the vector lattice structure seems to be adequate for a simultaneous
treatment of topological and measure-theoretical dynamical systems. If you prefer
Banach algebras and algebra isomorphisms, you have to consider the operators T,
on the spaces C'(X) and L™ (X, %, p).

I1.D.3. Real vs. complex Banach spaces:

Since order structure and positivity makes sense only for real Banach spaces, one
could be inclined to study only spaces of real valued functions. But methods from
spectral theory play a central role in ergodic theory and require complexr Banach
spaces. However, no real trouble is caused, since the complex Banach spaces C'(X)
and LP(X,¥, u) decompose canonically into real and imaginary parts, and we re-
strict our attention to the real part whenever we use the order relation. Moreover,
the induced operator T, (like any positive linear operator) is uniquely determined
by its restriction to this real part.

II.D.4. Null sets in (X, X%, u):

In the measure-theoretical case some technical problems may be caused by the sets
A e ¥ with p(A) = 0. But in ergodic theory, it is customary (and reasonable, as
can be understood from the physicist’s answer in Lecture I: A is a set of “states”
having probability 0) to identify measurable sets which differ only by such a null
set. From now on, this will be done without explicit statement. For example, we
will say that a measurable function f is constant if

flz)=c
for all x € X\A, p(A) =0.

The reader familiar with the “function” spaces LP(X, X, ) realizes that we identify
the function with its equivalence class in LP(u), but still keep the terminology
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of functions. These subtleties should not disturb the beginner since no serious
mistakes can be made (see A.7 and B.20).

I1.D.5. Which FDSs are TDSs?

We have seen in I1.4 that to every TDS (X;¢) canonically corresponds the FDS
(C(X),T,). Since this correspondence occurs frequently in our operator-theoretical
approach to ergodic theory, it is important to know which FDSs arise in this way.
More precisely: Which operators

T:C(X)—->C(X)
are induced by a homeomorphism
p: X ->X
in the sense that 7' = T,,? A complete answer is given as follows.
Theorem: Consider the real Banach space C(X) and T' € Z(C(X)). Then the
following assertions are equivalent:
(i) T is a lattice isomorphism satisfying 71 = 1.

(ii) T is an algebra isomorphism.
(i) T'= T, for a (unique) homeomorphism ¢ on X.

Proof. Clearly, (iii) implies (i) and (ii).

(ii) = (iii): Let D := {0, : € X} be the weak* compact set of all Dirac measures
on X. This coincides with the set of all normalized multiplicative linear forms
on C(X), and from (C.9) it follows that X is homeomorphic to D. Since T is an
algebra isomorphism its adjoint 77 maps D on D. The restriction of T’ to D defines
a homeomorphism ¢ on X having the desired properties.

(i) = (iii): The proof requires some familarity with Banach lattices. We refer
to Schaefer 1974, I11.9.1 for the details as well as for the “complex” case of the
theorem. [

I1.D.6. Which FDSs are MDSs?
Due to the existence of null sets (and null functions) the analogous problem in the
measure-theoretical context is more difficult: Which operators

T:LP(X, %, pn) —» LP(X, %2, p)
are induced by a bi-measure-preserving transformation
p: X ->X

in the sense that T = T,,7 Essentially, it turns out that the appropriate operators
are again the Banach lattice isomorphisms, but we will return to this problem in
Lecture VI

II.D.7. Discrete vs. continuous time:

Applying ¢ (or T') in a dynamical system may be interpreted as movement from the
state x at time ¢ to the state ¢(x) at time ¢ + At. Therefore, repeated application
of ¢ means advancing in time with a discrete time scale in steps of At. Intuitively
it is more realistic to consider a continuous time scale, and in our mathematical
model the transformation ¢ and the group homomorphism

n— "
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defined on Z should be replaced by a continuous group of transformations, i.e. a
group homomorphism
L=y
from R into an appropriate set of transformations on X. Observe that the “com-
position rule”
MM =" o™, n,meZ,
in the discrete model is replaced by

Vs = Props, t,seR.

Adding some continuity or measurability assumptions one obtains “continuous dy-
namical systems” (e.g. Rohlin [1966], Chapt. II.). We prefer the simpler discrete
model, since we are mainly interested in the asymptotic behavior of the system as
t tends to infinity.

II.D.8. From a differential equation to a dynamical system:
In (IL.D.7) we briefly discussed the problem “discrete vs.continuous time”. Clearly,
a “continuous dynamical system” (X; (¢¢)ier) gives rise to many “discrete dynam-
ical systems” (X;) by setting ¢ := ¢; for any ¢ € R. We present here a short
introduction into the so-called “classical dynamical systems” which arise from dif-
ferential equations and yield continuous dynamical systems, also called “flows”.
Let X € R" be a compact smooth manifold and f(z) a Cl-vector field on X.
We consider the autonomous ordinary differential equation

. dz
(%) T=y T (x)
(or in coordinates: @; = fi(z1,...,2n), ¢ = 1,...,n). It is known that for every

x € X the equation (%) has a unique solution ¢;(z) that satisfies po(z) = x. The
uniqueness of the solution implies the group property ¢;1s = props for all t,s € R,
and, in addition, the mapping

®: xR — X
(1) = pi()

is continuous (see Nemyckii-Stepanov [1960]). Therefore, (X; (¢+)ter) is a continu-
ous topological dynamical system.

I1.D.9 Examples:
(i) Let I'? = R?/Z? be the 2-dimensional torus and let

z=1
Y=«

with a # 0. The flow (¢;) on I'? is given by
oy  (x4+1t) mod 1
()= (Lo 1)

(ii) Take the space X =T'? as in (i) and define
i =F(())

= F((3)
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where F' is C!'-function which is 1-periodic in each variable. Assume that F is
strictly positive on X. The solution curves of this motion agree with those of (i),
but the “speed” is changed.

For applications the above definition of a “continuous topological dynamical
system” has three disadvantages: first, the manifold X (the “state” space) is not
always compact, second, if X is not compact, in general not every-solution of (%)
can be continued for all times t (e.g. the scalar equation & = 22), and finally, it
is often necessary to consider non-autonomous differential equations, i.e. the C'-
vector field f is defined on X x R where X is a manifold. All of these difficulties
can be overcome by generalizing the above definition (see Sell [1971].

Next, we want to consider “classical measure-theoretical dynamical systems”.
The problem of finding a ¢;-invariant measure, defined by a continuous density, is
solved by the Liouville theorem (see Nemyckii-Stepanov [1960]). We only present
a special case.

Many equations of classical mechanics can be written as a Hamiltonian system
of differential equations. Let ¢ = (qi,...,¢n) (coordinates) and p = (p1,...,pn)
(moments) be a coordinate system in R?" and H(p,q) a C?-function which does
not depend on time explicitly. The equations

. o0H

q = =

op

(%) o _67H
b = Ew

define a flow on R?” called the “Hamiltonian flow”. The divergence of the vector

field (#*) vanishes:
0 (0H 0 (0H
(@) 5 (7)o

Therefore, the measure dq; ... dg, dp; ... dp,is invariant under the induced flow.
But the considered state space is not compact and the invariant measure is not
finite.

To avoid this difficulty we observe that

A0, OF, OHOM o ( 0y
dt é’qq 6pp_ dq Op oq oq

i.e. H is a first integral of (xx) (conservation of energy!). This means that Xg :=
{(p,q) e R* : H(p,q) = E} for every E € R is invariant under the flow. X turns
out to be a compact smooth manifold for typical values of the constant F, and we
obtain on it an “induced” measure by a method similar to the construction of the
1-dimensional Lebesgue measure from the 2-dimensional Lebesgue measure. This
induced measure is (¢;)-invariant and finite, and we obtain “continuous measure-
theoretical dynamical systems”.

Example linear harmonic oscillator: Let X = R? and let (Z ) be the canonical
coordinates on X. For simplicity, we suppose that the constants of the oscillator
are all 1. The Hamiltonian function is the sum of the kinetic and the potential
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energy and therefore

1 1
H(p,q) = Hyin(p) + Hyor(q) = 59° + 56°

The system () becomes

q p
p=—q
and the solution with initial value (Z ) is

(7)) = («/pQ +q2sin(t+6)>
“\a A/DP? +q?cos(t+3))’
where € |0, 27) is defined by +/p? + ¢? -sin 8 = ¢ and 4/p? + ¢? - cos 3 = p. Now,

let us consider the surface H(p,q) = %pQ + %qQ =: F =constant.
Obviously, F must be positive. For E = 0 we have the (invariant) trivial manifold

{(8)} For E > 0 the (¢t)ter-invariant manifold
Xp:={(}) e R*: H(p.q) = B}

is the circle about 0 with radius ~/2F, and therefore compact. The “induced”
invariant measure on X g is the 1-dimensional Lebesgue measure, and the induced
flow agrees with a flow of rotations on this circle.

I1.D.10. Dilating an FDS to an MDS:

We have indicated in (IL.D.6) that rather few FDSs on Banach spaces L!(u) are
induced by MDSs. But in (I1.6) we presented an ingenious way of reducing the
study of certain FDSs to the study of MDSs. These constructions are solutions of
the following problem:

Let T be a bounded linear operator on £ = L'(X, %, i), u(X) = 1. Can we find
an MDS (X, X, i; ¢) and operators J and (@, such that the diagram

™

LY(X, %, ) LY(X, %, )

J

Q

LNR, S, ) LNR, S )

commutes for all n =0,1,2,...7

If we want the MDS ()? ,i,ﬂ;(p) to reflect somehow the “ergodic” behaviour
of the FDS (LY(X, X, u); T), it is clear that the operators J and @ must preserve
the order structure of the L'-spaces (see I1.4). Therefore, we call (L}(X, %, 7i); T,,),
resp. ()2, EA], ii; ©), a lattice dilation of (L'(X, 3, u); T) if - in the diagram above - J is
an isometric lattice homomorphism (with J1 = i), and @ is a positive contraction.

From these requirements it follows that 7" has to be positive with 71 = 1 and
T'1 = 1. In App. U we show that these conditions are even sufficient.
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III. Recurrent, Ergodic and Minimal Dynamical Systems

“Ergodic theory is the study of transformations from the point of view of recur-
rence properties” (Walters [1975], p. 1). Sometimes, you meet such properties in
daily life: If you walk in a park just after it has snowed, you will have to step into
your own footprints after a finite number of steps. The more difficult problem of
the reappearance of certain celestial phenomena led Poincaré to the first important
result of ergodic theory at the end of the last century.

ITI.1 Definition:
Let (X, 3, u; ) be an MDS and take A € ¥. A point z € A is called recurrent to A
if there exists n € N such that ¢™(z) € A.

II1.2 Theorem (Poincaré, 1890):
Let (X,%, u; ) be an MDS and take A € ¥.. Almost every point of A is (infinitely
often) recurrent to A.

Proof. For A € X, ¢ ™A is the set of all points that will be in A at time n
(i.e. ¢"(x) € A). Therefore, Arec == A (p AU p 24U ...) is the set of all
points of A which are recurrent to A.

If B:=AuptAup2Au... weobtain p~'B € B and A\A,ec = B\p !B.
Since ¢ is measure-preserving and p finite, we conclude
/‘(A\Arcc) = N(B) - IU'(SD_lB) =0,
and thus the non-recurrent points of A form a null set. For the statement in
brackets, we notice that (X, ¥, u; ¢*) is an MDS for every k € N. The above results
implies
w(Ag) =0 for Ap:={zeA: (")"(z) ¢ Afor ne N}.

Hence, A, = J,_, Ax is a null set, and the points of A\A,, are infinitely often
recurrent to A. n

We explained in the physicist’s answer in Lecture I that the dynamics can be
described by the MDS (X, X, u; ¢) on the state space

X := {coordinates of the possible locations and impulses of the
1000 molecules in the box}
As the set A to which recurrence is expected we choose
A := {all 1000 molecules are located on the left hand side}.

Since u(A) > 0, we obtain from Poincaré’s recurrence theorem a surprising conclu-
sion contradicting somehow our daily life experience.
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“Ergodic theory is the study of transformations from the point of view of mixing
properties” (Walters [1975] p. 1), where “mixing” can even be understood literally
(see Lecture IX). In a sense, ergodicity and minimality are the weakest possible
“mixing properties” of dynamical systems. Another, purely mathematical moti-
vation for the concepts to be introduced below is the aim of defining (and then
classifying) the “indecomposable” objects, e.g. simple groups, factor von Neumann
algebras, irreducible polynomials, prime numbers, etc.. From these points of view
the following basic properties (II1.3) and (II1.6) appear quite naturally.

IT1.3 Definition:
An MDS (X, X, u; ) is called ergodic if there are no non-trivial e-invariant sets
Ae X, ie p(A) = Aimplies u(A) =0 or u(A) = 1.

It is obvious that an MDS which is not ergodic is “reducible” in the sense that
it can be decomposed into the “sum” of two MDSs. Therefore the name “irre-
ducible” instead of “ergodic” would be more intuitive and more systematic. Still,
the use of the word “ergodic” may be justified by the fact that ergodicity in the
above sense implies the validity of the classical “ergodic hypothesis”: time mean
equal space mean (see III1.D.6), and therefore gave rise to “ergodic theory” as a
mathematical theory. Our first proposition contains a very useful criterion for er-
godicity and shows for the first time the announced duality between properties of
the transformation ¢ : X — X and the induced operator T, : LP () — LP ().

IT11.4 Proposition:
For an MDS (X, ¥, ;) the following statements are equivalent:

(a) (X,X, ;) is ergodic.
(b) The fixed space F := {f € LP(X,%, ) : T, f = f} of T, is one-dimensional, or:
1 is a simple eigenvalue of T, € LP(u) for 1 < p < .



16

Proof. We observe, first, that the constant functions are always contained in F,
hence 1 is an eigenvalue of T,,. Moreover, we shall see that the proof does not
depend on the choice of p.

(b) = (a): If A€ X is p-invariant, then 14 € F and dim F' > 2.

(a) = (b): For any f € F and any c € R the set
[f>c]li={xeX: f(z)>c}

is ¢ invariant, and hence trivial. Let ¢g := sup{c € R : pu[f > ¢] = 1}. Then for
¢ < ¢p we have pu[f < ¢] =0, and therefore pu[f < ¢y] = 0. For ¢ > ¢o we have
pulf > c] # 1, hence u[f > c] = 0, and therefore p[f > cy] = 0, too. This implies
f=coae. [ ]

IT11.5 Examples:

(i) The rotation (T, B,m;p,) is ergodic, iff a € T is not a root of unity: If a™ =1
for some n € N, then 1 and f: z — 2" are in I, and so ¢, is not ergodic. On
the other hand, if a™ # 1 for all n € N, assume T, f = f for some f € L*(m).
Since the functions f,, n € Z, with f(z) = 2™ form an orthonormal basis in
L?(u) we obtain

o)

f: Z bnfn and Tgaaf: Z bnTgaafn: 2 bnanfn

n=—0o n=—oo n=—w

The comparison of the coefficients yields b,(a™ — 1) = 0 for all n € Z, hence
b, =0 for all n € N, i.e. f is constant.

(ii) The Bernoulli shift B(po, ..., pr_1) is ergodic: Let A € 5 be 7-invariant with
0 < [i(A) and let € > 0. By definition of the product o-algebra, there exists
B € S depending only on a finite number of coordinates such that A(AAB) <
e, and therefore |fi(A) — fi(B)| < . Choose n € N large enough such that
C := 7" B depends on different coordinates than B. Since p is the product
measure, we obtain fi(B n C) = [i(B) - i(C) = [i(B)?, and 7(A) = A gives
(AAB) = L(t"(AAB)) = G(AAC). We have AA(B n C) € (AAB) U
(AAC) and therefore i(AA(B n C)) < 2e. This implies

AN(B n C)) + |i(B) = i(A)] - |1(B) + i(A)|
< 4e, which proves fi(A) = [i(A)? = 1.

In the last third of this lecture we introduce the concept of “irreducible” TDSs.
Formally, this will be done in complete analogy to II1.3, but due to the fact that in
general the complement of a closed ¢-invariant set is not closed, the result will be
quite different.

I11.6 Definition:
A TDS (X; ) is called minimal, if there are no non-trivial p-invariant closed sets
Ac X, ie p(A) = A, A closed, implies A = & or A = X.
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Again, “irreducible” seems to be the more adequate term (see II1.D.11) but
“minimal” is the term used by the topological dynamics specialists. It is motivated
by property (ii) in the following proposition.

IT1.7 Proposition:

(i) If (X;¢) is minimal, then the fixed space F := {f € C(X) : T,f = f} is
one-dimensional.

(ii) If (X;¢) is a TDS, then there exists a non-empty ¢-invariant, closed subset
Y of X such that (Y;¢) is minimal.

Proof. We observe that the orbit {¢"(x) : n € Z} of any point x € X and also its
closure are p-invariant sets. Therefore, (X; ¢) is minimal iff the orbit of every point
x € X is dense in X.

(i) For f € F we obtain f(x) = f(¢"(x)) for all z € X and n € Z. If (X;¢) is
minimal, the continuity of f implies f = constant.

(ii) The proof of this assertion is a nice, but standard application of Zorn’s lemma
and the finite intersection property of compact spaces. ]

II1.8 Examples:

(i) Take X =[0,1] and ¢(x) = 2. Then (X;¢) is not minimal (since ¢(0) = 0)
but dim F =1

(ii) A property analogous to (IIL.7.ii) is not valid for MDSs: in ([0, 1], B, m;id)
there exists no “minimal” invariant subset with positive measure.

(iii) The rotation (I';p,) is minimal iff € T' is not a root of unity: If a™ = 1
for some ng € N, then {z € I" : 2" = 1} is closed and g-invariant. For the
other implication, we show that the orbit of every point in I" is dense. To
do this we need only prove that {1,a,a?,...} is dense in I'. Choose & > 0.
Since by assumption a™ # a™ for n; # ng, there exist I < k € N such that
0<lat —d¥| <e 0<|a —aF| = |1 —aF!| = |alk=0n — q(k=D(+1)] < ¢ for
all n € N. Since the set of “segments” {(a(*~O" a(k=D(+1)) : pn e N} covers
I', we proved that there is at least one power of a in every e-segment of T'.

(iv) The shift 7 on {0,1,...,k — 1} is not minimal, since 7(z) = =z for z =
(...,0,0,0,...).

We state once more that ergodicity and minimality are the most fundamental prop-
erties of our measure-theoretical or topological dynamical systems. On the other
hand they gave us the first opportunity to demonstrate how dynamical properties
of a map ¢ : X — X are reflected by (spectral) properties of the induced linear
operator Ty, (see III.4 and IIL.7.i). In particular, it can be expected that the set
Po(T,) of all eigenvalues of T, has great significance in ergodic theory (see Lec-
tures VIII and IX). Here we show only the effect of ergodicity or minimality on the
structure of the point spectrum Po(T,).

IT1.9 Proposition:

Let (X;¢) be a minimal TDS (resp. (X, X, y; ) an ergodic MDS). Then the point
spectrum Po(T,) of the induced operator T,, on C(X) (resp. LP(X,3,pu)) is a
subgroup of I', and each eigenvalue is simple.
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Proof. Since T, is a bijective isometry the spectrum of T, is contained in I'. Let
Tof = Af, |f| = 1 =1|A|. Since T, is a lattice homomorphism we conclude

Tolfl = 1T f1 = [MfI = AL 1fT = 1],
and hence |f| = 1 by (IIL.7.i), resp. (II1.4), i.e. every normalized eigenfunction is
unimodular and the product of two such eigenfunctions is non-zero. Since T, is
also an algebra homomorphism (on L*(X), resp. C(X)) we conclude from T, f =
Aif #0and T,g = Aag # 0 that

To(F g =Tof " Tog™ = M- A (g7 #£0
which shows that Po(T,) is a subgroup of I'. If A = Ao, it follows T,,(f - g7') =

f ¢~ and, again by the one-dimensionality of the fixed space, f-¢g~' =c¢-1 or
f =c-g,ie. each eigenvalue is simple. [ ]

ITI.D Discussion

ITI.D.1. The “original” Poincaré theorem:
Henri Poincaré ([1890], p. 69) formulated what later on was called the recurrence
theorem:

“Théoreme I. Supposons que le point P reste a distance finie, et que

le volume S dzq dzy dzs soit un invariant intégral; si 'on considere

une région ry quelconque, quelge petite que soit cette région, il y

aura des trajectoires qui la traverseront une infinité de fois.”
In the corollary to this theorem he mentioned some kind of probability distribution
for the trajectories:

“Corollaire. II résulte de ce qui précede qu’il existe une infinité de
trajectoires qui traversent une infinité de fois la région rg; mais il
peut en exister d’autres qui ne traversent cette région qu’'un nom-
bre fini de fois. Je me propose maintenant d’expliquer pourquoi
oes dernieres trajectoires peuvent étre regardées oomme exception-
nelles.”

ITI.D.2. Recurrence and the second law of thermodynamics:

As we explained in Lecture I the time evolution of physical “states” is adequately
described in the language of MDS and therefore “states” are “recurrent”. This (and
the picture following (II1.2)) seems to be in contradiction with the second law of
thermodynamics which says that entropy can only increase, if it changes at all, and
thus we can never come back to a state of entropy h, once we have reached a state
of entropy higher than h. One explanation lies in the fact that the second law is an
empirical law concerning a quantity, called entropy, that can only be determined
through measurements that require time averaging (in the range from milliseconds
to seconds). In mathematical models of “micro”-dynamics, which were the starting
point of ergodic theory, such time averages should be roughly constant (and equal
to the space mean by the ergodic hypothesis). Therefore entropy should be constant
for dynamical systems (like the constant defined in Lecture XII, although at least
to us it is unclear whether the two numbers, the Kolmogoroff-Sinai entropy and the
physical entropy can be identified or compared in such a model). In this case there
is no contradiction to Poincaré’s theorem, because entropy does not really depend
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on the (“micro”-)state x.

The second law of thermodynamics applies to changes in the underlying physical
“micro”-dynamics, i.e. in the dynamical system or in the mapping . Such changes
can occur for example if boundary conditions are changed by the experimenter or
engineer; they are described on a much coarser time scale, and as a matter of fact,
they can only lead in a certain direction, namely toward higher entropy.

Another way of turning this argument is the following: The thermodynamical
(equilibrium) entropy is a quantity that is based on thermodynamical measure-
ments, which always measure time averages in the range from milliseconds to sec-
onds. In particular, such an unusual momentary state as in the picture following
(IT1.2) cannot be measured thermodynamically, in fact the ergodic hypothesis states
that we shall usually measure a time average which is close to the “space mean”.
Therefore a thermodynamical measurement of the number of atoms (i.e. the “pres-
sure”) in the left chamber will almost always give a result close to 500. In some
branches of thermodynamics (“non-equilibrium” thermodynamics), however, a vari-
able e(z) is associated with micro states z € X, which is also interpreted as the
“entropy” of x, but is not constant on X. In this case Poincaré’s theorem shows
that the second law for this variable e cannot be strictly true, but still it is argued
that a big decrease of e is very improbable. For example, we can try to capture the
momentary state of the gas in the box, by quickly inserting a separating wall into
the box at some arbitrary moment (chosen at random). Then the thermodynam-
ical calculations of the invariant measure on the state space tell us, that we have
a chance of 271990 of catching the gas in a position with all 1000 atoms in the left
half of the box (low “entropy”), and a chance of 27.2% of having 495 to 505 atoms
in the left half of the box (high “entropy”).

ITI.D.3. Counterexamples:
The recurrence theorem (II1.2) is not valid without the assumption of finite measure
spaces or measure-preserving transformations:

(i) Take X = R and the Lebesgue measure m. Then the shift
T:x—T+1

on X is bi-measure-preserving, but no point of A := [0, 1) is recurrent to A.
(ii) The transformation
0z —az?
on X = [0,1] is bi-measurable, but not measure-preserving for the Lebesgue
measure m. Clearly, no point of A := [3, 2] is recurrent to A.

ITI.D.4. Recurrence in random literature:

A usual typewriter has about 90 keys. If these keys are typed at random, what
is the probability to type for example this book? Let us say, this book has NV
letters including blanks. Then the probability of typing it with N random letters
is p = 90~N. The Bernoulli shift B(%, cee 9—10) is an MDS ()A(, f],ﬁ; 7) whose state
space consists of sequences (2 )rez which can be regarded as the result of infinite
random typing. What is the probability, that such a sequence contains this book,
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i.e. the sequence Ry, ..., Ry of letters? From
fi[there exists k € Z such that 341 = R1,..., 254N = RN]
=1 — fi[for every k € Z there exists i € {1,..., N} such that x4, # R;]
>1-— H fi[there exists i € {1,..., N} such that x;,; # R;]
k=1
=1—(1—

we conclude that this probability is 1. Now consider A := [z1 = Ry,...,2n = Rn]

p)" for every neN

having fi(A) = 0. We have just shown that for almost every x € X there is a num-
ber k such that 7%(x) € A for the shift 7. Poincaré’s theorem implies that there are
even infinitely many such numbers, i.e. almost every sequence contains this book
infinitely often!

By Kac’s theorem (Kac [1947], Petersen [1983]) and the ergodicity of B(g5, - - . 55)
the average distance between two occurrences of this book in random text is
% = 90" digits. The fact that this number is very large, may help to understand

the strange phenomenon depicted in (II1.2)

IT11.D.5. Invariant sets:

The transformations ¢ : X — X which we are considering in these lectures are bi-
jective. Therefore it is natural to call a subset A € X @-invariant if o(A) € A and
0 1(A) € 4, ie. p(A) = A. With this definition, a closed ¢-invariant set A € X
in a TDS (X;¢) always leads to the restricted TDS (A4;p|a), while ([0, 1]; ),
¢(z) := 22 and A = [0, 3] gives an example such that p(A4) S A but ¢|4 is not a
homeomorphism of A.

For MDSs (X, %, u; @) the situation is even simpler: ¢(A4) € A implies A C
0 YA) and p(A) = p(e~t(A)) since ¢ is measure-preserving. Therefore A =
07 1(A) and p(A) = A prae..

In agreement with the definition above we define the orbit of a point z € X as
{¢F(x) : ke Z}. If (X; ) is a TDS, the smallest closed invariant set containing a

point z € X is clearly the “closed orbit” {¢*(z) : k € Z}. However, the closed orbit
is, in general, not a minimal set: For example consider the one point compactifica-
tion of Z

X =7 v {0}

r—xz+1 ifreZ

and the shift 7 : {
00 > 00

Then {7#(0) : k € Z} = X is not minimal since 7(w0) = 0.
In many cases, however, the closed orbit is minimal as can be seen in the following.
Lemma: Let (X;¢) be a TDS, where X is a metric space (with metric d) and
assume that X = {¢*(a): s € Z} for some a € X. If for every € > 0 there exists
k € N with

d(a,p*%a) < for all s€Z,

then (X;¢) is minimal.
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Proof. Tt suffices to show that a € {¢%(x) : s € Z} for every x € X. Let be z € X
€ > 0, and choose k € N such that

(i) d(a,p"*a) < ¢ for all s € Z.
Since the family of mappings {¢%, !, ..., ¢*} is equicontinuous at z there is
0 > 0 such that
(ii) d(¢'z,o'y) <eift€{0,...,k} and d(z,y) < . The orbit of a is dense in X.
Therefore, we find r € Z with
(iii) d(z,¢"a) < ¢ and by (i) a suitable ¢ € {0,...,k} with
(iv) d(¢'*"a,a) < e.

Combining (ii), (iii) and (iv) we conclude that

d(p'z,a) < d(o'z, o' (¢ a)) + d(¢""a,a) < 2.

Remark: Minimality in metric spaces is equivalently characterized by a property
weaker than that given above (see Jacobs [1960], 5.1.3.).

ITI.D.6. Ergodicity implies “time mean equal space mean”:
The physicists wanted to replace the time mean

1 n—1
o i
Jim — >0 foe!(x)
i=0
of an “observable” ¢ in the “state” = by the space mean

J fdu (see Lecture 1),
X

i.e. the above limit has to be equal the constant function (SX fdu) - 1. Obviously
the time mean is a ¢-invariant function, and we conclude by (I11.4) that “time mean
equal space mean” holds for every observable f (at least: f € LP(u)) if and only
if () the dynamical system is ergodic. In this way the original problem of ergodic
theory seems to be solved, but there still remains the task for the mathematician to
prove the existence of the above limit (see Lecture IV and V). Even more important
(and more difficult) is the problem of finding physical systems and their mathemat-
ical models, which are ergodic. The statement of Birkhoff-Koopmann [1932] “the
outstanding unsolved problem in ergodic theory is the question of the truth or fal-
sity of metrical transitivity (= ergodicity) for general Hamiltonian systems” is still
valid, even if important contributions have been made for the so-called “billiard
gas” by Sinai [1963] and Gallavotti-Ornstein [1974] (see Gallavotti [1975]).

ITI.D.7. Decomposition into ergodic components:

As indicated it is a mathematical principle to decompose an object into “irre-
ducible” components and then to investigate these components. For an MDS this
is possible (with “ergodic” for “irreducible”). In fact, such a decomposition is based
on the geometrical principle of expressing a point of a (compact) convex set as a
convex sum of extreme points (see books on “Choquet theory”, e.g. Phelps [1966]
or Alfsen [1971]), but the technical difficulties, due to the existence of null sets, are
considerable, and become apparent in the following example:
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Consider the MDS (X, B, m; ¢,) where X := {z € C: |z| < 1}, B the Borel algebra,
m the Lebesgue measure m(X) = 1 and ¢, the rotation

wa(2) =a-z
for some a € C with |a| = 1, a™ # 1 for all n € N. Its ergodic “components” are the
circles X, :={2€ C: |z] =7} for 0 <7 < 1 and (X, B, m;p,) is “determined” by
these ergodic components. For more information we refer to von Neumann [1932]
or Rohlin [1966].

ITI.D.8. One-dimensionality of the fixed space:

Ergodicity is characterized by the one-dimensionality of the fixed space (in the
appropriate function space) while minimality is not (II11.4 and III1.8.1). The fixed
space of the induced operator T, in C(X) is already one-dimensional if there is
at least one point x € X having dense orbit {¢"(z) : n € Z} in X (see IIL7,
Proof). This property of a TDS, called “topological transitivity” or “topological
ergodicity”, is another topological analogue of ergodicity as becomes evident from
the following characterizations (see Walters [1975] p. 22 and p. 117):

1. For an MDS (X, X, u; ¢)the following are equivalent:

a.  is ergodic.

b. For all A, Be X, u(A) # 0 # u(B), there is k € Z such that u(¢*A n B) > 0.
2. For a TDS (X;¢), X metric, the following assertions are equivalent:

a.  is topologically ergodic.

b. For all A, B open, A # J # B there is k € Z such that o*An B #
But even topological transitivity, although weaker than minimality, is not charac-
terized by the fact that the fixed space is one-dimensional in C(X), see (II1.8).i.
The reason is that T, in C(X) lacks a certain convergence property which is au-
tomatically satisfied in LP(X, X, ) (see IV.7 and IV.8; for more information see
IX.D.7.

ITI1.D.9. Ergodic and minimal rotations on the n-torus:
The rotation

Yo 12— a2

on the n-dimensional torus I'” with a = (a1,...,a,) € I'" is is ergodic (minimal) if
and only if {a1,...,a,} are linearly independent in the Z-module T'

Proof. (i) In the measure-theoretical case use the n-dimensional Fourier expan-
sion and argue as in (IIL.5.1).

(ii) In the topological case we argue as in (II.8.iii) observing that for an a =
(a1,...,a,) € T™ the set {a* : k € Z} is dense in T iff {a,...,a,} is linearly
independent in the Z-module I' (see D.8).

L]

IT1.D.10. Ergodic vs. minimal:

Let (X; ) be a TDS and p a p-invariant probability measure on X (see also App. S).
Then (X, B, i; ¢) is an MDS for the Borel algebra B. In this situation, is it possible
that if is ergodic but not minimal, or vice versa? The positive answer to the first
part or our question is given by the Bernoulli shift, see (IT1.5.ii) and (III.8.iv). The
construction of a dynamical system which is minimal but not ergodic is much more
difficult and needs results of Lecture IV. We come back to this problem in IV.D.9.
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ITI.D.11. Irreducible operators on Banach lattices:

Let T be a positive operator on some Banach lattice E. It is called irreducible
if it leaves no non-trivial closed lattice ideal invariant. If £ = C(X), resp. E =
LY(X, 0, ), every closed lattice ideal is of the form

In:={feE:f(A)c{0}}

where A € X is closed, resp. measurable, (Schaefer [1974], p. 157). Therefore, it
is not difficult to see that an induced operator T, on C(X), resp. LP(X,%, ) is
irreducible if and only if (X; ) is minimal, resp. if (X, X, ;) ergodic. In contrast
to minimal TDSs the ergodicity of an MDS (X, X, y; ¢) is characterized by the one-
dimensionality of the T,-fixed space in LP(X,%, ), 1 < p < oo, (see II1.4). The
reason for this is the fact that the induced operators are mean ergodic on LP(u)
but not on C'(X) (see Lecture IV). More generally, the following holds (see Schaefer
[1974], TIL.8.5).

Proposition: Let T be a positive operator on a Banach lattice F and assume that
T is mean ergodic with non-trivial fixed space F. The following are equivalent:

(a) T is irreducible.
(b) F = <uy and F' = {uy for some quasi-interior point v € E, and a strictly
positive linear form p € E’,.

If E is finite-dimensional, we obtain the classical concept of irreducible (= inde-
composable) matrices (see IV.D.7 and Schaefer [1974], 1.6).

Example: The matrix

pO ......... pk‘fl

of (IL.6), Exercise is irreducible whereas the Bernoulli shift B(pg,...,pr_1) is er-
godic (see (I11.5.i1)). This gives the impression that irreducibility is preserved under
dilation (see App. ??7) at least in this example. In fact, this turns out to be true
(App. 77), and in particular in (IV.D.8) we shall show that any Markov shift is
ergodic iff the corresponding matrix is irreducible. Frobenius discovered in 1912
that the point spectrum of irreducible positive matrices has nice symmetries. The
same is true for operators T,,, as shown in (IIL.9).

This result has been considerably generalized to irreducible positive operators
on arbitrary Banach lattices. We refer to Schaefer [1974], V.5.2 for a complete
treatment and quote the following theorem.

Theorem Lotz, 1968: Let T be a positive irreducible contraction on some
Banach lattice E. Then Po(R)nI is a subgroup of I' or empty, and every eigenvalue
in I" is simple.

References: Lotz [1968], Schaefer [1967/68], Schaefer [1974].

I11.D.12. The origin of the word “Ergodic Theory”:

In the last decades of the 19*" century mathematicians and physicists endeavoured
to explain thermodynamical phenomena by mechanical models and tried to prove
the laws of thermodynamics be mechanical principles or, at least, to discover close
analogies between the two. The Hungarian M.C. Szily [1872] wrote:
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“The history of the development of modern physics speaks decid-
edly in favour of the view that only those theories which are based
on mechanical principles are capable of affording a satisfactory ex-
planation of the phenomena.”

Those efforts were undertaken particularly in connection with the second law of
thermodynamics; Szily [1876] even claimed to have deduced it from the first,
whereas a few years earlier he had declared:

“What in thermodynamics we call the second proposition, is in
dynamics no other than Hamilton’s principle, the identical principle
which has already found manifold applications in several branches
of mathematical physics.”

(see Szily [1872]; see also the subsequent discussion in Clausius [1872] and Szily
[1873].)

In developing the Mechanical Theory of Heat three fundamentally different hy-
potheses were made; besides the hypothesis of the stationary or quasi-periodic
motions (of R. Clausius and Szily) and the hypothesis of monocyclic systems (of
H. von Helmholtz, cf. Bryan-Larmor [1892]), the latest investigations at that time
concerned considerations which were based on a very large number of molecules in
a gas and which established the later Kinetic Theory of Gases. This was the statis-
tical hypothesis of L. Boltzmann, J.B. Maxwell, P.G. Tait and W. Thomson, and
its fundamental theorem was the equipartition theorem of Maxwell and Boltzmann:
When a system of molecules has attained a stationary state the time-average of the
kinetic energy is equally distributed over the different degrees of freedom of the
system. Based on this theorem there are some proofs of the second law of thermo-
dynamics (Burbury [1876], Boltzmann [1887]), but which was the exact hypothesis
for the equipartition theorem itself? In Maxwell [1879] we find the answer:

“The only assumption which is necessary for the direct proof (of
the equipartition theorem) is that the system, if left to itself in
its actual state of motion, will, sooner or later, pass through every
phase which is consistent with the equation of energy.”

Boltzmann [1871], too, made use of a similar hypothesis:

“Von den zuletzt entwickelten Gleichungen kénnen wir unter einer
Hypothese, deren Anwendbarkeit auf warme Korper mir nicht un-
wahrscheinlich scheint, direkt zum Warmegleichgewicht mehratom-
iger Gasmolekiile je noch allgemeiner zum Warmegleichgewicht eines
beliebigen mit einer Gasmasse in Beriihrung stehenden Korpers
gelangen. Die grofle UnregelmafBigkeit der Warmebewegung und
die Mannigfaltigkeit der Krafte, welche von auflen auf die Korper
wirken, macht es wahrscheinlich, dafl die Atoms derselben vermdége
der Bewegung, die wir Warme nennen, alle moglichen mit der Gle-
ichung der lebendigen Kraft vereinbare Positionen und Geschwindig-
keiten durchlaufen, dafl wir also die zuletzt entwickelten Gleichun-
gen auf die Koordinaten und die Geschwindigkeitskomponenten der
Atome warmer Korper anwenden kénnen.”

Sixteen years later, Boltzmann mentioned in [1887]
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“.. (Ih habe fiir derartige Inbegriffe von Systemen den Namen
Ergoden vorgeschlagen.)...”

This may have induced P. and T'. Ehrenfest to create the notion of “Ergodic Theory”
by writing in “Begriffliche Grundlagen der statistischen Auffassung” [1911]:

“... haben Boltzmann und Maxwell eine Klasse von mechanischen
Systemen durch die folgende Forderung definiert:

Die einzelne ungestorte Bewegung des Systems fiihrt bei unbegren-
zter Fortsetzung schliellich durch jeden Phasenpunkt hindurch, der
mit der mitgegebenen Totalenergie vertraglich ist. — Ein mecha-
nisches System, das diese Forderung erfiillt, nennt Boltzmann ein
ergodisches System. “

The notion “ergodic” was explained by them in a footnote:

“€pyov = Energie, 6806¢= Weg : Die G-Bahn geht durch alle Punkte
der Energiefliche. Diese Bezeichnung gebraucht Boltzmann das
erste Mai in der Arbeit [15] (1886) ” (here Boltzmann [1887])

But this etymological explanation seems to be incorrect as we will see later. The hy-
pothesis quoted above, i.e. that the gas models are ergodic systems, they called the
“Ergodic Hypothesis”. In the sequel they doubted the existence of ergodic systems,
i.e. that their definition does not contradict itself. Actually, only few years later
A. Rosenthal and M. Plancherel proved independently the impossibility of systems
that are ergodic in this sense (cf. Brush [1971]). Thus, “Ergodic Theory” as a theory
of ergodic systems hardly survived its definition. Nevertheless, from the explication
of the “Ergodic Hypothesis” and its final negation, “Ergodic Theory” arose as a
new domain of mathematical research (cf. Brush [1971], Birkhoff-Koopmann [1932].

But, P. and T. Ehrenfest were mistaken when they thought that Boltzmann used
the notion “Ergodic” and “Ergodic Systems” in Boltzmann [1887] for the first time.
In 1884 he had already defined the notion “Ergode” as a special type of “Monode”.
In his article (Boltzmann [1885]) first of all he wrote:

“Ich mochte mir erlauben, Systeme, deren Bewegung in diesem
Sinne stationéar ist, als monodische Oder kiirzer als Monoden zu
bezeichnen. (Mit dem Namen stationdr wurde von Herrn Clausius
jede Bewegung bezeichnet, wobei Koordinaten und Geschwindigkeiten
immer zwischen endlichen Grenzen eingeschlossen bleiben). Sie
sollen dadurch charakterisiert sein, daf§ die in jedem Ptmkte der-
selben herrschende Bewegung unveréndert fortdauert, also nicht
Funktion der Zeit ist, solange die duleren Krafte unverédndert bleiben,
und dafl auch in keinem Punkte und keiner Fléhe derselben Masse
oder lebendige Kraft oder sonst ein Agens ein- oder austritt.”

In a modern language a “Monode” is a system only moving in a finite region of
phase space described by a dynamic system of differential equations; a simple exam-
ple is a mathematical pendulum. From Boltzmann’s definition we can understand
the name: pévoc means “unique”, “Monode” probably comes from povoddne which
is composed of uévo—wdng where the suffix —onc means “-like”.



26

Having specified some different kinds of “Monoden” as “Orthoden” and “Holo-
den”, Boltzmann turned towards collections (ensembles) of systems which were all
of the same nature, totally independent of each other and each, of them fulfilling
a number of equations ¢ = aq, ..., pr = ag. Of special interest to him were those
collections of systems fulfilling only one equation ¢ = a concerning the energy of
all systems in the collection.

“

. so wollen wir den Inbegriff aller N Systeme als eine Monode

bezeichnen, welche durch die Gleichungen ¢1 = a,... beschrinkt

ist ... Monoden, welche nur durch die Gleichung der lebendigen

Kraft beschrankt sind, will ich als Ergoden, solche, welche aufler

dieser Gleichung auch noch durch andere beschrénkt sind, als Suber-

goden bezeichnen.... Fiir Ergoden existiert also nur ein ¢, welches

gleich der fiir alle Systeme gleichen und wahrend der Bewegung

jedes Systems konstanten Energie eines Systems x + ¢ = WLNL)

ist”.
(Boltzmann [1885]; , ¢ mean the potential energy, ¥, L the kinetic energy of one
system, of the collection of N systems, respectively.) The last sentence of that
quotation helps us to understand the name “Ergode” in the right way: The word
gpyov = “work, energy” is used, but in a sense different from that presumed by the
Ehrenfests who also did not mention Boltzmann’s article [1885] in their bibliogra-
phy [1911].

Boltzmann also had knowledge of “Monoden” fulfilling the “Ergodic Hypothe-
sis” of the Ehrenfests. In the fourth paragraph of Boltzmann [1885] we read in a
footnote:

“Jedesmal, wenn jedes einzelne System der Monode im Verlaufe der
Zeit alle an den verschiedenen Systemen gleichzeitig nebeneinander
vorkommenden Zusténde durchlduft, kann an Stelle der Monode ein
einziges System gesetzt werden.... Fiir eine solche Monode wurde
schon frither die Bezeichnung “isodisch” vorgeschlagen”

In summary an “Ergode” is a special kind of “Monode”, namely one which is de-
termined by “ €pyov”’ = “energy” or “work”, and the word “Monode” stems from
uévog = “one” or “unique” and the suffix —ddnc = “~like” or “~full”. Therefore a
“Monode” is literally “one-like” i.e. atomary or indecomposable, which is just the
modern meaning of ergodic. Taken literally, however, the word “Ergode” means
“energy-like” or “work-full”, which brings us back to our first etymological answer
in Lecture I:

“ difficult 7!

References: Boltzmann [1885], [1887], Brush [1971], Ehrenfest [1911]

P.S. The above section originated from a source study by M. Mathieu. The Ehren-
fests’ explanation of the word “ergodic” is still advocated by A. LoBello:
The etymology of the word ergodic, in: Conference on modern
Analysis and Probability, New Haven 1982, Contempt.Math. 26,
Amer. Math. Soc. Providence R.I., 1984, p.249.
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IV. The Mean Ergodic Theorem

“Ergodic theory is the study of transformations from the point of view of ... dynam-
ical properties connected with asymptotic behavior” (Walters [1975], p. 1). Here,
the asymptotic behavior of a transformation ¢ is described by
“lim 7"
n—w

where it is our task first to make precise in which sense the “lim” has to be under-
stood and second to prove its existence. Motivated by the original problem “time
mean equals space mean” (see II1.D.6) we investigate in this lecture the existence
of the limit for n — oo not of the powers ™ but of the “Cesaro means”

1n71 )
ﬁ;fmp

where f is an “observable” (see physicist’s answer in Lecture I) contained in an ap-
propriate function space. With a positive answer to this question - for convergence
in L2-space - ergodic theory was born as an independent mathematical discipline.

IV.1 Theorem (J. von Neumann, 1931):
Let (X, %, ;) be and MDS and denote by T,, the induced (unitary) operator on
L?(X,%, ). For any f e L?(u) the sequence of functions

1 n—1
_ 1
= Z T:f
i=0
(norm-)converges to a Tj,-invariant function f e L?(u).

It was soon realized that only a few of the above assumptions are really neces-
sary, while the assertion makes sense in a much more general context. Due to the
importance of the concept and the elegance of the results, an axiomatic and purely
functional-analytic approach seems to be the most appropriate.

IV.2 Definition:
An FDS (E;T) (resp. a bounded linear operator T') is called mean ergodic, if the

sequence
1 n—1
= — Z T, neN
n 1=0

converges in .Z(FE) for the strong operator topology.

As above, the operators T}, will be called the “Cesaro means” of the powers T°.
Moreover we call P := lim,,_, Ty, if it exists, the “projection corresponding to T .
This language is justified by the following elementary properties of mean ergodic
operators.

IV.3 Proposition:
(0) (id=T)T, = L(id —T") for every n e N
If T is mean ergodic with corresponding projection P, we have

(1) TP = PT = P = P2.

()PE Fi={feE:Tf=f}

(3) P=H(0) = (id = T)E.

(4) The adjoints T, converge to P’ in the weak*-operator topology of Z(E’) and
P'E =F:= {f’eE’:T’f’ 1}
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(5) (PE) is (as a topological vector space) isomorphic to P’'E’.

Proof.

(0) is obvious from the definition of T,.

(1) Clearly, (n + 1)Ty 41 — id = nT,,T = nTT,, holds. Dividing by n and letting n
tend to infinity we obtain P = PT = TP. From this we infer that T,,P = P
and thus P? = P.

(2) PE < F follows from TP = P, and F € PE from P = lim,,,, T},.

(3) By the relations in (1), (id — T)E and (by the continuity of P) its closure is
contained in P~1(0). Now take f € P~1(0). Then

n
f=f—Pf=f—PTf=lim(id—T,7T)f = lim lZ(id—Ti)f

n—o n—ow n -4

1=1

n—x0

1 SE—
= lim (id—T)EZiTife(id—T)E.
1=1

(4) By the definition of the weak® operator topology, T, converges to P’ if (T, f, f'> =
TS — S, P fy = (Pf, f"> for f e E and f' € E'. This follows from
the convergence of T,, to P in the strong operator topology. Together with
(PT)" = T'P’' = P’ this implies the remaining property as in (2).

(5) This statement holds for every projection on a Banach space (see B.7, Propo-
sition).

n

Our main result contains a list of surprisingly different, but equivalent characteri-
zations of mean ergodicity at least for operators with bounded powers.

IV.4 Theorem:

If (E;T) is an FDS with |7 < c for every n € N the following assertions are

equivalent:

a) T is mean ergodic.

) T, converges in the weak operator topology.
) {Tn.f : n € N} has a weak accumulation point for all f € F

d) co{T'f : i e Ny} contains a T-fixed point for all f € E.
)

Proof. The implications (a) = (b) = (c) are trivial.

(¢c)= (d): Take f € FE and let g be a weak accumulation point of {T,,f : n € N},

ie.ge{T,f:n> nO}U(E’E) for all ng € N. Certainly, g is contained in co{T"f :
i € Np}, and we shall show that ¢ is fixed under T: For any ng € N we obtain

g—Tg=(d—T)ge (id—T){T,f n>no} C{Gd—T)Tnf n>no}
={Lid-T")f:n> no}Cr < (1 +9|f]T,

= no

where U is the closed unit ball in F — we used the fact that (id — T') is continuous
for the weak topology and that U is weakly closed (see B.7 and B.3).

(d) = (e) : Choose f',¢g' € F', f' # ¢, and f € E with {f, f"> # {f,g¢'). For

all clements fo € (T f : i € No} we have (fo, /5 = (f, /> and (fo, o' = <f,g')
Therefore the T-fixed point f; € co{T'f : i € N} which exists by (d), satisfies
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i I =<1 # .97 = fr,g'), Le. it separates f’ and g'.

(e) = (a): Consider

G:=F®@id-T)E
and assume that f’ € E’ vanishes on G. Since it vanishes on (id — T')E it follows
immediately that f’ € F’. Since it also vanishes on F’, which is supposed to separate
F’, we conclude that f’ = 0, hence that G = E. But T, f converges for every f €
F@(id—T)E, and the assertion follows from the equicontinuity of {T,, : n € N}. =

The standard method of applying the above theorem consists in concluding mean
ergodicity of an operator from the apparently “weakest” condition (IV.4.c) and
the weak compactness of certain sets in certain Banach spaces. This settles the
convergence problem for the means T),, as long as the operator T is defined on the
right Banach space E.

IV.5 Corollary:
Let (F;T) be an FDS where F is a reflexive Banach space, and assume that |77 <
c for all n € N. Then T is mean ergodic.

Proof. Bounded subsets of reflexive Banach spaces are relatively weakly compact
(see B.4). Since {T), f : n € N} is bounded for every f € E, it has a weak accumu-
lation point. [ ]

Besides matrices with bounded powers on R™ we have the following concrete
applications:

Example 1: Let E be a Hilbert space and T' € Z(E) be a contraction. Then T
is mean ergodic and the corresponding projection P is orthogonal: By (IV.5) the
Cesaro means T, of T' converge to P and the Cesar6é means TF of the (Hilbert space)
adjoint T™* converge to a projection Q. If (-|-) denotes the scalar product on E, we
obtain from (T}* f|g) — (Qf|g) and (f|Tng) — (f|Pg) for all f, g e E that Q = P*.
The fixed space F' = PFE of T and the fixed space F* = P*FE of T* are identical:
Take f € F. Since |T|| = |T*|| < 1, the relation (f|f) = (Tf|f) = (f|T*f) implies
(F15) < IFL- I £l < IFI2 = (fIf), hence T* f = f. The other conclusion F'* € F
follows by symmetry. Finally we conclude from P = P*P = (P*P)* = P* that P
is orthogonal.

Example 2: Let (X, %, ;) be an MDS. The induced operator T, on LP(X, o, 1)
for 1 < p < o0 is mean ergodic, and the corresponding projection P is a “conditional
expectation” (see B.24):

For f,ge L* and T, f = f we obtain Tw(fg) =T,-T,g = f-T,g. The same holds
for (Ty,)n, and therefore P(fg) = f - Pg.

Both examples contain the case of the original von Neumann theorem (IV.1).

IV.6 Corollary:
Let (E;T) be an FDS where E = LY(X,X, u), u(X) < oo, and T is a positive
contraction such that 71 < 1. Then 7T is mean ergodic.

Proof. The order interval [—1,1] := {f € L*(u) : =1 < f < 1} is the unit ball of
the dual L” (u1) of L'(p) and therefore o(L*, L')-compact. The topology induced
by o(L', L*) in [~1, 1] is coarser than that induced by o(L*, L') — since L*(u) €
L'(u) — but still Hausdorff. Therefore the two topologies coincide (see A.2) and
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[—1,1] is weakly compact. By assumption, T" and therefore the Cesaro means T,
map [—1,1] into itself, hence (IV.4.c) is satisfied for all f € L% (u). As shown in
(B.14) the same property follows for all f e L(u). n

Using deeper functional-analytic tools one can generalize the above corollary still
further: Let T be a positive contraction on L!'(X,¥, 1) and assume that the set
{T,,u : n € N} is relatively compact for some strictly positive function u € L(u).
By [Schaefer, I1.8.8] it follows that | J,,.x{g € I* (1) : 0 < g < T,,u} is also relatively
weakly compact. From 0 < T,,f < Thu fo 0 < f < u, (B.14) and (IV.4.c) we
conclude that T is mean ergodic (see Ito [1965], Yeadon[1980]).

Example 3: Let (X, X, u;¢) be an MDS. The induced operator T, in L*(X, %, )
is mean ergodic, and the corresponding projection is a conditional expectation: The
first assertion follows from (IV.6) while the second is proved as in Example 2 above.

Example 4: Let E = L'([0,1], B, m), m the Lebesgue measure, and k : [0,1]? —
1

R, be a measurable function, such that [ k(x,y) dy = 1 for all z € [0, 1]. Then the
0

kernel operator
1

T:E—E, fw—Tf(z):= L k(x,y)f(y) dy

is mean ergodic.

Even though there is still much to say about the functional-analytic properties of
mean ergodic operators, we here concentrate on their ergodic properties as defined
in Lecture III. A particularly satisfactory result is obtained for MDSs, since the
induced operators are automatically mean ergodic on LP(u), 1 < p < o0.

IV.7 Proposition:

Let (X,%, ;) be an MDS and E = LP(X,3, 1), 1 < p < co. Then T, is mean

ergodic and the following properties are equivalent:

(a) ¢ is ergodic.

(b) The projection corresponding to T, has the form P = 1®1,ie. Pf ={f,1)-1
forall fe E

n—1
() 3 [(fog')-gdu converges to [ fdu- [ gduforall fe LP(u), ge LP(n) =
=0 X X X

: 1 1 _

=

3
|

(d) £ > u(Ane 1(B)) converges to u(A) - u(B) for all A, B e ¥.
i=0
n—1

(e) L 3 w(An ¢ 1(A)) converges to u(A)? for all A€ X.
=0

Proof.

(a) = (b): Since  is ergodic and T, is mean ergodic, the fixed spaces of T, and T},
are one-dimensional (III.4 and IV.4.e). Since P is a projection onto the T, -fixed
space it must be of the form f+— Pf = {f, f/>1 for some f’' € E’. But

L fdp = (F 1) = (f TUL = (f, Py = (PF 1y = (F, £+ (1,15 = Fs 17
shows that P=1® 1.
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(b) = (c): Condition (c) just says that 1 2 T}, converges toward 1®1 in the weak

operator topology for the particular Space Lp (1) and its dual L9(p).
(¢) = (d): This follows if we take f =14 and g = 1. The implication
(d) = (e): is trivial.

(e) = (a): Assume that ¢(A) = Ae . Then 1 Z (A npTi(A)) is equal to p(A)

and converges to p(A)2. Therefore ;1(A) must be equal to 0 or 1. n

Remark: Further equivalences in (IV.7) are easily obtained by taking in (c) the
functions f, g only from total subsets, resp. in (d) or (e) the sets A, B only from a
subalgebra generating 3.

The “automatic” mean ergodicity of T, in L”(u), 1 < p < o (by Example 2 and
5) is the reason why ergodic MDSs are characterized by the one-dimensional fixed
spaces (see I111.4). In fact, mean ergodicity is a rather weak property for operators
on LP(u), p # o0, in the sense that many operators (e.g. all contractions for p # 1
or all positive contractions satisfying 71 < 1 for p = 1) are mean ergodic.

For operators on spaces C'(X) the situation is quite different and mean ergodicity
of T'e Z(C(X)) is a very strong property. The reason is that the sup-norm |- ||, is
much finer than |- |, therefore it is more difficult to identify weakly compact orbits
(in order to apply IV.4.c) or the dual fixed space (in order to apply IV.4.e). Even
for operators Ty, on C(X) induced by a TDS one has mean ergodicity only if one
makes additional assumptions, e.g. (IV.8 below or VIII.2). This non-convergence
of the Cesaro means of T, accounts for many of the differences and additional
complications in the topological counterparts to measure theoretical theorems. A
first example is the characterization of minimality by one-dimensional fixed spaces.

IV.8 Proposition:

For a TDS (X; ¢) the following are equivalent:

(a) T, is mean ergodic in C(X) and ¢ is minimal.

(b) There exists a unique @-invariant probability measure, and this measure is
strictly positive.

Proof. (a) = (b): From (IIL.7.i) and (IV.4.e) we conclude that dim F' = dim F" = 1
for the fixed spaces F' in C'(X), resp. F’ in C(X)'. Since T, is a positive operator,
so is P and hence P’. Every element in C'(X)’ is a difference of positive elements,
the same is true for F' = P'C(X)’ and therefore F’ is the subspace generated by a
single probability measure called v.

Let 0 € f e C(X) with (f,v) = 0 and define Y := [|{[f o p™ = 0] : n € Z}.
Then is closed and @-invariant, and therefore Y = @for Y = X. If Y = X, then
f =0, whereas if Y = @& implies that for all x € X one has f o ¢™(z) > 0 for some
n € Z. Since {f,v) = (F o @™, v) for all n € N, this shows that {f,v) > 0.

(b) = (a): Let f" € C(X)" be T -invariant. Since T}, is positive, we obtain
|1 =115 1 < TGl f]
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and (L, |f') < LTI = TLIF = (LIfD. Hence (LTLIF] - |f/]) =
(T f']) — L, [f']) = 0, therefore |f| is T -invariant, and the dual fixed space
F’ is a vector lattice. Consequently every element in F” is difference of positive
elements and — by assumption — F”’ is one-dimensional and spanned by the unique
p-invariant probability measure v. Apply now (IV.4.e) to conclude that T, is mean
ergodic. Again the corresponding projection is of the form P = 1®v. Assume now
that Y € X is closed and ¢-invariant. There exists 0 < f € C(X) with f(Y) € {0},
T, f(Y) < {0}, therefore (Pf)(Y) < {0}. Hence ([ fdv)1(Y) < {0} and ¥ must
X

be empty. ]

Example 5: The rotation ¢, induces a mean ergodic operator T,,, on C(I'): If
a™ =1 for some ng € N, the operator 7, is periodic (i.e. T7° = id) and therefore
mean ergodic (see IV.D.3).

In the other case, every probability measure invariant under ¢, is invariant un-
der pgnfor all n € N and therefore under all rotations. By (D.5) the normalized

Lebesgue measure is the unique probability measure having this property, and the
assertion follows by (IV.8.b).

The previous example may also be understood without reference to the uniqueness
of Haar measure: Let G be a compact group. The mapping

G- Z(C(Q)) :h—T,, (see 11.2.2)

is continuous, hence the orbits — as well as their convex hulls — of any operator T,

are relatively (norm)compact in C(G). Then apply (IV.4.c) to obtain the following
result.

IV.9 Proposition:
Any rotation operator on C(G), G a compact group, is mean ergodic.

Exercise: The fixed space of T, in C(G), where ¢, is the rotation by g on the
compact group G, is one-dimensional if and only if {g¥ : k € Z} is dense in G.

IV.D Discussion

IV.D.0 Proposition:

Assume that a € I'is not a root of unity. The induced rotation operator T, is mean
ergodic on the Banach space R(I") of all bounded Riemann integrable functions on
I' (with sup-norm), and the (normalized) Riemann integral is the unique rotation
invariant normalized positive linear form on R(T").

Proof. First, we consider characteristic functions y of “segments” on I' and show
that the Cesaro means

1 n—1 )
Tox = n Z T;QX
i=0
converge in sup-norm || « [,
For € > 0 choose f., g € C(I') such that
0<fesx<ge

and §(9: — fe) dm <&, m Lebesgue measure on I'.
r



33

But T := T, is mean ergodic (with one-dimensional fixed space) on C(T'), i.e.

Tngemggadm'l
I

and Tof 5 ¢ pdm 1.
I

From T, f- < Tpx < Thg. we conclude that | - ||, — limy, o, T3 x exists and is equal
to [xdm - 1. Now, let f be a bounded Riemann integrable function on I". Then
r

for every € > 0 there exist functions gi, g being linear combinations of segments
such that
g1<f<ge and [(g2 —g1)dm <e,
r

and an easy calculation shows that
|-l = lim T,f = (gfdm) 1.
n—a0 T

Finally, since the fixed space of T' in R(I"), which is equal to the fixed space un-
der all rotations on I', has dimension one, the mean ergodicity implies the one-
dimensionality of the dual fixed space. ]

The preceding result is surprising, has interesting applications (see IV.D.6) and
is optimal in a certain sense:

Example 6: The rotation operator T,,, induced by ¢,, a € I' not a root of unity,
is mean ergodic

neither on (i) L*¥(T',B,m)
nor on (ii) B(I"), the space of all bounded Borel measurable

functions on I' endowed with the sup-norm.

Proof. (i) The rotation ¢, is ergodic on T, hence the fixed space of T := T,,, in
L'(m) and a fortiori in L*(m) has dimension one. We show that the dual fixed
space F” is at least two-dimensional: Consider A := {a" : n € Z} and I := {f €
L*(m) : thereis f € f vanishing on some neighbourhood (depending on f) of A}.
Then [ is # {0}, T-invariant and generates a closed (lattice or algebra) ideal J in
L*(m). From the definition follows that T"J < J and 1 ¢ J. Consequently, there
exists v € (L*(m))’ such that (1,v) = 1, but v vanishes on J. The same is true
for T'v and T} v for all n € N. By the weak* compactness of the dual unit ball
the sequence {7 v},en has a weak* accumulation point vg. As in (IV.4), ¢ = d
we show that vy € F’. Since (1,v9) = 1 and {f, ) = 0 for f € J, we conclude
0 # vy #m.

(i) Take a 0-1-sequence (¢;);en, Which is not Cesaro summable, i.e.
1 n—1
lim — ;
iz

does not exist. The characteristic function x of the set

{a" ¢, =1}
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is a Borel function for which
Tox(a)

does not converge, hence the functions T}, x do not converge in B(T'). [ ]

IV.D.1. “Mean ergodic” vs. “ergodic”:

The beginner should carefully distinguish these concepts. “Ergodicity” is a mix-
ing property of an MDS (X, 3, ;) (or a statement on the fixed space of T,
in LP(X,%, 1)), while “mean ergodicity” is a convergence property of the Cesaro
means of a linear operator on a Banach space. More systematically we agree on
the following terminology: “Ergodicity” of a linear operator T' € Z(FE), E Banach
space, refers to the convergence of the Cesaro means T, with respect to the uniform,
strong or weak operator topology and such operators will be called “uniformly er-
godic”, “strongly ergodic”, resp. “weakly ergodic”. For {T™ : n € N} bounded, it
follows from Theorem (IV.4) that weakly ergodic and strongly ergodic operators
coincide. Therefore and in order to avoid confusion with “strongly ergodic” trans-
formations (see IX.D.4) we choose a common and different name for such operators
and called them “mean ergodic”. Here, the prefix “mean” refers to the convergence
in the L?-mean in von Neumann’s original ergodic theorem (IV.1). “Uniform er-
godicity” is a concept much stronger than “mean ergodicity” and will be discussed
in Appendix W in detail.

IV.D.2. Mean ergodic semigroups:

Strictly speaking it is not the operator T" which is mean ergodic but the semigroup
{T™ : n € Ny} of all powers of T. More precisely, in the bounded case, mean
ergodicity of T is equivalent by (IV.4.d) to the following property of the semigroup
{T™ : n e Np}: the closed convex hull

co{T" : ne Ng}
of {T™ : n € Ny} in % (FE), which is still a semigroup, contains a zero element,
i.e. contains P such that

SP=PS=P
for all S € €0{T™ : n € Ny} (Remark: PT = TP = P is sufficient!). This point of
view is well suited for generalizations which shall, be carried out in Appendix Y. As

an application of this method we show that every root of a mean ergodic operator
is mean ergodic, too.

Theorem: Let E be a Banach space and S € Z(E) be a mean ergodic operator
with bounded powers. Then every root of S is mean ergodic.

Proof. Assume that S := T* is mean ergodic with corresponding projection Ps.
Define P := (; Z;:& T7)Ps and observe that P € co{T" : i € No} and TP :=
(+ Z;:é TitY) Py = P, (IT*Ps = Ps). Therefore, T is mean ergodic (see IV.4.d)
and P is the projection corresponding to T n

On the contrary, it is possible that no power of a mean ergodic operator is mean
ergodic.

Example: Let S : (2p)nen, — (Tnt1)nen, be the (left)shift on £*(Np) and take a
0-1-sequence (@, )nen, Which is not Cesaro summable.
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For k > 1 we define elements xj, € £ (Np):

Tpm = a% for n = ki (i € Np)
T = (xk:,n)neNo by Tkp = —Gn-1 forn = ki +1 (Z € NO)
E
Tpn =0 otherwise.

Consider the closed S-invariant subspace E generated by {S%zy :i € Ng, k > 1} in
£*(Np) and the restriction T := S|p. By construction we obtain [T,y < 2 for
all £ > 1. Consequently, T" is mean ergodic with corresponding projection P = 0.

On the other hand the sequence (i Zin:ol :z:kkl) = (i Z?Z)l ai) is not
meN meN

m m

convergent for k > 1, i.e. the Cesaré means T (x}) of the powers T, i € N,
applied to xj, do not converge. Therefore, no power T* (k > 1) is mean ergodic.

References: Sine [1976].
IV.D.3. Examples:

(i) A linear operator T on the Banach space E = C is mean ergodic if and only
if |T'|| < 1. Express this fact in a less cumbersome way!

The following operators T' € Z(E), E a Banach space, are mean ergodic with
corresponding projection P:

T periodic with 7" = id, ng € N, implies P = -1 Zno tri,

— —
53 =
Nas2

(b) T with spectral radius r(T) < 1 (e.g. |T| < 1) 1mphes P=0.

(¢) T has bounded powers and maps bounded sets into relatively compact sets.
(d) T(x1,22,23,...) = (0,21,22,...) on £, 1 < p < c0.

(e T(xl,xg,xg,...) (x2,%3,2Z4,...)on P, 1 < p < o0.

(f = {5 f(y) dy for f e C([0,1]).

jaid
=

—~
~ =
N — N

The followmg operators are not mean ergodic:

Tf(z) =z f(x) on C([0,1]): F = {0} but ||T},| =1 for all n e N.

Tf(z) = f(x?) on C([0,1]): F = (1) but Dirac measures &y, d; are contained
in B’

T(x1,22,73,...) = (0,21,79,...) on {11 F = {0} but |Tn(xx)| = |(z)| for
0 < (.”L'k) € (1.

(d) T(x1,x2,3,...) = (x2,23,24,...) on £*: 0— l-sequence which is not Cesaro
summable.

T o

—
o
~

IV.D.4. Convex combinations of mean ergodic operators:

Examples of “new” mean ergodic operators can be obtained by convex combina-
tions of mean ergodic operators. Our first lemma is due to Kakutani (see Sakai
[1977], 1.6.6)

Lemma 1: Let F be a Banach space. Then the identity operator id is an extreme
point of the closed unit ball in Z(F)

Proof. Take T' € Z(F) such that ||id + T| < 1 and |id —T'| < 1. Then the same
is true for the adjoints: [id’ + 77| < 1 and [id — 7’| < 1. For f’ € E’ define
fi == (id + T")f". resp. fy := (id' — T")f’, and conclude f' = 3(f{ + f3) and
Hf1 || I3l < | f'll- A soon as f’ is an extreme point of the unit ball in E’ we obtain

= f{ = f4 and hence T'f" = 0. But by the Krein-Milman theorem this is
sufﬁment to yield 7" = 0, and hence T = 0. Now assume that id = $(R + S)
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for contractions R, S € Z(F), and define T := id — R. This implies id — T = R
and id + T = 2id — R = S. By the above considerations it follows that T' = 0,
ie.id=R=S. [

Lemma 2: Let R,S be two commuting operators with bounded powers on a
Banach space E, and consider

T:=aR+(1-a)S
for 0 < @ < 1. Then the fixed spaces F(T'), F(R) and F(S) of T', R and S are

related by
F(T)=F(R)n F(S).

Proof. Ouly the inclusion F(T') € F(R) n F(S) is not obvious. Endow E with an
equivalent norm |z, := sup{|R"S™z| : n,m € No}, x € E and observe that R and
S are contractive for the corresponding operator norm. From the definition of T
we obtain

idF(T) = T|F(T) = OéR|F(T) + (1 — a)S’|F(T)

and R|p(r), S|r(r) € Z(F(T)), since R and S commute. Lemma 1 implies Rp(r) =
S|F(T) =iC].F(T)7 i.e. F(T) EF(R) ﬁF(S) u

Now we can prove the main result.

Theorem:
Let E be a Banach space and R, S two commuting operators on E with |R"|, [|S"| <
cfor all n e N. If R and S are mean ergodic, so is every convex combination

T:=aR+(1—-a)S, 0<a<l.

Proof. Let 0 < o« < 1. By Lemma 2 we have F(T) = F(R) n F(S) and F(T") =
F(R') n F(S"), and by (IV.4.e) it suffices to show that F(R) n F(S) separates
F(R") n F(S"): For f" # ¢’ both contained in F(R') n F(S') there is f € F(R)
with {f, f'> # {f,¢’). Since SF(R) € F(R) we have Psf € F(R) n F(S) where Pg
denotes the projection corresponding to S. Consequently

<PSfaf,>:<f?Péfl>:<f7PS’f/>:<faf/>¢<fagl>:<PSf7gl>'

The following corollaries are immediate consequences.

Corollary 1:
For T, R and S as above denote by Pg, resp. Ps the corresponding projections.
Then the projection Pr corresponding to T is obtained as

PT = PRPS = PsPR = hHﬁl/(RnSn)

Corollary 2:

Let {R; : 1 < i € m} be a family of commuting mean ergodic operators with
bounded powers. Then every convex combination 7' := >" | a; R; is mean ergodic.



37

IV.D.5. Mean ergodic operators with unbounded powers:
A careful examination of the proof of (IV.4) shows that the assumption

7" < ¢ for all n € Ny,

may be replaced by the weaker requirements

1
lim —|T"| =0 and |T,]|<c forallneN.
n—wn
The following example (Sato [1977]) demonstrates that such situations may occur.
We define two sequences (ay, )neny and (by,)nen-

ar=1, a,=2-4"2 forn>=2

and bn=Zai=%(2-4”_1+1) for n e N.
i=1
Endow X :={(ni):neN,1<i<b,}

with the power set as g-algebra X, and consider the measure p defined by

v({(n,9)}) ==

2t if1<i<a,
l/({(n_lvi_an)}) if a, <1i < b,.

Observing that Zle v({(n,i)}) = 2"~! we obtain a probability measure y on 3 by

p(f(n,0)}) i=2-47" - v({(n, 0)}).

The measurable (not measure-preserving!) transformation

(nyi+1) forl<i<b,
(n+1,1) fori=b,

p:(ni) > {
on X induces the desired operator T := T, on L' (X, 3, u).

First, it is not difficult to see that |T%|| = 2" for k = by, b, + 1,...,bu41 — 1. This
shows that sup{|T"| : k € N} = o0 and limj_,, +|T%| = 0.

Second, for b, + 1 < k < b, 11 we estimate the norm of the Cesaré means

1 brt1 . on
0 < Ty & U0 = Ty <6

Finally, T is mean ergodic: With the above remark this follows from (IV.4.c) as in
(IV.6).

IV.D.6. Equidistribution mod 1 (Kronecker, 1884; Weyl, 1916):

Mean ergodicity of an operator 1" with respect to the supremum norm in some
function space is a strong and useful property. For example, if T = T, for some
@: X — X and if x = 14 is the characteristic function of a subset A € X, then

n—1 n—1
1 ) 1 ;
Jim — go T'x(z) = lim — ;:0 x(¢'(z), zeX

is the “mean frequency” of visits of ¢™(z) € A. Therefore, if x is contained in some
function space on which 7' is mean ergodic (for || - ||,,), then this mean frequency
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exists (uniformly in x € X). Moreover, if the corresponding projection P is one-
dimensional, hence of the form P = p ® 1, the mean frequency of visits in A is
equal to p(A) for every z € X.

This observations may be applied to the “irrational rotation” ¢, on I'" and to the
Banach space R(P) of all bounded Riemann integrable functions on I" (see IV.D.0).
Thus we obtain the following classical result on the equidistribution of sequences
mod 1.

Theorem (Weyl, 1916):
Let £ € [0, 1]\Q. The sequence (&, )nen := n€ mod 1 is (uniformly) equidistributed
in [0, 1], i.e. for every interval [a, 8] < [0, 1] holds

i NG

n—%0 n

where N(a, 3,n) denotes the number of elements ¢; € [a, 8] for 1 < i < n.

This theorem H. Weyl [1916] is the first example of number-theoretical conse-
quences of ergodic theory. A first introduction into this circle: of ideas can be
found in Jacobs [1972] or Hlawka [1979], while Furstenberg [1981] presents more
and deeper results.

IV.D.7. Irreducible operators on L”-spaces:

The equivalent statements of Proposition (IV.7) express essentially mean ergodicity
and some “irreducibility” of the operator T, corresponding to the transformation
©. Using more operator theory, further generalizations should be possible (see also
II1.D.11). Here we shall generalize (IV.7) to FDSs (F;T), where E = LP(X, %, u),
wX)=1,1<p<oo,and T € Z(F) is positive satisfying 71 =1 and 7"1 = 1.

First, an operator-theoretical property naturally corresponding to “ergodicity” of
a bi-measure-preserving transformation has to be defined.

Definition:

Let (E;T) be an FDS as explained above. A set A € ¥ is called T-invariant if
T14(x) =0 for almost all z € X\A. The positive operator T is called irreducible if
every T-invariant set has measure 0 or 1.

Remarks:

1. It is obvious that for an operator T, induced by an MDS (X, X, u; ¢) irreducibil-
ity of T, is equivalent to ergodicity of ¢

2. If FE is finite-dimensional, i.e. X = {z1,...,2,}, and T is reducible, i.e. not
irreducible, then there exists a non-trivial T-invariant subset A of X. After a
permutation of the points in X we may assume A = {z1,...,zx} for 1 <k <n.

Then T1 4(x) = 0 for all x € X\ A means that the matrix associated with T" has
the form
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Proposition: Let (E;T) be an FDS formed by F = LP(X, X u), p(X) = 1,
1 € p < o0, and a positive operator T satisfying 71 = 1 and 7’1 = 1. Then T is
mean ergodic and the following statements are equivalent:

(a) T is irreducible.
(a’) The fixed space F' of T is one-dimensional, i.e. F' = (1).
b) The corresponding mean ergodic projection has the form P =1® 1.

)
(b)
(c) (T, f,g) converges to )f( fdp-§y gdu for every f e LP(u), g € L'(p).
(d)

)

d) (T,,14,1p) converges to u(A) - u(B) for every A, B € X.
(e) (T, 14,14) converges to u(A)? for every A€ .

Proof. Observe first that the assumptions 71 = 1 and 71 = 1 imply that T
naturally induces contractions on L!(u), resp. L% (p). From the Riesz convexity
theorem (e.g. Schaefer [1974], V.8.2) it follows that |T| < 1. Consequently, T is
mean ergodic by (IV.5) or (IV.6)

(a)= (a’): Assume that the T-fixed space F' contains a function f which is not
constant. By adding an appropriate multiple of 1 we may obtain that f assumes
positive and negative values. Its absolute value satisfies

fl= T < TIf| and jX 1l du = L T\f| du,

hence |f| € F and also 0 < f* := 3(|f|+ f)e Fand 0 < f~ := L(|f| - f) e F.
Analogously we conclude that for every n € N the function

1
fFi=inf(n-fT,1) = i(n-f++1—|n-f+—1|)
is contained in F'. From the positivity of T" we obtain
14 =sup{f :neN}eF

where A := [f* > 0]. Obviously, A is a non-trivial T-invariant set.

The implications (a’) = (b) = (¢) = (d) = (e) follow as in the proof of (IV.7).

(e) = (a): If A is T-invariant the hypothesis 71 = 1 implies T14 < 14 and the
hypothesis 71 = 1 implies that 714 = 14. Therefore,

(Tnla,1a) = (T4, 14) = {1a, 1) = p(A)
and the condition (e) implies u(A) € {0,1}. L]
IV.D.8. Ergodicity of the Markov shift:
As an application of (IV.7) we show that the ergodicity of the Markov shift (X, X, fi; 7)
(see I1.6) with transition matrix T' = (a,;) and strictly positive invariant distribu-

tion = (po,...,pr—1)' can be characterized by an elementary property of the
k x k- matrix T'.

Proposition: The following are equivalent:

(a) The transition matrix T is irreducible.
(b) The Markov shift (X, X, fi;7) is ergodic.
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Proof. As remarked (IV.7) ergodicity of 7 is equivalent to the fact that the induced
operator T'f := for, fe L1 (X,X, i), satisfies

(Bulas 15 > i(A) - A(B)
for all A,B e ZA], which are of the form

with aj,bjE{O,...,k—l}.
For n € N so large that n’ :=n — (m+ 1+ 1) = 0, we obtain

~/ ~
W AN B)=[A[T—m =b_my. Ty = by T = A gy oo, Ty = ay
k—1 k—1
= Z Z M[ijm:bfmw--axm:bmvxmﬁtl:Cla-“amern’:Cn’7
Cl=0 Cn/=0
Tp | = |y Tyl = ay]
k—1 k—1 m—1 n'—1 -1
= Z ct Z (pb,m H tb1b1+1) (tbmcl H t(/'ri(/'i+1tcnla_1) H taiapr]
1:O Cn/zo i=—m =1 i=—1

= BT ™ Yo ary - (Pay) HH(A).

Thus T (Fal4, 1) = A(B)-(imtncs Tolba (o )~ "A(A) = A(A)-A(B), iff
(limy—yer Tr)ij = (1 @ )i = pj > 0 for every 4,5 € {0, ...,k — 1}. By the assertion
(b) in (IV.D.7, Proposition) the last condition is equivalent to the irreducibility of
T. u

IV.D.9. A dynamical system which is minimal but not ergodic:
As announced in (II1.D.10) we present a minimal TDS (X;¢) such that the MDS
(X, B, u; ¢) is not ergodic for a suitable ¢-invariant probability measure € M (X).

Choose numbers k; € N, i € Ny, such that

(%) k;_1 divides k; for all i € N

& ki1 1
and (k) Z . < 3
i=1

For example we may take k; = 1069,
For i € N define Z;, :={z € Z: |z —n - k;| < k;_1 for some n € Z} and observe that
7 = Jen Zi, since k; tends to infinity. Therefore
i(z) :==min{j e N:zeZ;}

is well-defined for z € Z. Now take

0 ifils)i

T

1 ifi(2) is odd,

and consider the shift
T (xZ)ZEZ = (xz+1)zeZ

on {0,1}%.
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Proposition: With the above definitions and X := {r%a:se Z} < {0,1}% the
TDS (X;7|x) is minimal, and there exists a probability measure p € M(X) such
that the MDS (X, B, ;7| x) is not ergodic.

Proof. Clearly, X is T-invariant and (X;7|x) is a TDS. The (product) topology on
{0,1}% — and on X — is induced by the metric

1
d((z.), (y.)) := inf{m .z, = yfor all |2] < t}
The assertion is proved in several steps.

(i) Take ¢ € N. By definition of the sets Z;, j = 1,...,¢ the number i(z) only
depends on z mod k; for i(z) < i, i.e. the finite sequence of 0’s and 1’s

A—iy G—jplye-+ A0y -5 Ai—1,04

reappears in (a).ez with constant period. Using the above metric d, the
lemma in (I11.D.5) shows that X is minimal

(ii) We prove that the induced operator T := T, on C(X) is not mean ergodic
by showing that for the function € C'(X) defined by

f((ajz)zEZ) =T

the sequence (7}, f(a))nen does not converge:

n—1 n
1 L1
Tnf(a) = E;Of(T a) = szzzlaz?
and »”_, a, is the number of those z (1 < z < n) for which i(z) is odd. Con-
sider n = k; and observe that the set {1,...,k;} n Z; has exactly %(2]6]'_1 +1)
elements for j = 1,...,7. Now

Lk 3k 1k 1k
Z ?(2]{]’—1 +1) < Z Jkll < 3k; - B=7 (use (xx)),
J J

Jj=1 Jj=1

ie. {1,...,k}n U;’:l Z; contains at most % numbers. However {1,...,k;}
Ziy1, hence

i 3
‘{1,~-,kz‘} N (Zig1\ 'U1 Zj)| = 2k
j=

and for all numbers in that intersection we have i(z) = i + 1. In conclusion,

one obtains )

| Thisa f(@) = Th fa)] = 5

(iii) Using (IV.8) and (App.S), Theorem 1, we conclude from (ii) taht there exist

at least two different 7-invariant probability measures ui, s € C(X)'. For
W= %(ul + p2) the MDS (X, B, p; 7|x) is not ergodic by (App.S).

Remark: For examples on the 2-torus see Parry [1980], and on non-metrizable
subsets of the Stone-Cech compactification of N see Rudin [1958] and Gait-Koo
[1972].

References: Ando [1968], Gait-Koo [1972], Jacobs [1960], Parry [1980], Raimi [1964],
Rudin [1958].
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IV.D.10. Uniquely ergodic systems and the Jewett-Krieger theorem:
For an MDS (X, ¥, u; ¢) and for f e LP(X,%, 1), the means

1 n—1 )

n Tl

i=0

converge with respect to the LP-norm for 1 £ p < co. Concerning the convergence
for L*-norm (i.e. sup-norm) we don’t have yet a definite answer, but know that in
general the sup-norm is too strong to yield mean ergodicity of T,, on L* (). This
was shown in example 6 in Lecture IV for any ergodic rotation ¢, on the unit circle
I'. On the other hand, in this same example there exist T,-invariant norm-closed
subalgebras @ of L*(X, ¥, ) which are dense in L'(X,¥, ) and on which T,
becomes mean ergodic (e.g. take &/ = C(T") or even R(T'), see (IV.D.0)). Such a
subalgebra &7 is isomorphic to a space C(Y') for some compact space Y and the
algebra isomorphism on C(Y') corresponding to T, is of the form T, for some home-
omorphism ¢ : Y — Y (use the Gelfand-Neumark theorem (C.9) and (I1.D.5)). The
TDS (Y;4) is minimal, since Ty is mean ergodic with one-dimensional fixed space,
and therefore it possesses a unique -invariant, strictly positive probability mea-
sure v (see IV.8). Such systems will be called uniquely ergodic, since they determine
a unique ergodic MDS. On the other hand it follows from the denseness of & in
LY(T, B, ) that the MDS (T, B, m; ¢,) is isomorphic to (Y, B,v;) (use V1.2), a
fact that will be expressed by saying that the original ergodic MDS is isomorphic
to some MDS that is uniquely determined by a uniquely ergodic TDS. In fact,
(T', B, m; ,) is uniquely ergodic since 27 can be chosen to be C(I"), but this choice
is by no means unique and &/ = L™ (I", B,m) would not work. Therefore we pose
the following interesting question! Is every ergodic MDS isomorphic to an MDS
determined by a uniquely ergodic TDS? As we have explained above, this question
is equivalent to the following:

Problem: Let (X,X, ;) be an ergodic MDS. Does there always exist a T,-
invariant closed subalgebra &/ of L™ (X, X, i)

(i) T, is mean ergodic on 7, and

(i) o is dense in LY(X, %, u)?

The subsequent answer to this problem shows that the rotation (I, B,m;p,) is
quite typical: Isomorphic uniquely ergodic systems always exist, but the algebra
L*(w) is (almost) always too large for that purpose.

Lemma: For an ergodic MDS (X, %, u; ) the following assertions are equivalent:
(a) ¢ is mean ergodic on L™ (X, X, u).
(b) L*(X,X, u) is finite dimensional.

Proof. In view of the representation theorem in (VI.D.6) it suffices to consider
operators
Ty :C(Y) - C(Y)

induced by a homeomorphism on an extremally disconnected space Y. By assump-
tion (a), Ty is mean ergodic with one-dimensional fixed space and strictly positive
invariant linear form v. Prom (IV.8) it follows that ¢ has to be minimal, and hence
{¢*(y) : k € Z} is dense in Y for every y € Y. The lemma in (VI.D.6) implies that
{¢*(y) : k € Z} and hence {y} is not a null set for the measure corresponding to v.
Therefore, {y} must be open and the compact space Y is discrete.
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Having seen that Ty, is not mean ergodic on all of L*(u) one might try to find
smaller subspaces on which mean ergodicity is guaranteed.
On the other hand

F(T)® (id - T,)L*
is the largest subspace of L™ (p) on which T, is mean ergodic (use ??). Unfortu-
nately, this subspace is “never” a subalgebra. More precisely:

IV.D.11 Proposition:

For any ergodic MDS (X, 3, u; ¢) the following assertions are equivalent:
(a) T, is mean ergodic on L% (u).

(b) L*(p) is finite dimensional.

(c) (1)@ (id — T,,) L™ is a subalgebra of L™ (u).

Proof. Tt suffices to show that (c) implies (a). To that purpose we assume that
the Banach algebra L*(u) is represented as C(Y'), Y compact, and the algebra
isomorphism corresponding to T, is of the form T, : C(Y) — C(Y) for some
homeomorphism ¢ : ¥ — Y and ¢ # id. Denote by Fix(¢) the fixed point set
of ¥. Then every function f € (id — T} )C(Y") vanishes on Fix(¢). Take 0 # g €
(id — Ty)C(Y). Its square g* is contained in the subspace on which the means of
T;, converge and

. 17171 :
Jim ;0 Tig* = (J9* dv)1y

for the strictly positive ¢-invariant measure v. Therefore Fix(1)) must be empty.
It is now a simple application of Urysohn’s lemma to show that (id — T,)C(Y)
separates the points in Y. By the Stone-Weierstrass theorem we obtain that (1)@
(id—Ty)C(Y) is dense in C(Y") and therefore that Ty, is mean ergodic on L*(p). m

After these rather negative results it becomes clear that our task consists in finding
“large” subalgebras contained in (1) @ (id — T,,)L*(p). This has been achieved
by Jewett [1970] (in the weak mixing case) and Krieger [1972]. Theirs as well as
all other available proofs rest on extremely ingenious combinatorial techniques and
we regret not being able to present a functional-analytic proof of this beautiful
theorem.

Theorem (Jewett-Krieger, 1970):
Let (X, %, ;) be an ergodic MDS. There exists a T, -invariant closed subalgebra
o of L”(X, 3, ), dense in L' (X, ¥, i), on which T, is mean ergodic.

Applying an argument similar to that used in the proof of (IV.D.0) the algebra of
the above theorem can be enlarged and the corresponding structure spaces become
totally disconnected. In conclusion we state the following answer to the original
question.

Corollary:
Every separable ergodic (X, 3, u;¢) is isomorphic to an MDS determined by a
uniquely ergodic TDS on a totally disconnected compact metric space.

References: Bellow-Furstenberg [1979], Denker [1973], Hansel [1974], Hansel-Raoult
[1973], Jewett [1970], Krieger [1972], Petersen [1983].
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V. The Individual Ergodic Theorem

In L3(X,¥, i), convergence in the quadratic mean (i.e. in L?norm) does not
imply pointwise convergence, and therefore, von Neumann’s ergodic theorem (IV.1)
did not exactly answer the original question: For which observables f and for which
states x does the time mean

1 n—1 .
lim — ! ists?
i = 3 F( ) exiss

But very soon afterwards, and stimulated by von Neumann’s result, G.D. Birkhoff
came up with a beautiful and satisfactory answer.

V.1 Theorem (G.D. Birkhoff, 1931):
Let (X, 3, u; ) be an MDS. For any f € L?*(X, %, 1) and for almost every = € X

1 n—1
lim — ‘
Jim =57 f(¢'(2)
i=0
exists.

Even today the above theorem may not be obtained as easily as its norm-
counterpart (IV.1). In addition, its modern generalizations are not as far reaching
as the mean ergodic theorems contained in Lecture IV. This is due to the fact that
for its formulation we need the concept of u-a.e.-convergence, which is more strictly

bound to the context of measure theory. For this reason we have to restrict our
efforts to LP-spaces, but proceed axiomatically as in Lecture IV.

V.2 Definition:
Let (X, X, 1) be a measure space and consider £ = LP(X, ¥, u), 1 < p< 0. € Z(E

~

is called individually ergodic if for every f € E the Cesaro means T, f := 1 3 Tif

n S

converge ji-a.e. to some f € E.

Remark: The convergence of T}, f in the above definition has to be understood in
the following sense:

For every choice of functions g, in the equivalence classes i:f, n € N, (see B.20)
there exists a p-null set N such that g,(z) converge for any z € X\NN. Ouly in
(V.D.6) we shall see how a.e.-convergence of sequences in LP(u) can be defined
without referring to the values of representants.

There exist two main results generalizing Birkhoff’s theorem, one for positive
contractions on L', the other for the reflexive LP-spaces. But in both cases the
proof is guided by the following ideas: Prove first the a.e.-convergence of the Cesaro
means T on some dense subspace of F (easy!). Then prove some “Maximal Ergodic
Inequality” (difficult!), and — as an easy consequence — extend the a.e.-convergence
to all of E.

Here we treat only the L'-case and refer to App. V for the LP-theorem.

V.3 Theorem (Hopf, 1954; Dunford-Schwartz, 1956):
Let (X,%, ) be a probability space, E = LY(X,X,u) and T € Z(E). If T is
positive, T1 < 1 and 7'1 £ 1, then T is individually ergodic.

Remark: The essential assumptions may also be stated as |T|,, < 1 and |T]; <1
for the operator norms on .Z(L*(u)) and £ (L'(p)). The proof of the above
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“individual ergodic theorem” will not be easy, but it is presented along the lines
indicated above.

V.4 Lemma:

Under the assumptions of (V.3) there exists a dense subspace Eg of E = L1(X, 3, i)
such that the sequence of functions T, f converges with respect to || - ||, for every
f € Eo.

Proof. By (IV.6), T is mean ergodic and therefore
L'(y) = F@©Gd=T)L\(m) = F & (d = TYL7 (),

where F is the T-fixed space in L'(u). We take Ey := F @ (id — T)L*(u1). The
convergence is obvious for f € F. But for (id — T)g, g € L*(u), we obtain, using
(IV.3.0), the positivity of T and T'1 < 1, the estimate

|Tnf| =

—~~

id = T)Tog| = ~|(id = T)g| < ~(lg| + ")

(lg

2
< w14 lgle - T"1) < gl - 1.

S|

V.5 Lemma (maximal ergodic lemma, Hopf, 1954):
Under the assumptions of (V.3) and for f € L'(X,3, u), n€ N, v € R, we define

f¥i=sup{Tif:1<k<n} and A,,(f):=[fF>~]

Then
V)< [ ansi
n,y
Proof (Garsia, 1955):
We keep f,n and ~ fixed and define
k=1
g = sup{Z(T’f—'y) 1<k $n}.
i=0

First we observe that A := A, ,(f) = [g > 0]. Then

T(g%) = (Tg)* since 0 < T

)
k—1

. +
> sup{( (T f — 'yTl)) 1<k< n}, analogously
i=0
k=1 4
> Sup{( (T f — 71)) 1<k < n}, since T1 < 1
i=0
k—1 N
Zsup{( (T f ’yl)) 1<I<;<n—1},
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k

=sup{(Z(Tif—71) —(f—vl))+ 12<k Sn}7
=0

>sup{k21(Tif—vl)—(f—71):1<k<n}, 29— (f—71).
1=0

This inequality yields
La-(f=71)21a-9g-1a-T(g") 2 g% = T(g").
Finally the hypothesis 71 < 1 implies

JA(f —)dp=C1a- (f=71), 1) =" = T(g"),1) ={g", 1) - {g",T'1) > 0.

Remarks:

1. f* :=sup{Tyf : k € N} is finite a.e., since p[f* > m] = p[sup,oy fF > m] < "7{1—”
for every m € N, and therefore

p(YU*>ml) =0 or ulr* <o) =u(|JIr* <ml) =1,

meN meN

2. Observe that we didn’t need the assumption p(X) < co in (V.5). The essential
condition was that T is defined on L* () and L'(u), and contractive for | - ||,
and || - [|1.

V.6. Proof of Theorem (V.3):
We take 0 # f € L'(u) and show that
hy(z) :=limsup |T, f(x) = T f(x)]| =0
n,meN

for almost every x € X. With the notation introduced above we have h¢(x) <
2|f|*(z) and hy(x)hs_s,(z) for every fo contained in the subspace Eg of | - |-
convergence found in (V.4). By the maximal ergodic inequality (V.5) we obtain for
v > 0 the estimate

ulhy > f = folll = ulhg—sgo > NS = folll < pllf = fol* > 3|.f = fol]
J2Af-hl 2
Y= fol
For ¢ > 0 take v = %, choose fo € Ey such that | f — fo| < €2, and conclude
plhy > €] < 2e.

This shows that hy =0 a.e.. ]

Remark: The limit function f(z) := lim,_. T,,f(z) is equal to Pf where P
denotes the projection corresponding to the mean ergodic operator T'. Therefore f
is contained in L'(p).

Since L?(X, %, ) € LY(X, 3, p) for finite measure spaces, the Birkhoff theorem
(V.1) follows immediately from (V.3) for T' = T,,. Moreover we are able to justify
why “ergodicity” is the adequate “ergodic hypothesis” (compare II1.D.6).
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V.7 Corollary:
For an MDS (X, ¥, ;) the following assertions are equivalent:

(a)  is ergodic.
(b) For all (“observables”) f € L'(X,, u) and for almost every (“state”) z € X

we have
n—1
. 1 ;
time mean := lim — Z flo'(x)) = J’ fdp =: space mean.
n—w N 20 D¢

Proof. By (IV.7.b) the limit function f is the constant function (1®1)f = ([ f du)1.
X

V.D Discussion

V.D.1. “Equicontinuity” for a.e.-convergence:

The reader might have expected, after having proved in (V.4) a.e.-convergence on
a dense subspace to finish the proof of (V.3) by a simple extension argument. For
norm convergence, i.e. for the convergence induced by the norm topology, this is
possible by “equicontinuity” (see B.11). But in the present context, we make the
following observation.

Lemma: In general, the a.e.-convergence of sequences in L!(X, ¥, 1) is not a topo-
logical convergence, i.e. there exists no topology on L!(X,¥, 1) whose convergent
sequences are the a.e.-convergent sequences.

Proof. A topological convergence has the “star”-property, i.e. a sequence converges
to an element f if and only if every subsequence contains a subsequence convergent
to f (see Peressini [1967], p. 45). Consider ([0, 1], B,m), m the Lebesgue mea-

sure. The sequence of characteristic functions of the intervals [0, 3], [$,1], [0, 1],

[i, %], [%, %], [%, 1], [0, %], ... does not converge almost everywhere, while every
subsequence contains an a.e.-convergent subsequence (see A.16) [

Consequently, the usual topological equicontinuity arguments are of no use in
proving a.e.-convergence and are replaced by the maximal ergodic lemma (V.5) in
the proof of the individual ergodic theorem. In a more general context this has
already been investigated by Banach [1926] and the following “extension” result is
known as “Banach’s principle” (see Garsia [1970]).

Proposition: Let (S, )nen ( be asequence of bounded linear operators on LP (X, 3, u),
1 < p < o0, and consider

S*f(x) = Slég |Sn f(x)]

and G:={feL”?:S,f converges p-a.e.}
If there exists a positive decreasing function
C: R+ — R

such that lim,_,. ¢(y) = 0 and

plS*f(x) > A fI] < e(v)
for all f e LP(u), v > 0, then the subspace G is closed.
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Proof. Replace @ in the proof of (V.6) by c(v) n
For an abstract treatment of this problem we refer to von Weizsécker [1974]. See
also (V.D.6).

V.D.2. Mean ergodic vs. individually ergodic:
A bounded linear operator on LP(X,¥, 1) may be mean ergodic or individually
ergodic, but in general no implication is valid between the two concepts.

Example 1: The (right) shift operator
T:(xzy) = (0,21,22,...)

on /1(N) = LY(N, %, i), where p({n}) = 1 for every n € N, is individually ergodic,
but not mean ergodic (IV.D.3).

Exercise: Transfer the above example to a finite measure space.

Example 2: On L?([0, 1], B,m), m Lebesgue measure, there exist operators which
are not individually ergodic, but contractive hence mean ergodic (see App.V.10).

But a common consequence of the mean and individual ergodic theorem may
be noted: On finite measure spaces (X, 3, u) the LP-convergence and the a.e.-
convergence imply the p-stochastic convergence (see App.A.16).

Therefore

Tim [T, f(2) = ()] = ] = 0

for every € > 0, f € LP, where f denotes the limit function of the Cesaro means
T, f for a mean or individually ergodic operator T' € Z(LP(u)).

In fact, even more is true.

Theorem (Krengel [1966]):
Let (X, %, 1) be a finite measure space and T be a positive contraction on L'(u).
Then the Cesaro means Tj, f converge stochastically for every f e L(u).

V.D.3. Strong law of large numbers (concrete example):

The strong law of large numbers “is” the individual ergodic theorem. To make this
evident we have to translate it from the language of probability theory into the
language of MDSs. This requires some effort and will be performed in (V.D.7).
Here we content ourselves with an application of the individual ergodic theorem,
i.e. the strong law of large numbers, to a concrete model. As we have seen in (I1.3.ii)
the Bernoulli shift B(%, %) is an adequate model for “coin throwing”. If we take
14 to be the characteristic function of the rectangle

A={z=(z,):2x0=1}
in X = {0,1}%, then
n—1
Z 14(r*z), T the shift on X,
i=0

counts the appearances of “head” in the first n performances of our “experiment”

z = (z,). Since B(3,1) is ergodic and since fi(4) = 3, the individual ergodic
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theorem (V.7) asserts that

1) 1
lim — ) 14(rfz) = =

for a.e. z € X, i.e. the average frequency of “head” in almost every “experiment”
tends to %

V.D.4. Borel’s theorem on normal numbers:

A number £ € [0,1] is called normal to base 10 if in its decimal expansion
E=0,z92023... ,z;€{0,1,2,...,9},

every digit appears asymptotically with frequency %

Theorem (Borel, 1909): Almost every number in [0, 1] is normal.

Proof. First we observe that the decimal expansion is well defined except for a
countable subset of [0, 1]. Modulo these points we have a bijection from [0, 1] onto

X = {0,1,...,9}N which maps the Lebesgue measure onto the product measure /i
with

~ s ~ s 1

if(on) € X ian =0} = = fif(wn) € X 121 = 9} = 5.

Consider the characteristic function y of {(z,) € X : #; = 1} and the operator
T:LYX,%, 1) —» LY(X,3, 1) induced by the (left) shift

T (xn) = (Tpt1)-

n—1 . n—1 .
Then Y, T*x(x) = > x(v*z) is the number of appearances of 1 in the first n digits
i=0 i=0
of x = (z,,). Since T is individually ergodic with one-dimensional fixed space, we
obtain

1'a 1
1 — i = 0= —
Jim =), T'x(@) LX@ 10
1=0
for almost every z € X. The same is true for every other digit. n

V.D.5. Individually ergodic operators on C(X):

It seems to be natural to adapt the question of a.e.-convergence of the Cesaro means
T, f to other function spaces as well. Clearly, in the topological context and for the
Banach space C(X) the a.e.-convergence has to be replaced by pointwise conver-
gence everywhere. But for bounded sequences (f,,) € C(X) pointwise convergence
to a continuous function is equivalent to weak convergence (see App.B.18), and by
(IV.4.b) this “individual” ergodicity on C(X) would not be different from mean
ergodicity.

Proposition: For an operator T' € Z(C(X)) satistying |T"| < ¢ the following
assertions are equivalent:

(a) For every f € C(X) the Cesaro means T, f converge pointwise to a function

fe(Xx).

(b) T is mean ergodic.
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V.D.6. A.e.-convergence is order convergence:

While the mean ergodic theorem relies on the norm structure of LP(u) (and there-
fore generalizes to Banach spaces) there is strong evidence that the individual er-
godic theorem is closely related to the order structure of LP(ux) . One reason — for
others see App.V — becomes apparent in the following lemma.

Lemma: An order bounded sequence (f,) € LP(X,%, u), 1 € p < o0, converges
a.e. if and only if it is “order convergent”, i.e.
o— lim f, := infsup f, = sup inf =:0— lim f,.
n—o keN > keN n=k n—o0

The proof is a simple measure-theoretical argument. It is important that the
“functions” f in the order limit are elements of the order complete Banach lattice
LP(u). In particular, “null sets” and “null functions” don’t occur any more. Since
the sequences (7, f) in the individual ergodic theorem are unbounded one needs a
slightly more general concept. We decided not to discuss such a concept here since
it seems to us that a purely vector lattice theoretical approach to the individual
ergodic theorem has yet to prove its significance.

References: Ionescu Tulcea [1969], Peressini [1967], Yoshida [1940].

V.D.7. Strong law of large numbers (proof):

As indicated in (V.D.3) this fundamental theorem of probability theory can be
obtained from the individual ergodic theorem by a translation of the probabilistic
language into ergodic theory.

Theorem (Kolmogorov, 1933):

Let (fr)nen, be a sequence of independent identically distributed integrable random
n—1
variables. Then % > fi converge a.e. to the expected value Efj .

=0

Explanation of the terminology: f is a random wvariable if there is a probability
space (2, &/, P) such that f: Q — R is measurable (for the Borel algebra 5 on R).
The probability measure P o f~! is called the distribution of f, and for A € B one
usually writes

PLf € Al = p(f(A)).

Two random variables f;, f; are identically distributed if they have the same dis-
tribution, i.e. p[f; € A] = p[f; € B] for every A € B. A sequence (f,) of random
variables is called independent if for any finite set J € N and any sets A; € B we
have

PLfj € A; for every j € J] := P(ﬂ fj_l(Aj)) = [ [p(s;7"(4)) = [ [ PLSi € Aj]-

JjeJ jeJ jeJ
Finally, f is integrable f € L*(Q, o7, P) , and its expected value is

Ef:iLfdP@A=i&tMPof—Ua)

Proof of the Theorem. Denote by u the distribution of (f,), i.e.
p:="Pof ! foreveryneN

Consider
X =R?
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with the product measure /i on the product o-algebra S, With the (left) shift 7 :
X — X we obtain an MDS (X, 3, /i; 7) which is a continuous version of the Bernoulli
shift on a finite set (see IL3.iii). As in (IIL5.ii) we can verify that (X,3,7i;7) is
ergodic, and the individual ergodic theorem implies

1 ~ ~ A
- § T;fisf fdi forevery fe LY(X, %, ).
n <

1=0

Next, denote the projections onto the i*" coordinate by
T . )? d R,

i.e. m((zn)) = ;. By assumption, 7o € L'(X, S, why) and Timg = m;. Therefore

n—1
1 a.e. ~
*Z?Ti—ﬁ ,[ woduzl[tdu(t)z]Efo.
iz X R

In the final step we have to transfer the a.e.-convergence on X to the a.e.-convergence
on €. The set of all finite products ]_[jeJ gjom; with 0 < gj € L'(R, B, ) is total in

Ll()? , i, ) by construction of the product o-algebra. On these elements we define
a mapping ¢ by
@(ng o) = ng o fj.
jeJ jeJ
From
J (ng om; dﬁ) - H(J' g du) - H(J giof; dP)
R Nies jeJ YR jeJ Yo

=JQH9jofj dP = L‘I’(ngofj) dp

JjeJ jed
it follows that ® can be extended to a linear isometry
®: LY(X, 5, 0) » LYQ, o, P).

But, ® is positive, hence preserves the order structure of the L!'-spaces and by
(V.D.6) the a.e.-convergence. Therefore,

1 n—1 1 n—1
— 2 em) == i
nizo iz
converges a.e. to [ ®(mp) dP = Efy. n
Q

Remark: In the proof above we constructed a Markov shift corresponding to
p(z,A) = u(A), ze R, AeB.

References: Bauer [1968], Kolmogorov [1933], Lamperti [1977].
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V.D.8. Ergodic theorems for non-positive operators:

The positivity of the operator is essential for the validity of the individual ergodic
theorem. It is however possible to extend such theorems to operators which are
dominated by positive operators. First we recall the basic definitions from Schaefer
[1974].

Let E be an order complete Banach lattice. T € Z(F) is called regular if T' is the
difference of two positive linear operators. In that case,

|T| := sup(T, =T)
exists and the space £ (FE) of all regular operators becomes a Banach lattice for
the regular norm
I = W
If E=LY(p) or E = L*(p) then L"™(E) = Z(E) and |- || = | - || (Schaefer [1974],
IV.1.5). This yields an immediate extension of (V.3).

Proposition 1: Let (X, %, 1) be a probability space, E = L*(X,%,u) and T €
Z(E). If T is a contraction on L'(x) and on L* () then T is individually ergodic.

Proof. |T| still satisfies the assumptions of (V.3), hence (V.4) and (V.5) are valid
for |T'|. But +7" < |T'| implies the analogous assertion for T', hence T is individually
ergodic. [ ]

For 1 < p < o0, we have £ (LP) # £ (LP) in general but by similar arguments
we obtain from (App.V.8):

Proposition 2: Every regular contraction 7', i.e. |[T|, < 1, on an LP-space,
1 < p < o0 is individually ergodic.

References: Chacén- Krengel [1964], Gologan [1979], Krengel [1963], Sato [1977],
Schaefer [1974].

V.D.9. A non-commutative individual ergodic theorem:

L*(X,%, ) is the prototype of a commutative W*-algebra. Without the assump-
tion of commutativity, every W*-algebra can be represented as a weakly closed
self-adjoint operator algebra on a Hilbert space (e.g. see Sakai [1971], 1.16.7). Since
such algebras play an important role in modern mathematics and mathematical
physics the following generalization of the Dunford-Schwartz individual ergodic
theorem may be of some interest.

Theorem (Lance, 1976; Kiimmerer, 1978):

Let o/ be a W*-algebra and T € £ (&) a weak* continuous positive linear operator
such that T1 < 1 and Typ < p for some faithful (= strictly positive) state p in
the predual «7,. Then the Cesaro means T,z converge almost uniformly to Z € &
for every x € 7, i.e. for every € > 0 there exists a projection p. € &/ such that
w(pe) <eand |(Thx —2)(1 —p:)| — 0.

References: Conze-Dang Ngoc [1978], Kiimmerer [1978], Lance [1976], Yeadon
[1977].
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VI. Isomorphism of Dynamical Systems

In an axiomatic approach to ergodic theory we should have defined isomorphism,
i.e. “equality” of dynamical systems, immediately after the Definition (I.1) of the
objects themselves. We preferred to wait and see what kind of properties are of
interest to us. We shall now define isomorphism in such a way that these properties
will be preserved. In particular, we saw that all properties of an MDS (X, X, u; )
are described by measurable sets A € ¥ taken modulo p-null sets (see e.g. III.1,
II1.3 and V.2). This suggests that the correct concept of isomorphism for MDSs
should disregard null sets, and should be based on the measure algebra

S =%/
, where ./ is the o-ideal of p-null sets in ¥ (see App.A.9).
Consequently, it is not the point to point map

p: X ->X
which is our object of interest, but the algebra isomorphism

P DIy
induced by ¢ and defined by

PA:=(p=1A for Ae Ae¥.

This point of view may also be justified by the following observations:

(i) @ is an isomorphism of the measure algebra 3;

(ii) (X, %, u;¢) is ergodic if and only if pA = A implies A = @ or A = X.
These considerations might motivate the following definition.

VI.1 Definition:
Two MDSs (X, u;¢) and (Y,T,v;4) are called isomorphic if there exists a
measure-preserving isomorphism O from ¥ to 7" such that the diagram

@

DK
MK

[O]4

]

¢

T -
P
commutes.
While structurally simple, this definition might appear difficult to work with,
since it deals with equivalence classes of measurable sets. But at least for those
who are familiar with the “function” spaces LP(X,3, i), this causes no trouble.

Indeed, the measure algebra ¢ : Y Yis nothing else but the operator
Ty : LP(X, %, p) — LP(X, 3, )
induced by ¢ and restricted to the (equivalence classes of ) characteristic functions,
ie.
Tplol,-1a) or Tyly=1g;s
for all A e X.

Conversely, every measure-preserving measure algebra isomorphism can be uniquely
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extended to a linear and order isomorphism of the corresponding L'-spaces. We
therefore obtain a “linear operator version” of the above concept.

V1.2 Proposition:
Two MDSs (X, X, u; ) and (Y, T,v;1) are isomorphic if and only if there exists a
Banach lattice isomorphism

V:LYX, 2, p) — LY, T,v)

with V1x = 1y such that diagram

LY(X,%, p) LNX, %, p)
\4 14
LYY, T,v) LYY, T,v)

v
cominutes.

Proof. The (equivalence classes of) characteristic functions x are characterized by
XA (1-x)=0.

Therefore, an isometric lattice isomorphism V maps the characteristic functions on
X onto the characteristic functions on Y and thereby induces a measure-preserving
isomorphism

©:X->T
. Conversely, every measure-preserving algebra isomorphism

O: 2T
induces an isometry preserving the lattice operations from the sub-lattice of all char-

acteristic functions contained in L'(X, ¥, 1) onto the sublattice of all characteristic
functions in L*(Y,T,v). This isometry extends uniquely to a lattice isomorphism

Vi LNX, 2, p) - LYY, T,v).

Since © determines V', and @, resp. @Z, determine T, resp. Ty, (and conversely) the
commutativity of one diagram implies the commutativity of the other. [ ]

Remarks:

1. The isometric lattice isomorphism V : LY(X, %, u) — LY(Y,T,v) in (VL.2) may
be restricted to the corresponding LP)-spaces, 1 < p << o (use the Riesz con-
vexity theorem, see Schaefer [1974], V.8.2). These restrictions are still isometric
lattice isomorphisms for which the corresponding LP-diagram commutes.

2. The proposition above (as I1.D.6 and V.D.6) shows that the order structure
of LP and the positivity of T, is decisive in ergodic theory. Therefore, many
ergodic-theoretical problems can be treated in the framework of Banach lattices
(see Schaefer [1974], ch. III).

In the topological case the appropriate definition of isomorphism is quite evident.

V1.3 Definition:
Two TDSs (X; ) and (Y';v) are called isomorphic if there exists a homeomorphism

0: X->Y
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such that the diagram

X 4 X
© ©
Y J Y

commutes.

Note that by considering the Banach lattice (or Banach algebra) C(X) one ob-
tains an operator-theoretical version analogous to (VI.2).

V1.4 Remark Hilbert space isomorphism:

For historical reasons and because of the spectral properties (I11.4.b) and (IX.4)
one occasionally considers a concept of isomorphism for MDSs (“spectral isomor-
phism”), which is defined in analogy to (VI.2), but only requires the map

V. LA(X, %, n) — LAY, T,v)
to be a Hilbert space isomorphism.

By Remark 1 following (VI.2) this concept is weaker than (VI.1). One can there-
fore lose “ergodic properties” which are not “spectral properties” in passing from
one MDS to another which is spectrally isomorphic to the first. A trivial example
is furnished by ([0, 1], B, m;id) with Lebesgue measure m and (N, Z(N), v;id) with
v({n}) := 27". These two MDSs are spectrally isomorphic but not isomorphic.
The reason is that L?([0, 1], B,m) is — as a Hilbert space — isomorphic to ¢?(N) but
(N, Z(N),v;id) , unlike ([0, 1], B, m;id), has minimal invariant sets with non-zero
measure.

More important examples are the Bernoulli shifts B(py, ..., pr—1) which are apec-
trally isomoprhic (see VIL.D.5) but necessarily isomorphic (?7).

This again indicates that Hilbert spaces are insufficient for the purposes of ergodic
theory.

VI.5 Remark point isomorphism:

For practical reasons and in analogy to Definition (II.1), which uses point to point
maps ¢, another concept of isomorphism for MDSs is usually considered. It is
defined analogously to (VI.1) but the measure-preserving algebra isomorphism

0:%-T

is replaced by a bi-measure-preserving map © : X — Y such that the diagram

X —2» X
YTY

comimutes.

This point isomorphism is stronger than isomorphism since © induces an algebra
isomorphism

O:T %
by OB = (FB for B € T. In fact, there exist MDSs which are isomorphic but
not pointwise isomorphic:
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Take (X, %, p;¢) with X = {z}, ¥ = 2(X), p(X) =1, ¢ =id and (Y, T,v;9)
withY ={z,y}, T={J, Y}, v(Y) =1, ¢ =id.

Nevertheless, most isomorphisms appearing in the applications and in concrete
examples are point to point maps and not only measure algebra isomorphisms. For
this reason we defined the concept of an MDS using point maps ¢ : X — Y, and
therefore one might prefer the concept of “point isomorphism”.

The following classical result shows however that the distinction between isomor-
phic and point isomorphic (but not between isomorphic and spectrally isomorphic)
is rather artificial. Consequently, we shall use the term isomorphism synonymously
for algebra isomorphisms and point isomorphisms.

V1.6 Theorem von Neumann, 1932:
Two MDSs on compact metric probability spaces are isomorphic if and only if they
are point isomorphic.

Proof. On compact metric probability spaces every measure-preserving measure
algebra isomorphism is induced by a bi-measure-preserving point map (see ?7).

Then the commutativity of the diagram in (VI.1) implies the commutativity of the
corresponding diagram (VI.6) for point to point maps. n

VI1.7. The isomorphism problem

is one of the central mathematical problems in modern ergodic theory. It consists
in deciding whether two given MDSs (or TDSs) are isomorphic. This is easy if you
succeed in constructing an isomorphism. If you don’t succeed — even after great
efforts — you cannot conclude on “non-isomorphism”. The adequate mathematical
principle for proving non-isomorphism of two MDSs is the following:

Consider isomorphism invariants of MDSs, i.e. properties of MDSs, which are pre-
served under isomorphisms. As soon as you find an isomorphism invariant distin-
guishing the two systems they can’t be isomorphic. But even it is not impossible
to construct an isomorphism between two MDSs (i.e. if they are isomorphic), such
a construction might be extremely difficult. On the other hand, it might be easier
to calculate the values of all “known” isomorphism invariants. Such a system of
isomorphism invariants is called complete if two systems are isomorphic as soon as
all of these invariants coincide. To find such a complete system of invariants for all
MDSs is the dream of many ergodic theorists. Only for certain subclasses of MDSs
this has been achieved (see Lecture ?? and (?77).

VI.D Discussion

VI.D.1.
VI.D.2.
VI.D.3.
VI.D 4.
VI.D.5.
VI.D.6.
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VII. Compact Operator Semigroups

Having investigated the asymptotic behavior of the Cesaro means

1 n—1 )
E:E;T

and having found convergence in many cases, we are now interested in the behavior
of the powers

TTL
of T'(= T,) themselves. The problems and methods are functional-analytic, and for
a better understanding of the occurring phenomena the theory of compact operator
semigroups — initiated by Glicksberg-de Leeuw [1959] and Jacobs [1956] — seems to
be the appropriate framework.

Therefore, in this lecture we present a brief introduction to this field, restricting
ourselves to cases which will be applied to measure-theoretical and topological dy-
namical systems.

In the following, a semigroup S is a set with an associative multiplication
(t,s) = t-s.

However such objects become interesting (for us) only if they are endowed with
some additional topological structure.

VII.1 Definition:

A semigroup S is called a semitopological semigroup if S is a topological space such
that the multiplication is separately continuous on S x S. Compact semigroups are
semitopological semigroups which are compact.

Remark: This terminology is consistent with that of App.D, since every com-
pact (semitopological) group has jointly continuous multiplication (see VIL.D.6)
and therefore is a compact topological group.

For a theory applicable to operators on Banach spaces, it is important to as-
sume that the multiplication is only separately continuous (see B.16). But this
is still enough to yield an interesting structure theorem for compact semigroups.
We present this result in the commutative case and recall first that an ideal in a
commutative semigroup S is a nonempty subset J such that SJ := {st : s € S} € J.

VII.2 Theorem:
Every commutative compact semigroup S contains a unique minimal ideal K, and
K is a compact group.

Proof. Choose closed ideals Jp,...,J, in S. Since

& #Dds.. . Jy < ()i

DL

1

<.
Il

we conclude that the family of closed ideals in S has the finite intersection property,
and therefore the ideal

K = ﬂ{J : J is a closed ideal}
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is non-empty by the compactness of S. By the separate continuity of the multipli-
cation, the principal ideal Ss = sS generated by s € S is closed. This shows that
K is contained in every ideal of S. Next we show that K is a group: sK = K
for every s € S since K is minimal. Hence there exists ¢ € K such that sq = s.
Moreover for any r € K there exists ' € K such that s = r. This implies

rg=r'sq=7r's=r,
i.e. ¢is a unit in K. Again from sK = K we infer the existence of t(= s~!) such that
st = q. Finally, we have to show that the multiplication on a compact semigroup

which is algebraically a group is already jointly continuous. As remarked above,
this is a consequence of a famous theorem of Ellis (see VIL.D.6). u

By the above theorem, in every compact commutative semigroup S we have a
unique idempotent ¢, namely the unit of K, such that

K =¢S

is an ideal in S and a compact group with unit g. Now we will apply this abstract
result to semigroups generated by certain operators on Banach spaces. The situ-
ations which occurred in (IV.5) and (IV.6) are the main applications we have in
mind.

VIIL.3 Lemma:
Let (E;T) be an FDS satisfying

(%) {T"f ‘N E N} is relatively weakly compact for every f € E.

Denote by . := {T™ : n € N} the closure of {T" : n € N} in Z(F) with respect
to the weak operator topology. Then . and its closed convex hull ¢6(.7) are
commutative compact semigroups.

Proof. Multiplication is separately continuous for the weak operator topology (see
App.B.16), hence {T™ : n € N} is a commutative semitopological semigroup in
Z(FE). It is remarkable that separate continuity is sufficient to prove that its
closure is still a semigroup and even commutative. We show the second assertion
while the proof of the first is left to the reader. From the separate continuity it
follows that operators in . commute with operators in {T™ : n € N}. Now take
0#Ri,Rye., feE, f'e E' and € > 0. Then there exists R € {T™ : n € N} such
that

and

K(R2 = R)f, Ruf)] <
(R = R)R1f, f))] <

NN M

Therefore we have
[{(RiR2 — RoR1) f, f)| = [{((RiR2 — RiR + RRy — RoRy) f, )]
< K(Ru(R2 = RS, [ + (R = Re)Ruf, f1)] < e,
which implies R1 Ry = RoR;.
Finally, the condition (*) implies that .# is compact in %, (F) (see App.B.14).

Since the closed convex hull of a weakly compact set in E is still weakly compact
(see App.B.6), and since the convex hull co(¥) is a commutative semigroup, the
same arguments as above apply to ¢o(.%). n
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Now we apply (VIL.2) to the semigroups . and ¢6(.7). Thereby the semigroup
co() leads to the already known results of Lecture IV.

VII.4 Proposition:

Let (E;T) be an FDS satisfying (x). Then T is mean ergodic with corresponding
projection P, and {P} is the minimal ideal of the compact semigroup co{T™ : n €
No}.

In particular, E=F®F

where F:=PE={feE:Tf=Ff}

and Fy:=P '(0)=(d-T)E={feE:0eco{T"f:neNy}}.

Proof. The mean ergodicity of T follows from (IV.4.c), and TP = PT = P (see
IV.3.1) shows that {P} is the minimal ideal in €6{T™ : n € Ny}. The remaining
statements have already been proved in (IV.3) except the last identity which follows
from (IV.4.d). [

Analogous reasoning applied to the semigroup
S ={T":neNy} € Z,(E)

yields another splitting of E into T-invariant subspaces. The main point in the
following theorem is the fact that we are again able to characterize these subspaces.
VII.5 Theorem:

Let (E;T) be an FDS satisfying (x). Then there exists a projection

Qe :={T":neNpy}

such that Ho=QS

is the minimal ideal of .¥ and a compact group with unit Q.

In particular, E=G®G,

where G;:QE:H{feE:Tf=AfforsomeAe<c,|A|=1}
and GFy=Q N (0) = {fe B 0e T neng "}

Proof. (VIL.2) and (VIL.3) imply the first part of the theorem, while the splitting
E=G®Go=QE®Q'(0) is obvious since @ is a projection.

The characterizations of Q~1(0) and QF are given in three steps:

1. We show that Q=1(0) = {f e E: 0 e {T"f :neNg} }. Since for every f € E
map S — Sf is continuous from %, (E) into E, and since @ is contained in .,
we see that Qf = 0implies 0 € {T"f : n € Ng}. Conversely, if 0 € {T"f : n € Np},
there exists an operator R in the compact semigroup . such that Rf = 0. A
fortiori

QRf =0 and Qf=RQRf=0
where R’ is the inverse of QR in the group # = Q..
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2.

Next we prove that
QEQH::H{feE:Tf:)\f for some |A| = 1}.

Denote by A the character group of # and define for every character - € Va
the operator P,

P = | AG)SEam(s). feE.

Here, m is the normalized Haar measure on %, and the integral is understood
in the weak topology on FE| i.e.

PPy = | AEUSL S dm(S), for every f'e B
Va
P,(f) is an element of the bi-dual E” contained in ¢o{vy(S) - Sf : S € J}.
However by Krein’s theorem (App.B.6) this set is o(F, E')-compact and hence
contained in E. Therefore P, is a well-defined bounded linear operator on E.
Now take R € # and observe that

RP,(1) = B[ AE)S7am($)) = | A(S)RSS dm(s)

A

= v(R)J Y(RS)RSf dm(RS) = v(R)P,(f) for every f eE
H

ie, RP,=P,R=~(R)P,.
For R := T(Q we obtain TP, = TQP, = v(T'Q)P, and therefore P,(H) <
H. The assertion is proved if we show that QF < lin| J{P,E : v € '} or
equivalently that {P,E : v € ¢} is total in QE.
Take f’ € E’ vanishing on the above set, i.e., such that § , v(S){(Sf, f") dm(S) =
0 for all v € A and all f € E. Since the mapping S — {(Sf, f'> is continuous,
and since the characters form a complete orthonormal basis in L?(J¢,m) (see
App.D.7) this implies that < Sf, f' >= 0 for all S € . In particular, taking
S = @ we conclude that f’ vanishes on QF.
Finally, we show that H € QF. This inclusion is proved if @, the unit of JZ is
the identity operator on H. Every eigenvector of T is also an eigenvector of T"
and hence an eigenvector of R € .. Now take € > 0 and a finite set

Fi=A i, fa}
of normalized eigenvectors of T' (and R) with
Rfi=XNfi, |Nl=1,1<i<n.
By the compactness of the torus I' we find m € N such that
1= A"
IR™fi = fil
This proves that the set
Ar e = {Re%: |Rf— £l <5f0rfe.7—'}

e and consequently

NN

¢ simultaneously for i = 1,...,n.
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is non-empty and closed. By the compactness of J# we conclude that ﬂ Ar e #
F.e

&, i.e. A contains an element which is the identity operator on H. Since @ is

the unit of # it must be the identity on H.

The minimal ideal J# of . in the above theorem may be identified with a group
of operators on H = lin{f € E : Tf = \f for some |\| = 1} which is compact
in the weak operator topology and has unit @ = idg. Moreover, the weak and
strong topologies coincide on the one-dimensional orbits . f for every eigenvector f.
Therefore the group ¢ is even compact for the strong operator topology. Operators
for which H = F (and therefore Q = idg and . = J¥") are of particular importance
and will be called “operators with discrete spectrum”. The following is an easy
consequence of these considerations.

VII.6 Corollary:

For an FDS (E;T) with |[T"| < ¢ the following properties are equivalent:

(a) T has discrete spectrum, i.e. the eigenvectors corresponding to the unimodular
eigenvalues of T" are total in FE.

(b) & ={T":neNp} € Z,(F) is a compact group with unit idg.

(¢) & ={T":neNy} € Z(F) is a compact group with unit idg.

The following example is simple, but very instructive and should help to avoid
pitfalls.

VII.7 Example:
Take the Hilbert £2(Z) and the shift

T:(z;) = (x241).
Then {T" : n € Z} is a group, its closure in .%,,(¢*(Z)) is a compact semigroup with
minimal ideal .#" = {0}.

VII.8. Programmatic remark:
The semigroups in

S = {T} :neNo}
in Z,(LP(X,%, 1)), 1 < p < oo, appearing in (measure-theoretical) ergodic theory
are compact and therefore yield projections P (as in VIL.4) and @ (as in VIL5)
such that

d>Q=2P>1®1,
where the order relation for projections is defined by the inclusion of the range
spaces. While we have seen in (IV.7) that “ergodicity” is characterized by P = 1®1
we will study in the subsequent lectures the following “extreme” cases:

Lecture VIII: d=Q>P=1®1,
Lecture IX: d>Q=P=1®1.



62
VII.D Discussion

VII.D.1. Semitopological semigroups:
One might expect that semigroups S — if topologized — should have jointly contin-
uous multiplication, i.e.,

(t,s)—>t-s
should be continuous from S x S into S. In fact, there exists a rich theory for such
objects (see Hofmann-Mostert [1966]), but the weaker requirement of separately
continuous multiplication still yields interesting results as (VII.2) (see Berglund-
Hofmann [1967]) and occurs in non-trivial examples:

The one point compactification S = Zu{ow} of (Z, +) is a semitopological semigroup
if a4+ 00 =0+ a= o for every a € S. But the addition is not jointly continuous
since

0= lim (n+(—n)) # lim n+ lim (—n) = 0.

n—o0 n—o n—oa0

Obviously, the minimal ideal is K = {c0}.

VII.D.2. Weak vs. strong operator topology on Z(FE):

In ergodic theory it is the semigroup {T" : n € No} — T € Z(FE) and F a Banach
space — which is of interest. In most cases this semigroup is algebraically isomorphic
to the semigroup Ny. But since our interest is in the asymptotic behavior of the
powers T™, we need some topology on .Z(E). If we choose the norm topology or the
strong operator topology, and if |7 < ¢, then {T" : n € No} and {T™ : n € Ny} be-
come topological semigroups with jointly continuous multiplication. Unfortunately,
these topologies are too fine to yield convergence in many cases. In contrast, if we
take the weak operator topology, then {I™ : n € Ny} has only separately continu-
ous multiplication, but in many cases (see IV.5, IV.6 and VII.3) it is compact, and
convergence of 1™ or some subsequence will be obtained. The following example
illustrates these remarks:

Take E = (*>(Z) and T the shift as in (VIL.7). Then 7™ does not converge with
respect to the strong operator topology (Proof: If T™ f converges, its limit must be
a T-fixed vector, hence equal to 0, but ||f] = |T™f]|.), but for the weak operator
topology we have lim,_,,, 7™ = 0. The fact that the multiplication is not jointly
continuous for the weak operator topology may be seen from

0= lim 7" lim 77" % lim (7" -7T°") =id.

n—a0 n—w0 n—w

VII.D.3. Monothetic semigroups:
The semitopological semigroup

S =1{T" :neNy} C Z,(E)

generated by some FDS (E;T') contains an element whose powers are dense in .%.
Such an element is called generating, and the semigroup is called monothetic. We
mention the following examples of monothetic semigroups:

(i) The set S := {27" :n e N} and its closure S = {27 : n € N} u {0}, endowed
with topology and multiplication induced by R, are the simplest monothetic
semigroups.

(ii) The unit circle I" is a (compact) monothetic group, and every a € I' which is
not a root of unity is generating (see I11.8.iii).
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(iii) The n-torus I'", n € Nis a (compact) monothetic group, and a = (ay,...,a,) €
I'™ is generating iff {a1,...,a,} is linearly independent in the Z-module (see
App.D.8).

(iv) S:=Twu {"THem :n e N}, i? = —1, is compact monothetic semigroup for the
topology induced by C, the canonical multiplication on T,

n+ lem om+ 1emi — Lm“‘le(nwn)i for n,me N
n m n+m
n+1 . n+1 . ,
and ey =r- e i=~v-e" neN yel.
n n

The element 2¢? is generating (compare Hofmann-Mostert [1966], p. 72).

VII.D.4. Compact semigroups generated by operators on LP(X, %, u):
The operators T, : LPX, ¥, u) — LP(X, X, u) appearing in the ergodic theory of
MDS’s (X, 3, u; @) generate compact semigroups which will be discussed now in
more generality. To that purpose, consider a probability space (X,X,u) and a
positive operator

T:LYX,%, ) —» LYX, 2, p)
satisfying 71 < 1 and 7'1 <€ 1. By the Riesz convexity theorem (see Schaefer
[1974], V.8.2) T leaves invariant every LP(u), 1 < p < oo, and the restrictions

T,: LP(X, %, 1) - LP(X, X, p)
are contractive for 1 < p < 0. The semigroups
Sp = {1} : n e No}

in %, (FE) are compact for 1 < p < oo: if 1 < p < o0, argue as in (IV.5); if p = 1,
as in (IV.6). Moreover, it follows from the denseness of L*(u) in LP(u) that all
these semigroups are algebraically isomorphic, and that all these weak operator
topologies coincide (use App.A.2). Therefore the compact semigroups generated
by T in LP(u) for 1 < p < oo will be denoted by ..

If L'(p) is separable we can find a sequence {x,, : n € N} of characteristic functions
which is total in L'(p). The seminorms

Prm = [{RXn, Xm)|, ReZL(L*(n),

induce a Hausdorff topology on . weaker than the weak operator topology. Since
< is compact, both topologies coincide, and therefore . is a compact metrizable
semigroup.

VII.D.5. Operators with discrete spectrum:
Clearly, the identity on any Banach space has discrete spectrum. More interesting
examples follow:

(i) Consider E = C(T") and T := T, for some rotation
Pa iz a2

The functions f, : z — 2" are eigenfunctions of T for every n € Z and are
total in C(I') by the Stone-Weierstrass theorem. Therefore, 7" has discrete
spectrum in C(I).

(ii) The operator T, induced on LP(T',B,m), 1 < p < oo, has discrete spectrum
since it has the same eigenfunctions as the operator in (i) and since C(T") is
dense in LP(p) for 1 < p < 0.



64

(iii) Analogous assertions are valid for all operators induced by any rotation on a
compact Abelian group (choose the characters as eigenfunctions), and we will
see in Lecture VIII in which sense this situation is typical for ergodic theory.

(iv) There exist operators having discrete spectrum but unbounded powers:

For n > 2 endow E,, := C" with the norm

l(z1,. .. @) == max{(n+1—1i) ;| : 1 <i<n}
and consider the rotation operators
Syt En = Ent (21,...,20) = (Tn, T1, 0, Tp1)-

Every S(n), n = 2, has discrete spectrum in E,. An easy calculation shows
that [[|S,)l| < 2 and sup{HSZ_)—lH cio= 2} < ||S?n—)1H =n for all n > 2.
Now, take the ¢'-direct sum E := @, 5, E, and T := @, 5, S(»y. Clearly

|TY| =i+ 1 for every i € N, but T has discrete spectrum in E.

VII.D.6. Semitopological vs. topological groups (the Ellis Theorem):

In the remark following Definition (VII.1) we stated that a semitopological group
which is compact is a topological group. Usually this fact is derived from a deep
theorem of Ellis [1957] but the proof of the property we needed in Lecture VII is
actually quite easy — at least for metrizable groups.

Proposition: Let G be a group, & a metrizable, compact Hausdorff topology on
G such that the mapping

(g,h) > gh: GxG—>G
is separately continuous. Then (G, €) is a topological group.

Proof. Suppose that the multiplication is not continuous at (s,t) € G x G. Then
there exists € > 0 such that for every neighbourhood U of s and V of ¢
e< d(st, SUtv)

for some suitable (sy,ty) € U x V, and d(-,-) a metric on G generating &. Since
multiplication is separately continuous there exists a neighbourhood Uy of s and Vj
of ¢, such that

d(st, s't) < for every s’ € Uy,

IR

and d(sy,t, su,t’) < for every t' € Vj.

From this we obtain the contradiction

e < d(st, su,tv, < d(st,su,t) + d(su,t, suptv,) <

| ™

Therefore the multiplication is jointly continuous on G.

It remains to prove that the mapping g — ¢! is continuous on G. Take, g € G and

choose a sequence (g, )nen contained in G such that lim,,_,., g, = g. Since (G, 0)
is compact and metrizable, the sequence (g, ') has a convergent subsequence in
G. Thus we may assume that lim,_,, g-' = h for some h € G. From the joint
continuity of the multiplication we obtain 1 = gh = hg, thus h = ¢~ !, which proves
the assertion. [
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VIII. Dynamical Systems with Discrete Spectrum

As announced in (VL.7), in this lecture we tackle and solve the isomorphism
problem at least for a subclass of MDSs: If (X, ¥, u; ¢) is ergodic and has “discrete
spectrum”, then the eigenvalues of T}, are a complete system of invariants.

Before proving this statement let us say a few words about the hypothesis we are
going to make throughout this lecture. In particular, we have to prepare ourselves
to apply the results on semigroups of Lecture VII to the present ergodic-theoretical
situation.

Let (X,%, u;0) be an ergodic MDS. As usual we consider the induced operator
T:=T,e ZL(LP(n)), 1 <p < o, and also the compact abelian semigroup

S = {T" :ne Ny} € Zy(LP(n)) see VILD.4
Since ¢ is ergodic, the corresponding mean ergodic projection P is of the form
P=1x1ecwy (seelV.7).
Since . is compact, there exists another projection
Qe

such that Q.7 is a compact group (see VIL.5). In contrast to Lecture IX we require
here that @ is much “larger” than P or more precisely

Q=id
, l.e. 7 is a compact group in .Z,(LP(u)) — or Z5(LP(u)), see VIL.6 having the
operator id as unit. In other words, we assume that (X, 3, u; ¢) is ergodic and has

discrete spectrum, i.e. T, has discrete spectrum in LP(X, X, 1), 1 < p < co. Under
these assumptions we seek a complete system of isomorphism invariants.

It is helpful to start with the analogous problem for TDSs. We therefore assume
that (X;¢) is a minimal TDS, and that T, has discrete spectrum in C¢(X). The
following example shows that such systems appear quite frequently and are of some
importance.

VIII.1 Example:

Let G be a compact group. If G is monothetic with generating element g € G
(i.e. {g" : n € Ny} is dense in G, see VIL.D.3) then the rotation Rotg := ¢, is
minimal.

Moreover, every character v € G' is an eigenfunction of T}, because

Ty, v(h) = v(gh) = v(g) - v(h)

for every h € G. Since the product of two characters is still a character and since the
characters separate points of G (see App.D.7) it follows from the Stone-Weierstrass
theorem that T, has discrete spectrum in C(G).

Conversely, the following theorem shows that the example above is typical.

VIII.2 Theorem:
Let (X;¢) be a minimal TDS such that T, has discrete spectrum in C(X). Then
it is isomorphic to a rotation on a compact monothetic group.
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Proof. From (VIL.6) it follows that the induced operator T := T, in C(X) generates
a compact group

4 :={T":neNy} € Z(C(X)).
We shall show that (X ) is isomorphic to (¢; RotT'). The operator T is a Banach

algebra isomorphism of C'(X). Since ¢ is a group, the same is true for every S € 4.
Therefore there exist homeomorphisms

ps: X - X
such that Sf=fopgforevery Se¥, fe C(X)
and VS8, = s, © s, for S1,52 € 4 (see I1.D.5).

Choose zg € X and define
0:9 - X by O(5) := ps(zg) for Se¥.
This map yields the isomorphism between (¢; RotT') and (X;):

1. © is continuous: If the net (S, )aea converges to S in the strong operator topol-
ogy, then

F(O(S2)) = Saf(w0) converges to Sf(wo) = F(O(S))

for every f e C(X). But this implies that (©(S4))aca converges to O(S) in X.

2. © is surjective: ©(.%) is a closed subset of X which is g-invariant. From the
minimality it follows that ©(%) = X.

3. © is injective: If ©(Sy) = O(Sz), for 51,52 € ¢, we conclude that pg, (z¢) =
¢s,(z0) or Y5518, (w0) = o and Psytsy (¢"(z0)) = 90”(%052*151 (z0)) = ¢" (o)
for all n € N. Again from minimality of ¢ it follows that {¢"(x¢) : n € N} is
dense in X, an therefore that Psrts, = idx or Sy = 51

4. The diagram
]

X X

(C] (C]

Y ——— Y9

RotT
commutes:

For S € 4 we obtain p(©(S)) = p(ps(zo)) = O(T'S).

As an application of this representation theorem we can solve the isomorphism
problem for minimal TDSs with discrete spectrum.

VIII.3 Corollary:

(i) For minimal TDSs with discrete spectrum the point spectrum of the induced
operator is a subgroup of the unit circle I', and as such a complete isomorphism
invariant.

(ii) Let I'g be an arbitrary subgroup of I and endow I'y with the discrete topology.
The rotation on the compact group

G:=I/‘\o

by the character id : A — X on I'g is (up to isomorphism) the unique minimal
TDS with discrete spectrum having I'y as point spectrum.
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Proof. (i) In (II1.9) we proved that for a minimal TDS (X;¢) the point spec-
trum Po(T,) of the induced operator T, is a subgroup of I Now con-
sider two minimal TDSs (X1;¢1) and (X2; ¢2) having discrete spectrum such
that Po(T,,) = Po(T,,). By (VIIL2) (Xi;¢;) is isomorphic to a rota-
tion by a generating element on a compact group (G1;¢,), and analogously
Xo;p2) > (Ga;pp). The next step is to show that the character group é\l is
isomorphic to Po(T,,):

Every v € é\l is a continuous eigenfunction of T,,, with corresponding eigen-
value v(a). It is easy to see that

© 7~ v(a)

defines a group homomorphism from G, into Po(T,,). Furthermore, © is
injective since yi(a) = 7v2(a) implies that vi(a™) = v2(a™) for every n € Z,
hence v; = 75 for (continuous) characters 1, v2. The map O is surjective since
to every eigenvalue A € Po(T,,) there corresponds a unique eigenfunction

f € C(Gy) normalized by f(a) = A (see I11.9). By induction we obtain
fla") =Ty, f(a") = Af(a") = A"

for all n € N, and by continuity we conclude that f is a character on G; with
o) =\ _ _
Therefore, G is isomorphic to Po(T,,) = Po(T,,), and analogously Gy ~
Po(T,,) = Po(T,,). From Po(T,,) = Po(T,,) and Pontrjagin’s duality the-
orem (App.D.6) we conclude G; ~ Gs.
Finally, identifying G; and G2 we have to prove that (G1,p.) = (G1;¢p)
where a and b are two generating elements in G; such that Po(T,,) =
PU(TLPb)'
For A € Po(T,,) there exist unique eigenfunction fy for T, , resp. g for
T,,, normalized by fy(a) = A, resp. gax(a) = A. The mapping fy — g,
A€ Po(T,,) has a unique extension to a Banach algebra isomorphism V' on
C(G1). Clearly V oT,, = T,, oV, and therefore (G1;¢q) =~ (Ga2;¢p) by
(Iv.3).

(i) By (i) it remains to show that Po(T,,,) = I'g. But this follows from (App.D.6):

Po(T,,) ~G =Ty =T,.
| |

‘We have seen that the classification of minimal TDSs with discrete spectrum reduces
to the classification of compact monothetic groups. The tori I', n € N, yield the
standard examples (see ?7). In the second part of this lecture we return to measure-
theoretical ergodic theory, and we can use (VIIL.2) in order to obtain a solution of
the analogous problem for MDSs.

VIII.4 Theorem Halmos-von Neumann, 1942:

Let (X, X, u; @) be an ergodic MDS such that T, has discrete spectrum in L? (X, X, i),
1 < p < oo. Then it is isomorphic to a rotation on a compact monothetic group
endowed with the normalized Haar measure.

Proof. If f € LP(u) is an eigenfunction of T := T, for an eigenvalue A, |\| = 1, we
conclude that
TIff=1Tfl=MfI=1fl=c-1
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since ¢ is ergodic (see III1.4). Therefore, the linear span of
{f € LP(p) : Tf = Af for some |A\| = 1}

is a conjugation-invariant subalgebra of L™ (i), and its closure in L™ (u) denoted
by &, is a commutative C*-algebra with unit. By the Gelfand-Neumark theorem
(App.C.9) there exists an isomorphism

j:d —CY)

for some compact space Y.
The restriction of T, to &/ is an algebra isomorphism on /. Therefore, its isomor-
phic image j o T, o jinf on C(Y') is induced by some homeomorphism % : Y — Y.
Next we show that (Y; %) is a minimal TDS with discrete spectrum: Ty, has discrete
spectrum in C(Y') as T, has in «/. Therefore, T}, is mean ergodic by (VIL.6) and
(IV.4.c). Thus the fixed space of T, in <7, and therefore of T, in C(Y') is one-
dimensional. Since (the restriction of) p is a strictly positive, T, invariant linear
form on 7, we obtain a strictly positive, 1-invariant probability measure i on Y.
Hence the minimality of (Y;4) follows from (IV.4.e) and (IV.8).
Now we can apply Theorem (VIIL.2) to the TDS (Y,4) and obtain a homeomor-
phism

0:G-Y,

where G is a compact monothetic group with generating element a, making com-
mutative the following diagram:

o e o
]
c(Y) c(Y)
C(G) v C(G)

where (Rota)f(g) := f(ag) for f € C(G). But &/, C(Y) and C(G) are dense
subspaces in LP(X, %, u), LP(Y, i) and LP(G,m) respectively, where m is the Haar
measure on G. From the construction above it follows that j'fi = u. Since m
is the unique probability measure invariant under Rota, we also conclude Tgmji.
Therefore we can extend j and T continuously to positive isometries (hence lattice
isomorphisms, see App.C.4) on the corresponding LP-spaces. Obviously, the same
can be done for T, T, and Rota. Finally, we obtain an analogous diagram for
the LP-spaces, which proves the isomorphism of (X, ¥, u; ¢) and G, B, m; Rota) by
(VI.2). n

As in the topological case we deduce from the above theorem that ergodic MDSs
with discrete spectrum are completely determined by their point spectrum.

VIII.5 Corollary:

(i) For ergodic MDSs with discrete spectrum the point spectrum of the induced
operator is a subgroup of I' and as such a complete isomorphism invariant.
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(ii) Let I'g be an arbitrary subgroup of I' and endow I'g with the discrete topology.
The rotation on the compact group

G .= I/%
with normalized Haar measure m by the character id : A — X on Iy is (up to

isomorphism) the unique ergodic MDS with discrete spectrum having point
spectrum I'y.

VIII.D Discussion



70

IX. Mixing

Now we return to the investigation of “mixing properties” of dynamical systems,
and the following experiment might serve as an introduction to the subsequent
problems and results: two glasses are taken, one filled with red wine, the other
with water, and one of the following procedures is performed once a minute.

A. The glasses are interchanged.

B. Nothing is done.

C. Simultaneously, a spoonful of the liquid in the right glass is added to the left
glass and vice versa.

Intuitively, the process A is not really mixing because it does not approach any in-
variant “state”, B is not mixing either because it stays in an invariant “state” which
is not the equidistribution of water and wine, while C is indeed mixing. However, if
in A the glasses are changed very rapidly it will appear to us, as if A were mixing,
too.

It is our task to find correct mathematical models of the mixing procedures de-
scribed above, i.e. we are looking for dynamical systems which are converging (in
some sense) toward an “equidistribution”. The adequate framework will be that
of MDSs (compare IV.8 and the remark proceeding it). More precisely, we take
an MDS (X, X, u;¢). The operator T := T, induced on LP?(X, %, ), 1 < p < o,
generates a compact semigroup

S = {T™:ne Ny}
in Z(LP(u)) for the weak operator topology. Moreover, if we assume LP(u) to be
separable, this semigroup is metrizable (see VIL.D.4).

The above experiments lead to the following mathematical questions:

convergence: under which conditions and in which sense do the powers T converge
as n — oo?

If convergence of T™ holds in any reasonable topology then P := lim,,_,,, T™ is pro-
jection onto the T-fixed space in LP(u). Therefore, the second property describing
“mixing” may be expressed as follows.

equidistribution: under which conditions does the T-fixed space contain only the
constant functions 7

One answer to these questions — in analogy to the case of the fast version of A —
has already been given in Lecture IV, but will be repeated here.

IX.1 Theorem:
An MDS (X, 3, u; ¢) is ergodic if and only if one of the following equivalent prop-
erties is satisfied:

(a) T, > 1®1 in the weak operator topology.
(b) {Tnf, gy — (§f du)(§gdpu) for all f,ge L*(X,%, p).

1 n—1 )
=0
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(d) 1 is simple eigenvalue of T'.

Proof. See (II1.4) and (IV.7) including the remark. n

The really mixing case C is described by the (weak operator) convergence of the
powers of T toward the projection 1®1. In analogy to the theorem above we obtain
the following result.

IX.2 Theorem:
For an MDS (X, X, ;) the following are equivalent.

(a) T" — 1®1 in the weak operator topology.

(b) <T"f,9) — (§ f du)(§ g dpe) for all f,g € L™ (X, 5, ).
(¢) plo "An B) > p(A) - u(B) for all A,Be X

IX.3 Definition:
An MDS (X, X, u; @), resp. the transformation ¢, satisfying one of the equivalent
properties of (IX.2) is called strongly mizing.

Even if this concept perfectly describes the mixing-procedure C which seems to be
the only one of some practical interest, we shall introduce one more concept:

Comparing the equivalences of (IX.1) and (IX.2) one observes that there is lacking
a (simple) spectral characterization of strongly mixing. Obviously, the existence
of an eigenvalue A # 1, |[A] = 1, of T excludes the convergence of the powers
T™. Therefore, we may take this non-existence of non-trivial eigenvalues as the
defining property of another type of mixing which possibly might coincide with
strong mixing.

IX.4 Definition:

An MDS (X, %, u; ), resp. the transformation ¢, is called weakly mizing if 1 is a
simple and the unique eigenvalue of T in LP(X, X, ).

The results of Lecture VII applied to the compact semigroup
7= {T" :neN}
will clarify the structural significance of this definition:
Let P be the projection corresponding to the mean ergodic operator T', i.e. {P}
is the minimal ideal of ¢6.¥, and denote by @ € . the projection generating the
minimal ideal
H =QF
of . The fact that 1 is a simple eigenvalue of T corresponds to the fact that
P=1®]1, see (IV.7), hence
1®1ecoy.

In (VIL5) we proved that @ is a projection onto the subspace spanned by all
unimodular eigenvectors, hence

QF = PE = (1).
From Q € . it follows as in (IV.7) that
R=P=1®1,

or equivalently

1®1) =4
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is the minimal ideal in .. Briefly, weakly mixing systems are those for which the
mean ergodic projection is already contained in . and is of the form 1 ® 1. The
following theorem shows in which way weak mixing lies between ergodicity (IX.1)
and strong mixing (IX.2).

IX.5 Theorem:
Let (X,X, ;) be an MDS. If E := LP(X,X,u), 1 < p < oo is separable, the
following assertions are equivalent:

(a) T™ — 1®1 for the weak operator topology and for some subsequence {n;}
N.

(a’) T™ — 1®1 for the weak operator topology and for some subsequence {n;} <
N having density 1.

n—1 )
(") & 5 KT f,9) = (£, 1) <L g)| > Oforall fe B, g e 2.

(b) KT f, gy — (§fdp) - (§gdu) for all f,g e L*(X,%,u) and for some subse-
quence {n;} € N.

(¢) plo™™ A n B) > u(A) - u(B) for all A,B € ¥ and for some subsequence
{nz} c N

(d) ¢ is weakly mixing.
(e) v ® ¢ is ergodic.

(f) ¢ ® ¢ is weakly mixing.

IX.6 Remarks:
1. A subsequence {n;} € N has density 1 if

1
lim f|{ni} n{1,2,.. ,k:}| =1 (see App.E.1).
k—w k

2. The definition ¢ ® ¢ : (z,y) — (p(x), p(y) makes (X x X, X QRE, p® ;0 ® )
an MDS.

3. (a) and (a') are formally weaker than (IX.2.a), while (a”) (called “strong Cesaro
convergence”) is formally stronger than (IX.1.a).

4. “Primed” versions of (b) and (c) analogous to (a) are easily deduced.

5. Further equivalences are easily obtained by taking in (b) the functions f, g only
from a subset of L (u) which is total in L'(u), resp. in (c) the sets A, B only
from a subalgebra generating 3.

Proof. The general considerations above imply that (d) is equivalent to 1®1 € .¥ =
{T™:n e N}. But by (VILD.4), . is metrizable for the weak operator topology,
hence there even exists a subsequence in {I™ : n € N} converging to 1 ® 1, which
shows the equivalence of (a) and (d).

(a) = (a'): We recall again that .# is a commutative compact semigroup containing
1®1 as azero,ie. R-(1®1) =1®1 for all R € .. Define the operator

T:C(¥) - C(Y)
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induced by the rotation by 7" on .%, i.e.
Tf(R) = f(TR) for Re.”, fe C(S).
First, we show that this operator is mean ergodic with projection P defined as
Pf(R)= fA®1) for Re.”, fe C(S).

Since multiplication by 7' is (uniformly) continuous on ., the mapping from .%
into .Z(C(.7)) which associates to every R € .7 its rotation operator R is well
defined. Consider a sequence (Si)ken in % converging to S. Then Sef(R) =
f(SkR) converges to f(SR) = Sf(R) for all Re.”, f € C(.). But the pointwise
convergence and the boundedness of Sj, f imply weak convergence (see App.B.18),
hence S — S in %, (C()), and the mapping S — S is continuous from .&
into Z,(C(.#)). Therefore, from 7™ — 1 ® 1 we obtain Tni — TC;)_i Pe
Zw(C()). Applying (IV.4.d) we conclude that the Cesaro means of ™ _converge
strongly to P. Take now f € E, g € E’ and define a continuous function f € C(.%)
by
f(R) := KRS, h) =<f,1)-<{1, 9)|.

Obviously, we have Pf(T) = f(1®1) = 0. Therefore

n—o n—a0

n—1
0= Tim T f(T) im = = ST .0y~ (1) (L))
=0

(a”) = (a): Since . is metrizable and compact for the topology induced from
Zw(E), there exist countably many f; € E, g; € E’ such that the seminorms

pri(R) = KRk, 1)l
define the topology on .. By the assumption (a”) and by (App.E.2) for every pair
(k,1) we obtain a subsequence
{ni}*' < N
with density 1, such that

<T7sz7 g> - <fk7 1> ' <1vgl>
By (App.E.3) we can find a new subsequence, still having density 1, such that the
concergence is valid simultaneously for all f and g;. As usual, we apply (App.B.15)
to obtain weak operator convergence.

(a’) = (a) is clear.

The equivalences (a) < (b) < (c) follow if we observe that the topologies we
are considering in (b) and (¢) are Hausdorff and weaker than the weak operator
topology for which . is compact. Therefore, these topologies coincide on .#.

(c) = (f): Take A, A", BB’ € ¥. For a suitable but fixed subsequence (n;) € N
w(p™™ A n B), resp. u(e ™A’ n B') converges to u(A) - u(B), resp. u(A’) - u(B’),
as n; — o0. This implies that

(h@u)(((p®p) ™MAXxA)n(BxB))=pulp "AnB) - ule "A nB)

converges to p(A) - pu(B) - p(A") - p(B') = (n@ p)(A x A') - (0@ p)(B ® B’). Since
the same assertion holds for disjoint unions of sets of the form A x A’ we obtain
the desired convergence for all sets in a dense subalgebra of ¥ ® X. Using an
argument as in the above proof of (a) « (b) « (¢) we conclude that the MDS
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(X xX,2Q®%,u® u ¢ ® @) satisfies a convergence property as (c), hence it is
weakly mixing.

(f) = (e) is clear.

(e) = (d): Assume that T,f = Af, |\] = 1, for 0 # f € L'(n). Then we have
T,f = Af and, for the function f ® f : (z,y) — f(2)- f(y), (z,y) € X x X, we
obtain Tyge(f® f) = A QA = |[MN*(f® f) = f® f. But 1 is a simple eigenvalue
of Tyg, with eigenvector 1x ® 1x. Therefore we conclude f = clx and A = 1
i.e. ¢ is weakly mixing. [ ]

IX.7 Example: While it is easy to find MDSs which are ergodic but not weakly
mixing (e.g. the rotation ¢,, a™ # 1 for all n € N, on the circle T" has all powers
of a as eigenvalues of T,,, ), it remained open for a long time whether weak mixing
implies strong mixing. That this is not the case will be shown in the next lecture.

The Bernoulli shift B(po,...,pk—1)is strongly mixing as can be seen in proving
(IX.2.¢) for the rectangles, analogously to (II1.5.ii).

IX.D Discussion

IX.D.1. Mathematical models of mixing procedures:

We consider the apparatus described at the beginning of this lecture. Our mathe-
matical model is based on the assumption that two liquids contained in the same
glass will mix rapidly whereas the transfer of liquid from one glass into the other
is controlled by the experimenter. This leads to the following model:

Let (X, X, u; ) be a strongly mixing MDS. Take X’ := X x {0, 1}, ¥’ the obvious
o-algebra on X’ and y/ defined by p/(A’ x {1}) = p/(A x {0}) = Lu(A) for A€ X,
We obtain MDS (X', %', i/; ') by

A. ¢'(x,7) = (p(x),1 = j)
B. (p,(x,j) = ((,0($),])

o 7Y e (¢p(x),7) for z € X\S
¢ P ) {@@;),1-;‘) forze S

Exercise: Show that C is strongly mixing, B is not ergodic, but the powers of T,
converge, and A is ergodic, but the powers of T, do not converge.

IX.D.2. Further equivalences to strong mixing:
To (IX.2) we can add the following equivalences:

(e) (T™f|f) — (f|1)? forall f € L¥(X, X, u), where (+|-) denotes the scalar product
in L3(X,3, u).

n—1
(f) L 3 T*% — 1 x 1 in the weak operator topology for every subsequence (k;) €
i=0

Proof. (d) = (a): By (App.B.15) it suffices to show that (T f,g) converge to
{f,1)-{1,g) for all g in a total subset of L?(u) and f € L*(u). To that purpose
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we consider the closed T-invariant subspace
Eo :=1in{1, f, T, T2f,} < L*().
The assertion is trivial for g € Ey- and follows from the assumption for g = T" f.

(b) « (e): It is elementary to see that a sequence of real or complex numbers
converges if and only if every subsequence is convergent in the Cesaro sense. [

Certainly, the equivalence of (b) and (e) remains valid under much more general

circumstances. But for operators induced by an MDS the weak operator conver-
n—1

gence of % 3 T*: asin (e) is equivalent to the strong operator convergence of these
i=0

averages. 'This surprising result will be discussed in (IX.D.5).

IX.D.3. Strong operator convergence of 1T":
IX.D.4. Weak mixing implies “strong ergodicity”:

IX.D.5. Weak convergence implies strong convergence of averages:
IX.D.6. Weak mixing in Banach spaces:
IX.D.7. Mixing in C(X):
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X. Category Theorems and Concrete Examples

The construction and investigation of concrete dynamical systems with different
ergodic-theoretical behaviour is an important and difficult task. In this lecture we
will show that there exist weakly mixing MDS’s which are not strongly mixing. But,
following the historical development, we present an explicit construction of such an
example only after having proved its existence by categorical considerations with
regard to the set of all bi-measure-preserving transformations.

In the following we always take (X, B,m) to be the probability space X = [0, 1]
with Borel algebra B and Lebesgue measure m. In order to describe the set of
all m-preserving transformations on X we first distinguish some very important
classes.

X.1 Definition:
Let (X, B, m;¢) be an MDS.
(i) A point x € X is called periodic (with period ng € N) if o™z = z and
(p"(z) #xforn=1,...,n9 — 1).
(ii) The transformation ¢ is periodic (with period n € Ng) if o™ = id (and ¢™ # id

forn=1,...,n9 — 1).

(iii) The transformation ¢ is antiperiodic if the set of periodic points in X is a
m-null set.

Remarks:

1. If the transformation is periodic, so is every point, but not conversely since the
set of all periods may be unbounded.

2. The set A, := {x € X : x has period n} is measurable: Consider a “separating
base” {By € B : k € N}, i.e. a sequence which generates B and separates the
points of X (see A.13 and ??). Then we obtain

{reX: ¢z =a}=()(Brnyg"Br) v ((X\Br) n¢"(X\By))
keN

for every n € N, and therefore we conclude that A,, € B.

3. An arbitrary transformation ¢ may be decomposed into periodic and antiperiodic
parts:
As above take A, to be the set of all points in X with period n and A,p :=
X\ U,en An- Then X is the disjoint union of the g-invariant sets A,, n € N and
Aap. The restriction of ¢ to A, is periodic with period n and ¢ is antiperiodic
on Aap.

4. An ergodic transformation on ([0, 1], B, m) is antiperiodic. This is an immediate
consequence of the following important lemma.

X.2 Lemma Rohlin’s lemma: Consider an MDS (X, B, my).

(i) If every point x € X has period n then there exists A € B such that A, pA,
©?A, ..., 0" 1A are pairwise disjoint and m(A4) = %

(i) If ¢ is antiperiodic then for every n € N and € > 0 there exists A € B such
thatA, A, A, ..., " LA are pairwise disjointand m(UZ;l ©FA) > (1 —¢).

Proof. (i) If n > 1 there exists a measurable set C), such that m(C1A¢Cy) > 0 (use
the existence of a separating base) and therefore m(Ci\¢Ci) = m(C1) — m(c1 n
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©C1) = m(eC1)—m(pC1nC1) = m(eC1nCy) = m(pCi\C1) > 0. Certainly, B; :=
C1\ n Oy is disjoint from @B;. If n > 2 there exists Co € By m(CaAp?Cy) > 0.
For By := Co\p?Cy we have m(Bz) > 0, and the sets Ba, pBa, ¢? By are pairwise
disjoint. Proceeding in this way we obtain B,_; such that m(B,_1) > 0 and
Bh_1,0B,_1,...,¢" 'B,_, are pairwise disjoint.

Consider the measure algebra B and the equivalence classes B e Bofsets B € Bsuch
that B, B, ..., " ' B are pairwise disjoint. Since Bisa complete Boolean algebra
(see A.9) an application of Zorn’s lemma yields A € B which is maximal such that
A @A, ... " 1A are pairwise disjoint for some A € A. If we assume m(A) < % we

can apply the above construction to the p-invariant set X'\ U?:_ol ©'A and obtain
contradiction to the maximality of A. Therefore, u(A) = %, and the assertion is
proved.

(ii) We may take € = % for some p € N. For r := n[ and as in the proof of (i) we

construct B € B such that B, ¢B,...,¢" !B are pairwise disjoint and such that B
is maximal relative to this property. For 1 < k < r define

By:+{ze¢" 'B:¢*re Band ¢z ¢ Bforl<j<k}.

These sets are pairwise disjoint, and the same holds for By, By, . . ., ¢* By, for any
k=1,...,7r. Therefore, the maximality of B implies

(+) m(gpr_lB\ U Bk)z 0.
k=1
Moreover, the sets
»Bs
©Bs, "By
©By4,¢” By, ¢ By

are disjoint from any gokB for 0 < k <r—1, since
©'Bjn "B =0 (Bino"'B) o' (¢ T' Bt = &

if0<i<j<randi<k (resp. o'Bj n "B = p"(p'"*B; n B) = & if k < i).
Finally, they are pairwise disjoint as can be seen considering sets contained in the
same, resp. in different columns. In particular, we find that 0By, p?>Bs, ¢3Bs, ..., ¢" B,
are pairwise disjoint subsets of B. Therefore, by (??) we obtain

m( U gokBk) = m( U Bk) =m(p""'B) = m(B).
k=1 k=1
Now, consider
r—1 .
B*:= |J¢*"Bu |J ¢'B;j,
k=0 1<i<j<n

which is p-invariant modulo m-null sets. Since B is maximal and ¢ is antiperiodic
it follows that

B* =X.
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Finally, we obtain the desired set:
p—1 p—2 T
A= U (pknBU U U (pknJrlBj.
k=0 k=0 j=(k+1)n+1
n—1
Obviously, A,pA,...,¢" tA are pairwise disjoint, and (J ¢’A contains every
i=0
¢*B, 0 < k < r—1. From B* = X it follows that X\ U::Ol ¢'A is contained
Urzs Uo<izj<n ©*"*1 Byt j. Therefore, we conclude that

<3

m(X\:EJOl <piA) <n-m(B)< 2 =c¢.

The lemma above will be used to show that the periodic transformations occur fre-
quently in the set of all bi-measure-preserving transformations on X. To that pur-
pose we denote by ¢ the group of all bi-measure-preserving bijections on (X, B, m).
Here we identify transformations which coincide m-almost everywhere.

The set & := {T, : p € 4} of all induced operators

T, : LY(X,B,m) — L(X,B,m)

is a group in .Z(L'(X,B,m)). The following lemma shows that the map ¢ + T,
from ¢ onto ¢ is a group isomorphism.

X.3 Lemma:
If pe¥ and m{zr e X : p(x) # z} > 0, then T, # id.

Proof. The assumption m{z € X : p(z) # x} > 0 implies that at least one of the
measurable sets A,, n > 2, or A,, defined in Remrarks 2, 3 following (X.1) has
non-zero measure. By (X.2) we obtain a measurable set A such that m(A) > 0 and
Anp(A) = . This yields
An cp_l(A) = and T,1ls = lw—l(A) #14.
L]

On ¢ we consider the topology which is induced by the strong operator topology
on .Z(L'(m)). This topology coincides on ¢ with the topology of pointwise con-
vergence on all characteristic functions 1p,, k € N, where {By, : k € N} generates
B (use B.11), and will be transferred to . In particular, T, converges to T,
(resp. g; converges to ¢) if and only if m(p;(A)Ap(A)) — 0 for every A € B. Since
the multiplication on bounded subsets of .Z(L!(m)) is continuous for the strong
operator topology, ¢ (and ¢) is a topological group which is metrizable. In (??)
we shall see that ¢ is complete, hence ¥ and & are complete metric spaces, and
Baire’s category theorem is applicable (see A.6).

X.4 Proposition:
For every n € N the set of all periodic transformations on (X, B, m) with period
larger than n is dense in ¥.

Proof. Consider ¢ € ¢, e > 0 and characteristic functions X1s--+,Xm € Lt(m). We
shall construct ¢ € ¢ with period larger than n such that

ITpoxi — Tyxil| <3¢ fori=1,...,m.
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To that aim we decompose X as in (X.1), Remark 3, into antiperiodic part A,, and
periodic parts A;, j € N. Then choose [ € N such that m(szl A;) < 5. Defining
B := A; u--- U A; we observe that ¢|p is periodic with period at most equal to
I!. In the next step, we choose k € N such that k is a multiple of I! and larger
than max{n, 2}. Now, apply (X.2.ii) and find a measurable set C' € Aqp. such that
C,pC,...,o" 1C are pairwise disjoint and

%(1 - %) : m(Aap) < m(C) < m(Aap)'

1
k
The transformation ¢ € & defined as
o(z) forre BUCuUpCu---u k1O
P(x) =R e F(z) for x € pF1C
T for all other z € X,

is periodic with period & > n. But, % coincides with ¢ outside of a set R with
measure

m(R) < %m(Aap) + %m(Aap) + % <3 %
Therefore, we conclude |T,x; — T¥x:| <2-m(R) <3cfori=1,...,m. L]

X.5 Theorem Rohlin, 1948:
The set . of all strongly mixing transformations on (X, 8, m) is of first category

in¥.
Proof. Proofs Let A :=[0,3] € X. For every k € N,

M= (e Im(An A - 1 < 1}
is closed. If p € 9 is strongly mixing, we

klim m(An pFA) =m(A)? = (by I1X.2),
— 0

NG

hence ¢ € M), for all k > ko, or
S < U‘/V" for %:ﬂx/ik
neN k=n

Since .4, is closed it remains to show that g\% is dense in 4. If @ is periodic,
say ¢F = id, then

11 .
m(A n @FA) — i~ hence ¢ € G\ A,.
Therefore |J {p e ¥ : o* = id} € 9\ (| M = 9\ N, and the assertion follows
k=n k=n
from (X.4). n

X.6 Proposition: 3
The set # of all weakly mixing transformations on (X, B, m) is dense in ¥.

For the somewhat technical proof using “dyadic permutations” of [0, 1] we refer
to Halmos [1956], p. 65, or Jacobs [1960], p.126, but we draw the following beautiful
conclusion.

X.7 Theorem Halmos, 1944: R
The set # of all weakly transformations on (X, B, m)is of second category in ¢.
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Proof. Since 4 is a complete metric space, Baire’s category theorem (see A.6)
asserts that ¢ is of second category. Therefore and by (X.7) it is enough to show
that # is the intersection of a sequence of open sets. We prove this assertion for
the (induced) operator sets # := {T, € L(L*(m)) : ¢ € #}. Let {fi}ien be a
subset of L*(m) which is dense inL*(m). Define

Wijkn = {Tcp €Y. |<Tnfl,fj> — <f17 1>| < %} for i,j,k,n e N.

By (?7?) the sets #jr, and therefore #ji := |, o #ijkn are open. We shall show
that # = ﬂ”k #;jk. The inclusion # < ﬂm-’k Wk is obvious by (IX.5.a). On the
other hand, if ¢ is not weakly mixing, then there exists a non-constant eigenvector
h € LY(m) of T, with unimodular eigenvalue A. It is possible to choose h with
|h| =1 and ¢h,1) = 0. Now, choose k € N such that [|h — fi| < &5. We obtain

KT frs fry = s 1) - (s 1) =
T3 (fie = h), (fie = h)y = {(Fr = 1), 1 {(fie = h), 1)+ T h, By| =

for every n € N. This yields T, ¢ #ix2, and the theorem is proved. [ ]

Combining (X.5) and (??) we conclude that there exist weakly mixing transfor-
mations on (X, B, m) which are not strongly mixing. But, even if “most” trans-
formations are of this type no explicit example was known before Chacon and
Kakutani in 1965 presented the first concrete construction. Later on, Chacon and
others developed a method of constructing MDS’s enjoying very different proper-
ties (“stacking method”); We shall use this method in its simplest form in order to
obtain a weakly mixing MDS which is not strongly mixing. The basic concepts of
the construction are set down in the following definition.

X.8 Definition:
(i) A column C := (I;)j=1..4 of height g is a ¢g-tuple of disjoint intervals I; =
[a;,b;) € [0,1) of equal length.
(ii) With a column C there is associated a piecewise linear mapping
q—1 q
wc:| )1 — U I; defined by
j=1 j=2
vo(z) = (r —aj) + aj;1 for x € Ij.

Remark: A column is represented diagrammatically as follows:

Therefore the mapping ¢c moves a point x € I}, j < g — 1 vertically upwards to
pc(x) € Ijyi.

The main part in the construction of the desired MDS (X, B, m; ) consists in
the definition of a sequence C'(n) = (I;(n));=1,... ¢(n) of columns. Then we use the
associated mappings ¢y, := pc(n) to define ¢ on X.

Take C(0) := ([0, )) and denote the remainder by R(0) := [$,1). Cut C(0) and
R(0) “in half” and let

M) :=([0,3).[5:3):[3:3) and R(1) = [5,1).
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In this way we proceed! More precisely, from I;(n) = [a;(n),b;(n)) € C(n) we
produce

Ij'(n) — [aj(n), aj(n);-bj(n))
and
a;j(n)+b;(n
1)(n) i= [ 200500 5, (),

and from R(n) we produce

R'(n) := [bQ(n)(n)v 75‘“")9)“)
and

R (n) o= [ P22, 1),
Then we define

C(n+1) = (I1(n), ..., Ly (n), I{(n), ..., Ij(, (n), R'(n))
and R(n +1) := R"(n)).
This procedure can be illustrated as follows:
The objects defined above possess the following properties:
m(R(n)) = 27"+ converges to zero as n tends to infinity.
Every interval I;(n) € C(n) is a union of intervals in C(n + 1).
The o-algebra o (|J,_, Uj(znl) I;(n)), k € N, is equal to the Borel algebra.
The mapping ¢,+1 is an extension of ¢,,.
For every z € [0, 1) there exists n such that

FU W b=

o(x) = pn(x), n=no,
is defined.
Now: (X, B, m;¢) is an MDS if we take ¢ as the mapping just defined X = [0, 1).

X.9 Theorem:
The MDS (X, B, m; ¢) is weakly but not strongly mixing.

Proof. (i) (X,B,m;¢) is not strongly mixing: Take A := I;(1) = [0,1). By
(1) above A is a union of intervals in C(n), and by definition of ¢ it follows

m(p=9() (Zj(n)) nLj(n)) = %m(Ij(n)). Therefore

m((pr(n)(A) nA) = 1m(A) = é for every n € N.

But if ¢ were strongly mixing, then m(¢ 9" (A)n A) would converge to (m(A))? =

= (see IX.2 and IX.3).

\]

(ii) The weak mixing of (X, B, m; ) is proved three steps.

1) Forn € Nand A € B choose L, 4 € {1,2,...,q(n)} such that m(AAJ;cp, , 1;(n))
is minimal and define
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By property 2) above and by (A.11) m(AAA(n)) converges to zero as n — 0.
Now, m(A(n)) = |Lnalm(Ii(n)) = q(n)™! « |Lya| - (1 — m(R(n)) implies that
lim,, . q(n) "t |Lpn, a| = lim, ., m(A(n)) = m(A) by property (0).

(
2) (X,B,u;p) is ergodic: Assume ¢(A) = A € B. This implies for any j =
1,...,¢q(n) that

m(I;(n) nA) = m(¢’ " (I (n) n A)) = m(L1(n) N A) = g(n) ! (m(A) —m(R(n) n A)
and therefore
m(A(n) n A) = q(n)™" - |Ly.a| - (m(A) — m(R(n) n A).
The following calculation
0= hm m(A(n)AA) = h_r)nfv(m(A(n)) +m(A) —2m(A(n) n A))
Tim (m(A(n)) +m(A) = 2q(n) " |Ln al(m(A) — m(R(n) n A)))
( ) +m(A) —2m(A) - m(A)
2m(A)(1 —m(A))
proves that m(A) = 0 or m(A4) = 1, i.e. ¢ is ergodic.

3)Finally, it remains to show that 1 is the only eigenvalue of the induced operator

Tya (see IX.4): Assume T, f = Af, 0 # f € L*(m), and take 0 < ¢ < §. By

Lusin’s theorem (see A.15) there exists a closed set D € [0, 1) of positive measure
on which f is uniformly continuous, so that there is § > 0 such that |z —y| < ¢
implies |f(x) — f(y)| < € for x,y € D. Choosing n large enough we obtain a set
L c {1,...,q9(n)} such that D' := | J,., fi(n) satisfies D < D" and m(D"\D) <
e-m(D) < em(D’) and m(I;(n)) < d for i € L. Now, define I := I;(n) n D, where

m(I;(n)\D) < e -m(Ij(n)) for a suitable j € L. From the deﬁnltlon of ¢ it follows
that

m(p?™ (Ij(n)) A Ij(n) = 3m(I;(n))
and m( ML (n) A Ii(n) = gm(I;(n).
Therefore, we conclude that
m(e?(I) A 1) = m(e"™ (1;(n)) A 1) = m("" (1;(n)\D) 1)
("™ (13 (n) A Li(n)) = m(e"™ (Ii(n((n(I;(n)\D)) — & - m(I;(n))

m J Ii(n
sm(Ij(n)) = 2¢ -m(I;(n)) > 0

>
=
and analogously
m(p1 ™) A 1) = gmL(n)) =2 - e -m(I;(n)) > 0.
If z = p6q(n)(y) € 9™ (I) n I we obtain

@) = F(e" () = XM f(y) and |f(z) = f(y)] <e.
If 2’ = 6q(n) + 1(y') € I™M*+1(I) A I we obtain

F@) = f(e"™ () = XM (Y) and | f(2) = f(y)] <e
Finally,

_ A f@) fy)
Xam) f(y')f



implies

A-1] <

[ fw)
o (o _1)‘ +‘

which proves that 1 is the only eigenvalue of T,.

X.D Discussion

f(=")
@)

—1‘<2€
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XI. Information of Covers



XII. Entropy of Dynamical Systems
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XIII. Uniform Entropy and Comparison of Entropies
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Appendix A. Some Topology and Measure Theory

(i) Topology

The concept of a topological space is so fundamental in modern mathematics that
we don’t feel obliged to recall its definitions or basic properties. Therefore we refer
to Dugundji 1966 for everything concerning topology, nevertheless we shall briefly
quote some results on compact and metric spaces which we use frequently.

A.1. Compactness:

A topological space (X, 0), € the family of open sets in X, is called compact if it is
Hausdorff and if every open cover of X has a finite subcover. The second property
is equivalent to the finite intersection property: every family of closed subsets of
X, every finite subfamily of which has non-empty intersection, has itself non-empty
intersection.

A.2. The continuous image of a compact space is compact if it is Hausdorff. More-
over, if X is compact, a mapping ¢ : X — X is already a homeomorphism if it is
continuous and bijective. If X is compact for some topology ¢ and if &” is another
topology on X, coarser than & but still Hausdorff, then & = ¢”.

A.3. Product spaces:

Let (X4)aca a non-empty family of non-empty topological spaces. The product
X :=[[,ea Xo becomes a topological space if we construct a topology on X start-
ing with the base of open rectangles, i.e. with sets of the form {z = (z4)aea :
Ty € O, fori=1,...,n} for aq,...,a, € A, n € N and O,, open in X,,. Then
Tychonov’s theorem asserts that for this topology, X is compact if and only if each
X, a e A is compact.

A.4. Urysohn’s lemma:
Let X be compact and A, B disjoint closed subsets of X. Then there exists a
continuous function f: X — [0, 1] with f(A) € {0} and f(B) < {1}.

A.5. Lebesgue’s covering lemma: If (X, d) is a compact metric space and « is
is a finite open cover of X, then there exists a § > 0 such that every set A € X
with diameter diam (A) < J is contained in some element of «.

A.6. Category: A subset A of a topological space X is called nowhere dense if

the closure of A, denoted by A, has empty interior: A = . A is called of first
category in X if A is the union of countably many nowhere dense subsets of X.
A is called of second category in X if it is not of first category. Now let X be a
compact or a complete metric space. Then Baire’s category theorem states that
every non-empty open set is of second category.

(ii) Measure theory

Somewhat less elementary but even more important for ergodic theory is the con-
cept of an abstract measure space. We shall use the standard approach to measure-
and integration theory and refer to Bauer [1972] and Halmos [1950]. The advanced
reader is also directed to Jacobs [1978]. Although we again assume that the reader
is familiar with the basic results, we present a list of more or less known definitions
and results.
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A.7. Measure spaces and null sets:
A triple (X, X, ) is a measure space if X is a set, ¥ o-algebra of subsets of X and
[+ & measure on X, i.e.

w:Y — Ry u{o}
o-additive and and p(&) = 0.

If W(X) < oo (resp. u(X) = 1), X, X, is called a finite measure space (resp. a
probability space); it is called o-finite, if X = |, oy An with p(A,) < oo for all
neN.

A set N € X is a p-null set if u(N)=0.

Properties, implications, conclusions etc. are valid “u-almost everywhere” or for
“almost all z € X7 if they are valid for all z € X\N where N is some p-null set.
If no confusion seems possible we sometimes write “... is valid for all £” meaning
“...1is valid for almost all x € X”.

A.8. Equivalent measures:

Let (X, X, 1) be a o-finite measure space and v another measure on X. v is called
absolutely continuous with respect to p if every p-null set is v-null set. v is equiv-
alent to p iff v is absolutely continuous with respect to p and conversely. The
measures which are absolutely continuous with respect to p can be characterized
by the Radon-Nikodym theorem (see Halmos [1950], §31).

A.9. The measure algebra:
In a measure space (X, 3, ) the p-null sets form a o-ideal .4". The Boolean algebra

Y= /N

is called the corresponding measure algebra. We remark that Y is isomorphic to
the algebra of characteristic functions in L* (X, %, 1) (see App.B.20) and therefore
is a complete Boolean algebra.

For two subsets A, B of X,

AAB :=(Au B)\(An B) = (A\B) u (B\A)
denotes the symmetric difference of A and B, and
d(A, B) := u(AAB)

defines a semi-metric on X vanishing on ¥ the elements of A (if u(X) < ).
Therefore we obtain a metric on X still denoted by d.

A.10 Proposition: The measure algebra (Z, d) of a finite measure space X, 3, i
is a complete metric space.

Proof. It suffices to show that (3, d) is complete. For a Cauchy sequence (A, )nen €
¥, choose a subsequence (A,,)ien such that d(Ay, A;) < 27¢ for k,I > n;. Then

A= (V_ %, An, is the limit of (A,). Indeed, with By, := 7, An, we have
o0

o0
d(Bm, An,,) < Z M(Anj+1\Anj) < Z 277 =2.27m

j=m j=m
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and

o) o0
d(A’ Bm) < Z M(Bj\Bj-‘rl) < Z (d(Bj7A7lj) + d(Anj’Anj+1) + d(ATLj+17Bj+1))
j=m j=m
o0
<

D@27 +27 +2.270)) <827,
j=m
Therefore
d(A, Ay) <d(A,B,,) +d(Bm, An,,) +d(Ay,, , Ak) < 11277
for k = n,,. [ ]

A.11. For a subset W of ¥ we denote by a(I\/V/) the Boolean algebra generated by
I\/I//, by U(W) the Boolean o-algebra generated by Ww.

¥ is called countably generated, if there exists a countable subset W < ¥ such that
(W) =3

The metric d relates a(V\[?) and J(W). More precisely, using an argument as in
(A.10) one can prove that in a finite measure space

~

o(W) = a(W) for every W € %

A.12. The Borel algebra:

In many applications a set X bears a topological structure and a measure space
structure simultaneously. In particular, if X is a compact space, we always take
the o-algebra % generated by the open sets, called the Borel algebra on X. The
elements of B are called Borel sets, and a measure defined on B is a Borel measure.
Further, we only consider regular Borel measures: here, p is called regular if for
every A € B and € > 0 there is a compact set K € A and an open set U 2 A such
that u(A\K) < € and p(U\A) < e.

A.13 Example:

Let X = [0,1][ be endowed with the usual topology. Then the Borel algebra B
is generated by the set of all dyadic intervals
2 ={[k-27"(k+1)-271:ieN;k=0,...,2" — 1}.
2 is called a separating base because it generates B and for any z,y € X, x # vy,

there is D € & such that re D and y ¢ D,or z ¢ D and y € D.

A.14. Measurable mappings:

Consider two measure spaces (X, %, ) and (Y,7,v). A mapping ¢ : X —» Y is
called measurable, if ¢~1(A) € X for every A € T, and called measure-preserving, if,
in addition, u(p~'(A)) = v(A) forall A € T for all A € T (abbreviated: pop~! = v).

For real-valued measurable functions f and g on (X, 3, ), where R is endowed with
the Borel algebra, we use the following notation:

[fe B]:=fYB) for BeB,
[f =gl ={zeX:f(z)=g()}
[f <g]=Are X : f(z) <g(x)}
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Finally,
1 if A
lg:z— 1 ve denotes the characteristic
0 ifzg¢gA
function of A € X. If A = X, we often write 1 instead of 1x.

A.15. Continuous vs. measurable functions:

Let X be compact, B the Borel algebra on X and p a regular Borel measure.
Clearly, every continuous function f : X — C is measurable for the corresponding
Borel algebras. On the other hand there is a partial converse:

Theorem Lusin: Let f: X — C be measurable and € > 0. Then there exists a
compact set A € X such that u(X\A) < € and f is continuous on A.

Proof (Feldman [1981]): Let {U,} jen be a countable base of open subsets of C. Let
V; be open such that f~*(U;) € Vij and p(VV\f~1(U;)) < 5277. If we take
B := U;./“‘:l(Vj\f_l(Uj)), we obtain p(B) < §, and we show that g := f|pc is
continuous. To this end observe that
Vi n B =V n (V\fTH(U;)° 0 B = V; n (ViU f7H(U)) 0 B
= Vi n f7HUj) n B = f7HU;) 0 B = g7 (U)).

Since any open subset U of C can be written as U = UjeM Uj, we have G=1(U) =
UjeM g H(U;) = U]EM Vi mn B¢, which is open in B¢. Now we choose a compact
set A € B¢ with u(B°\A) < 5, and conclude that f is continuous on A and that
U(X\A) = u(B) + p(B\A) <'e. .

A.16. Convergence of integrable functions:
Let (X,%, ) be a finite measure space and 1 < p < oo. A measurable (real)
function f on X is called p-integrable, if §|f|P du < oo (see Bauer [1972], 2.6.3).

For sequences (fy,)nen of p-integrable functions we have three important types of
convergence:

1. (fn)nen converges to f p-almost everywhere if
lim (fn(z) — f(x)) =0 for almost all z € X.
n—xN0

2. (fn)nen converges to f in the p-norm if
lin}/ |frn— fIPdp =0 see (B.20).

3. (fn)nen converges to f u-stochastically if
lirr}[ plfn — fl = €] =0 forevery e > 0.

Proposition: Let (f,,)neny be p-integrable functions and f be measurable.

(i) If f,, — f p-almost everywhere or in the p-norm, then f,, — f u-stochastically
(see Bauer [1972], 2.11.3 and 2.11.4).
(ii) If (fn)nen converges to f in the p-norm, then there exists a subsequence (f, )
converging to f p-a.e. (see Bauer [1972], 2.7.5).
(iii) If (fn)nen converges to f p-a.e. and if there is a p-integrable function g such
that |fn.(x)| < g(x) p-a.e., then f, — f in the p-norm and f is p-integrable
(Lebesgue’s dominated convergence theorem, see Bauer [1972], 2.7.4).

Simple examples show that in general no other implications are valid.
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A.17. Product spaces:

Given a countable family (X, X4, tia)aca of probability spaces, we can consider the
cartesian product X =[], ., and the so-called product o-algebra ¥ = ), .4 Xa
which is generated by the set of all measurable rectangles, i.e. sets of the form

Ray...an(Aaqy oy Aa,) == {x = (Ta)acA : Ta; € Ay, fori=1,... ,n}
for ag,...,an€ A, neN, A,, € X,,.

The well known extension theorem of Hahn-Kolmogorov implies that there exists
a unique probability measure p : ), 4 fa On X such that

1(Ray,...an(Aays - -5 Aa,)) = H fa; (Aa,)
i=1

for every measurable rectangle (see Halmos [1950], §383 Theorem B).
Then X, 3, p is called the product (measure) space defined by (Xo, Za, fia)acA

Finally, we mention an extension theorem dealing with a different situation (see
also Ash [1972], Theorem 5.11.2).

Theorem: Let (X,,)necz be a sequence of compact spaces, B, the Borel algebra
on X,. Further, we denote by 3 the product o-algebra on X =[], _, X, by Z,,
the set of all measurable sets in X whose elements depend only on the coordinates
—m,...,0,...,m. Finally we put .# = |J,,cy Fm. If p is a function on .# such
that it is a regular probability measure on .%,, for each m € N, then p has a unique
extension to a probability measure on ..

Remark: Let ¢, : X — Y, := HCL"Xi; (zj)jez — (T—n,...,xn). Then we
assume above that v,(A) := u(p,1(A)), A measurable in Y, defines a regular
Borel probability measure on Y;, for every n € N.

Proof. The set function p has to be extended from # to o(%) = X. By the
classical Caratheéodory extension theorem (see Bauer [1972], 1.5) it suffices to show
that lim;_,., u(C;) = 0 for any decreasing sequence (C;);en of sets in .Z satisfying
(Nien Ci = . Assume that u(C;) = ¢ for all i € N and some € > 0. For each C;
there is an n € N such that C; € %, and A; € Y, with C; = ¢ 1(4;). Let B; a
closed subset of A; such that v, (A;\B;) < §-27". Then D; := ¢;;'(B;) is compact
in X and p(C;\D;) < §-27". Now the sets Gy := ﬂle D; form a decreasing
sequence of compact subsets of X, and we have

k
Gy, € Cp and p(Gy) = p(Cr) = p(C\Gr) = 1(Cr) — (| J(CAD))

=1

!

k

> p(Cr) = D u(C\D;) > € —

i=1

<
=

| ™

Hence G, # & and therefore ﬂieN C;, which contains ﬂieN G;, is non-empty, a
contradiction. n
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Appendix B. Some Functional Analysis

As indicated in the introduction, the present lectures on ergodic theory require
some familiarity with functional-analytic concepts and with functional-analytic
thinking. In particular, properties of Banach spaces E, their duals E’ and the
bounded linear operators on E and E’ play a central role. It is impossible to
introduce the newcomer into this world of Banach spaces in a short appendix. Nev-
ertheless, in a short “tour d’horizon” we put together some more or less standard
definitions, arguments and examples — not as an introduction into functional anal-
ysis but as a reminder of things you (should) already know or as a reference of
results we use throughout the book. Our standard source is Schaefer [1971].

B.1. Banach spaces:

Let E be a real or complex Banach space with norm | - | and closed unit ball
U:={feFE:|f| <1} We associate to F its dual E’ consisting of all continuous
linear functionals on E. Usually, E’ will be endowed with the dual norm

L7l = sup{[<F, £l = [ < 1}

where (-, -> denotes the canonical bilinear form
(f Y=L =f(f) onExE.

B.2. Weak topologies:

The topology on E of pointwise convergence on E’ is called the weak topology
and will be denoted by o¢(E, E’). Analogously, one defines on E’ the topology of
pointwise convergence on FE, called the weak* topology and denoted by o(E', E).
These topologies are weaker than the corresponding strong (= norm) topologies,
and we need the following properties.

B.3. While in general not every strongly closed subset of a Banach space F is
weakly closed, it is true that the strong and weak closure coincide for convex sets
(Schaefer [1971], I1.9.2, Corollary 2).

B.4. Theorem Alaoglu-Bourbaki:
The dual unit ball U° := {f' € E' : ||f’| < 1} in E’ is weak* compact (Schaefer
[1971], IV.5.2).

From this one deduces: A Banach space E is reflexive (i.e. the canonical injection
from E into the bidual E” is surjective) if and only if its unit ball is weakly compact
(Schaefer [1971], IV.5.6).

B.5. Theorem of Krein-Milman
Every weak* compact, convex subset of E’ is the closed, convex hull of its set of
extreme points (Schaefer [1971], 11.10.4).

B.6. Theorem of Krein:
The closed, convex hull of a weakly compact set is still weakly compact (Schaefer
[1971], TV. 11.4).
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B.7. Bounded operators:

Let T be a bounded (=continuous) linear operator on the Banach space E. Then T’
is called a contraction if |Tf| < | f|, and an isometry if |T'f|| = | f| for all f € E.
We remark that every bounded linear operator T on F is automatically continuous
for the weak topology on E (Schaefer [1971], III.1.1). For f € FE and f' € E' we
define the corresponding one-dimensional operator

ff'eof by (f@f)9) =L ff

for all g € E. Moreover we call a bounded linear operator P on E a projection if
P? = P. In that case we have P? = P.

Proposition: For a projection P on a Banach space E the dual of PE is (as a
topological vector space) isomorphic to the closed subspace P'E’ of E’.

Proof. The linear map ® : E' — (PE)’ defined by ®f’ := f|pg is surjective by the
Hahn-Banach theorem. Therefore (PE)’ is isomorphic to E’/ker ®. From ker & =
P 1(0) and E' = P'E' @ P'"(0) we obtain (PE)’ ~ E'/P'"*(0) ~ P'E'. .

B.8. The space Z(F) of all bounded linear operators on E becomes a Banach
space if endowed with the operator norm

TN = sup{|TF) = 1A < 13

But other topologies on Z(FE) will be used as well. We write .Z,(E) if we en-
dow Z(FE) with the strong operator topology i.e. with the topology of simple (=
pointwise) convergence on E with respect to the norm topology. Therefore, a net

{T,} converges to T in the strong operator topology iff T, Lk Tf forall fe E.

Observe that the strong operator topology is the topology on .Z(F) induced from
the product topology on (E, | - |)E.

The weak operator topology on £ (E) — write .Z,,(F) — is the topology of simple
convergence on F with respect to o(E, E’). Therefore,

T, converges to T in the weak operator topology
it (Tof,f>—={Tf > forall feE, f'eF.

Again, this topology is the topology on .Z(E) inherited from the product topology
on (E,o(E,E"))".

B.9. Bounded subsets of Z(E):
For M < Z(FE) the following are equivalent:

(a) M is bounded for the weak operator topology.

(b) M is bounded for the strong operator topology.

(c) M is uniformly bounded, i.e. sup{||T|| : T € M} < co.
(d) M is equicontinuous for | - |.

Proof. See Schaefer [1971], I11.4.1, Corollary, and II1.4.2 for (b) < (c) < (d); for
(a) & (b) observe that the duals Z;(F) and .Z,,(E) are identical (Schaefer [1971],
IV.4.3, Corollary 4). Consequently, the bounded subsets agree (Schaefer [1971],
IV.3.2, Corollary 2). n

B.10. If M is a bounded subset of Z(F), then the closure of M as subset of the
product(E, | - |)¥ is still contained in Z(F) (Schaefer [1971], I11.4.3).
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B.11. On bounded subsets M of Z(F), the topology of pointwise convergence on
a total subset A of E coincides with the strong operator topology. Here we call A
“total” if its linear hull is dense in E (Schaefer [1971], IIL.4.5).

The advantage of the strong, resp. weak, operator topology versus the norm topol-
ogy on .Z(E) is that more subsets of .Z(E) become compact. Therefore, the
following assertions (B.12)—(B.15) are of great importance.

B.12 Proposition:
For M € Z(F), g € E, we define the orbit Mg: {Tg:T € M} € E, and the

subspaces Gs:={f e E: Mf is relatively || - |-compact}
and Gy, :={f e E: Mf is relatively o(E, E')-compact}.

If M is bounded, then G, and G, are | - |-closed in E

Proof. The assertion for Gy follows by a standard diagonal procedure. The argu-
ment for G, is more complicated: Let (fy,)nen be a sequence in G, converging to
f € E. By the theorem of Eberlein (Schaefer [1971], IV.11.2) it suffices to show
that every sequence (Tk f)ren, Tk € M has a subsequence which converges weakly.
Since f1 € G, there is a subsequence (Tk, f1) weakly converging to some g; € E.
Since f € G, there exists a subsequence such that (7%,, f2) such weakly converges
to g2, and so on. Applying a diagonal procedure we find a subsequence (T}, ):en of

1—0

(Tk)ken such that T, fr, — gn € E weakly for every n € N. From
lgn — gm| = sup{<gn — gm, f> : | F'] < 1}
= sup{Jim (T, o = T fs £51 2 1) < 1)
STl 1 = fom]

it follows that (g, )nen is a Cauchy sequence, and therefore converges to some g € E.

A standard 3e-argument shows T}, f =% g for o(E,E"). n

B.13 Proposition:
For a bounded subset M € Z(F) the following are equivalent:

(a) M is relatively compact for the strong operator topology.
(b) M is relatively compact in F for every f € E.
(¢c) Mf is relatively compact for every f in a total subset of E.

Proof. (a) = (b) follows by the continuity of the mapping T — T'f from %;(FE)
into E.

(b) < (c) follows from (B.12), and (c) = (a) is a consequence of (A.3) and (B.10). m

B.14 Proposition:
For a bounded subset M < .Z(E) the following are equivalent:

(a) M is relatively compact for the weak operator topology.
(b) M f is relatively weakly compact for every f € E.
(¢c) Mf is relatively weakly compact for every f in a total subset of E.

The proof follows as in (B.13).
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B.15 Proposition:
Let M < Z(F) be compact and choose a total subset A € E and a o(E’, E)-
total subset A € E’. Then the weak operator topology on M coincides with the
topology of pointwise convergence on A and A’. In particular, M is metrizable if
E is separable and E' is o(FE’, E)-separable (“separable” means that there exists a
countable dense set).

Proof. The semi-norms
Prp(T):=KTf, 5, TeM,feAfeA

define a Hausdorff topology on M coarser than the weak operator topology. Since
M is compact, both topologies coincide (see A.2). n

B.16. Continuity of the multiplication in .Z(E):
In Lecture VII the multiplication

(S, T)— SoT

in Z(F) plays an important role. Therefore, we state its continuity properties: The
multiplication is jointly continuous on .Z(E) for the norm topology. In general, it is
only separately continuous for the strong or the weak operator topology. However,
it is jointly continuous on bounded subsets of .Z,;(E) (see Schaefer [1971], p. 183).

B.17. Spectral theory:

Let E be a complex Banach space and T' € Z(F). The resolvent set p(T') consists
of all complex numbers A for which the resolvent R(\, T) := (A —T) ! exists. The
mapping A — R(A,T) is holomorphic on p(T"). The spectrum o(T') := C\p(T) is
a non-empty compact subset of C, and two subsets of o(T") are of special interest:
the point spectrum

Po(T) :={ e o(T):(A—T) is not injective}
and the approrimate point spectrum
Ao(T) := {Mo(T) : (A\=T)f, — 0 for some normalized sequence (fy)}.

A complex number A is called an (approximate) eigenvalue if A € Po(A) (resp. A €
Ao(T)), and F) := {f € E : (A—T) = 0} is the eigenspace corresponding to the
eigenvalue \; A is a simple eigenvalue if dim F) = 1.

The real number r(T) :=sup{|A| : A € o(T)} is called the spectral radius of T, and
1
).

If |A| > 7(T") the resolvent can be expressed by the Neumann series

may be computed from the formula r(T) = lim,_, (

ROLT) = 1A+,
n=0

For more information we refer to Schaefer [1971], App. 1 and Reed-Simon [1972].
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B.18. The spaces C(X) and their duals M(X):
Let X be a compact space. The space C(X) of all real (resp. complex) valued
continuous functions on X becomes a Banach space if endowed with the norm

[f] = sup{[f(2)| : w € X}, feC(X).
The dual of C(X), denoted M (X), is called the space of Radon measures on X.

By the theorem of Riesz (Bauer [1972], 7.5) M (X) is (isomorphic to) the set of all
regular real-(resp. complex-)valued Borel measures on X (see A.12).

The Dirac measures d,, € X, defined by (0., f) := f(z) for all f € C(X), are
elements of M (X), and we obtain from Lebesgue’s dominated convergence theorem
(see A.16) the following:

If fr, f € C(X) with || f| < cforalln e N, then f,, converges to f for o(C(X), M (X))
if and only if {fy,, 0> — {f, 0, for all x € X.

B.19. Sequence spaces:
Let D be a set and take 1 < p < o0. The sequence space ¢P(D) is defined by

(D) = {@d)acp : Y lwal?” < o0}

deD
where xp are real (or complex) numbers.

Analogously, we define
(D) := {(ﬂfd)deD s sup |z4| < oo}.
deD

The vector space ¢P(D), resp. £*(D), becomes a Banach space if endowed with the

norm
» 1/p
l@a)acoll = (3 lwal”) "
deD
resp. [(xa)dep]| := sup |z4]-
deD

In our lectures, D equals N, Ny or Z. Instead of ¢P(D) we write ¢ if no confusion
is possible.

B.20. The LP(X,X, u):
Let (X,X, 1) be a measure space and take 1 < p < o0 . By Z(X, %, u) we denote
the vector space of all real- or complex-valued measurable functions on X with

§ [fIP dp < o0, Then
1/p
U= (] 1117 an)

is a semi-norm on £P(X, %, u),
Ny = {f € L7(X, 3, p) : | fll, = 0}
and is a closed subspace. The quotient space
LP(X, 5, 0) = LP() i= Z7(X, 5 w)/N,,
endowed with the quotient norm is a Banach space. Analogously, one denotes by
ZL*(X, X, ) the vector space of p-essentially bounded measurable functions on X.

Again,
[ flo = {CER+ cu[lf] > ] = 0}
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yields a semi-norm on % (X, X, 1) and the subspace
Ny = {f e L7(X, 5 1) e = 0}
is closed. The quotient space
L7 (X5, p) = L”(p) = L7 (X, %, 1) /Ny
is a Banach space.

Even if the elements of LP(X, ¥, 1) are equivalence classes of functions it generally
causes no confusion if we calculate with the function f € £P(X, %, u) instead of its
equivalence class f € LP(X, X, u) (see I1.D.4).

In addition, most operators used in ergodic theory are initially defined on the spaces
ZP(X, %, p). However, if they leave invariant N,, we can and shall consider the
induced operators on LP(X, %, i)

B.21. For 1 < p < oo the Banach space LP(X, X, 1) is separable if and only if the
measure algebra Y is separable.

B.22. If the measure space (X, 3, ) is finite, then
L*(4) € L7 (1) € TP () < L' (1)

for 1 <p1 < p2 < 0.

B.23. Let (X,X,u) be o-finite. Then the dual of LP(X, X, u), 1 < p < o0 is
isomorphic to LI(X, X, u) where ]% + % = 1, and the canonical bilinear form is given
by

Goy= [ £r9du for fe L), g L)
Analogously, the dual of L(y) is isomorphic to L™ (u).

B.24. Conditional expectation:

Given a measure space (X,X, ) and a sub-c-algebra ¥y € X, we denote by J
the canonical injection from LP(X, ¥, u) into LP(X, ¥, u) for 1 < p < o0. J is
contractive and positive (see C.4). Its (pre-)adjoint

P Lq(Xa Eaﬂ) - Lq(X7 207#)
is a positive contractive projection satisfying

P(fg) =gP(f) for fELq(X,E,/,L), QEL%(XaEOMU’)'

Proof. P is positive and contractive since J enjoys the same properties. The above
identity follows from

PUf9), iy =9I = [ fahdp = (F, gDy = (PPa. )
for all (real) h € LP(X, X, ). n

We call P the conditional expectation operator corresponding to 3. For its prob-
abilistic interpretation see Ash [1972], Ch. 6.
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B.25. Direct sums:
Let E;, i € N, be Banach spaces with corresponding norms | - ||;, and let 1 < p < 0.
The ¢P-direct sum of (E;)en is defined by

E = (—DEZ = {(-Ti)ieN 1T € Ei for all 7 € N and ZieN ||a:l||f < OO}
p

FE is a Banach space under the norm
1/p
I@iexl := (X leil?)
1eN
Given S, € Z(E;) with sup;ey ||Si|| < 0o, then
P Si : (i)ien = (Sizi)ien

is a bounded linear operator on E with | @ S;| = sup{|Si| : ¢ € N}. Analogously
one defines the /*-direct sum @, E;.
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Appendix C. Remarks on Banach Lattices and Commutative
Banach Algebras

(i) Banach lattices

A large part of ergodic theory, as presented in our lectures, takes place in the
concrete function spaces as introduced in (B.18)—(B.20). But these spaces bear
more structure than simply that of a Banach space. Above all it seems to us to
be the order structure of these function spaces and the positivity of the operators
under consideration which is decisive for ergodic theory. For the abstract theory of
Banach lattices and positive operators we refer to the monograph of H.H. Schaefer
[1974] where many of the methods we apply in concrete cases are developed. Again,
for the readers convenience we collect some of the fundamental examples, definitions
and results.

C.1. Order structure on function spaces:
Let E be one of the real function spaces C(X) orL?(X, %, 1), 1 < p < 00. Then we
can transfer the order structure of R to F in the following way:

For f,g € E we call f positive, denoted f = 0, if f(z) > 0 for all x € X, and define
f v g, the supremum of f and g, by (f v g)(z) := sup{f(z),g(x)} for all z € X

f ~ g, the infimum of f and g, by (f A g)(x) := inf{f(x), g(z)}, for all z € X

| f], the absolute value of f, by |f|(z) := |f(z)] for all z € X.

The new functions f v g, f A g and |f| again are elements of E.

Remark that for £ = LP(X, X, 1) the above definitions make sense either by con-
sidering representatives of the equivalence classes or by performing the operations
for pu-almost all x € X.

Using the positive cone F, := {f € E : f = 0} we define an order relation on E by
f=gif (9— f) e E,. Then E becomes an ordered vector space which is a lattice
for v and A.

Moreover, the norm of E is compatible with the lattice structure in the sense that
0 < f < g implies | f]| < g, and [[f]] = [ f]| for every f € E.

If we consider a compler function space E then the order relation “<” is defined
only on the real part FE, consisting of all real valued functions in E. But the
absolute value |f| makes sense for all f € E, and |||f]| = | f| holds.

C.2. A Banach lattice E is a real Banach space endowed with a vector ordering
“<” making it into a vector lattice (i.e. |f| = f v (—f) exists for every f € E and
satisfying the compatibility condition:

[/l <g implies [f] <|lg| forall fge E.

Complex Banach lattices can be defined in a canonical way analogous to the complex
function spaces in (C.1) (see Schaefer [1974], Ch.IL,§11).

C.3. Let E be a Banach lattice. A subset A of E is called order bounded if A
is contained in some order interval [g,h] :== {f € E : g < f < h} for g,h € E.
The Banach lattice E is order complete if for every order bounded subset A the
supremum sup A exists. Examples of order complete Banach lattices are the spaces
LP(u), 1 < p < oo, while C([0,1]) is not order complete.
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C.4. Positive operators:
Let E, F' be (real or complex) Banach lattices and T': E — F' a continuous linear
operator. T is positive if TE, C F, or equivalently, if T'|f| = |T'f| for all f € E.

The morphisms for the vector lattice structure, called lattice homomorphisms, sat-
isfy the stronger condition T'|f| = [T f| for every f € E.

If the norm on F is strictly monotone (i.e. 0 < f < ¢ implies ||f|| < |g]); e.g. E =
LP(u) for 1 < p < ) then every positive isometry T on E is a lattice homomor-
phism. In fact, in that case |Tf| < T|f| and [[Tf]| = |Tf] =[£I = [I£1I = [T/l
imply [T'f| = T|f]-

Finally, T is called order continuous (countably order continuous) if inf 54 Tz, = 0
for every downward directed net (sequence) (zq)aea With infuasa4 x4 = 0.

C.5. Examples of positive operators are provided by positive matrices and
integral operators with positive kernel (see Schaefer [1974], Ch. IV, §8).
Further, the multiplication operator

M, :C(X)— C(X) (resp. LP(X,%, pn) — LP(X, %, 1))

is a lattice homomorphism for every 0 < g € C(X) (resp. 0 < ge L7 (X, X, p)).
The operators

TAP fe fop
induced in C(X) or LP(X, %, u), 1 < p < w0, by suitable transformations
p: X > X

are even lattice homomorphisms (see I1.4).

(ii) Commutative Banach algebras

While certainly order and positivity are more important for ergodic theory, in some
places we use the multiplicative structure of certain function spaces.

C.6. Algebra structure on function spaces:
Let E be one of the complex function spaces C(X) or L*(X,%, ). Then the
multiplicative structure of R can be transferred to E: for f,g € E we define

f - g, the product of f and g, by (f — g)(z) := f(x) - g(x) for all x € X

f*, the adjoint of f, by f*(z) := f(z) for all z € X where “—" denotes the complex
conjugation.
The function R1, defined by 1(z) := 1 for all z € X, is the neutral element of the
above commutative multiplication. The operation “+” is an involution.
C.7. A C*-algebra <f is a complex Banach space and an algebra with involution
* satisfying

I£ - £ = 171?
for all f e o.
For our purposes we may restrict our attention to commutative C*-algebras. As
shown in (C.6) the function spaces C(X) and L*(X, X, u) are commutative C*-
algebras. Another example is the sequence space £*.
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C.8. Multiplicative operators:
Let @4 and o, be two C*-algebras. The morphisms

T:ah — ab

corresponding to the C*-algebra structure of 7 and % are continuous linear
operators satisfying

N
~~
~
<
SN

I

(Tf)-(Tg)
and T(f*)=(Tf)*
for all f,ge <.

Let o = C(X), resp. L*(X, 3, ). If ¢ : X — X is a continuous, resp. measurable,
transformation, the induced operator

To:fe fogp

is a multiplicative operator on &/ satisfying T,1 = 1 and T, f* = (T,f)%st (see
11.4).

C.9. Representation theorem of Gelfand-Neumark:
Every commutative C*-algebra </ with unit is isomorphic to a space C(X). Here
X may be identified with the set of all non-zero multiplicative linear forms on 7,
endowed with the weak* topology (see Sakai [1971], 1.2.1).

We remark that for &7 = £*(N) the space X is homeomorphic to the Stone-Cech
compactification ON of N (see Schaefer [1974], p. 106), and for &/ = L™ (Y, %, u),

v

X may be identified with the Stone representation space of the measure algebra
(see VI.D.6).



Appendix D. Remarks on Compact Commutative Groups

Important examples in ergodic theory are obtained by rotations on compact
groups, in particular on the tori I'*. In our Lectures VII and VIII we use some
facts about compact groups and character theory of locally compact abelian groups.
Therefore, we mention the basic definitions and main results and refer to Hewitt-
Ross [1979] for more information.

D.1. Topological groups:
A group (G,-) is called a topological group if it is a topological space and the
mappings

(g, h)—g-h on G x G
and g gt on G

are continuous. A topological group is a compact group if G is compact. An
isomorphism of topological groups is a group isomorphism which simultaneously is
a homeomorphism.

D.2. The Haar measure:

Let G be a compact group. Then there exists a unique (right and left) invariant
probability measure m on G, i.e. = Rym = Lym for all g € G where R, denotes
the right rotation R, f(z) := f(zg), x € G, f € C(G), and Ly the left rotation on
c(@).

m is called the normalized Haar measure on G.

The existence of Haar measure on compact groups can be proved using mean ergodic
theory (e.g. (7?.1) or Schaefer [1977], II1.7.9, Corollary 1). For a more general and
elementary proof see Hewitt-Ross [1979] 15.5-15.13.

D.3. Character group:

Let G be a locally compact abelian group. A continuous group homomorphism y
from G into the unit circle I is called a character of G. The set of all characters of G
is called the character group or dual group of G, denoted by G. Endowed with the
pointwise multiplication and the compact-open topology G becomes a topological
group which is commutative and locally compact (see Hewitt-Ross [1979], 23.15).

D.4 Proposition:
If G is a compact abelian group then G is discrete; and if G is a discrete abelian
group, G is compact (see Hewitt-Ross [1979], 23.17).

D.5 Example: Let I' := {z € C : |2|] = 1} be the unit circle with multiplication
and topology induced by C. Then I' is a compact group. Moreover, each character
of T is of the form

z 2"

for some n € Z, and therefore I' is isomorphic to Z. Finally, the normalized Haar
measure is the normalized one-dimensional Lebesgue measure m on I'.

D.6. Pontrjagin’s duality theorem:
Let G be a locally compact abelian group, and denote by G the dual group of G.
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G is naturally isomorphic to G, where the isomorphism
d:G-G
is given by g g with §(x) == x(g)

for all x € G (see Hewitt-Ross [1979], 24.8).
In particular, this theorem asserts that a locally compact abelian group is uniquely
determined by its dual.

D.7 Corollary:
The characters of a compact abelian group G form an orthonormal basis for L?(G, B, m),
B the Borel algebra and m the normalized Haar measure on G.

Proof. First, we prove the orthogonality by showing that {x(g)dm(g) = 0 for
X # 1. Choose h € G with x(h) # 1. Then we have

fx(g) dm(g) = Jx(hg) dm(g) = x(h) Jx(g) dm(g)

and hence fx(g) dm(g) = 0.

Clearly, every character is a normalized function in L?(G,B,m). Let g,h € G, and
observe by (D.6) that there is a x € G such that x(g) # x(h), i.e. the characters
separate the points of G. Therefore, the Stone-Weierstrass theorem implies that
the algebra & generated by G, i.e. the vector space generated by @, is dense in
C(G), and thus in L*(G, B, m). n

We conclude this appendix with Kronecker’s theorem which is useful for inves-
tigating rotations on the torus I'. For elementary proofs see (IIL.8.iii) for n = 1
and Katznelson [1976], Ch. VI, 9.1 for general n € N. Our abstract proof follows
Hewitt-Ross [1979], using duality theory.

D.8. Kronecker’s theorem:
Let a := (a1,...,an) € I'™ be such that {a,...,a,} linearly independent in the
Z-module T', i.e. 1 = ai'...a%", z; € Z implies z; = 0 for ¢ = 1,...,n. Then the

subgroup {a* : z € Z} is dense in I'".

Proof. Endow 7 =T with the discrete topology and form the dual group Zq = f‘\d
f; is a compact subgroup of the product I'" — note that here the compact-open
topology on f\d is the topology induced from the product I'T.

We consider the continuous monomorphism

D7 — Zd
z— ®(z) defined by ®(2)(y) :=+* forall yeI' = Z.

Then the duality theorem yields that ®(Z) is dense in Zg.
Now let b := (bq,...,b,) € I'" and € > 0. Since {a1,...,ay} is linearly independent
in the Z-module T" there exists a Z-linear mapping

Xef‘; with x(a;) = b; fori =1,...,n.
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By definition of the product topology on I''' and by denseness of ®(Z) in T, we
obtain z € Z such that

a7 — bi| = |®(2)(a:) — x(a))| <e,

fori=1,...,n.
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Appendix E. Some Analytic Lemmas

Here, we prove some analytic lemmas which we use in the present lectures but
don’t prove there in order not to interrupt the main line of the arguments. First,
we recall two definitions.

E.1 Definition:

1. A sequence (p)nen of real (or complex) numbers is called Cesaro-summable if
n—1

lim — Z x; exists.
n—ow n - 0
iz

2. Let (n;)ien be a subsequence of Ng. Then (n;);en has density s € [0, 1], denoted
by d((nl)zeN) =S, lf

1
lim f|{ni:ieN}m{O,l,...,k—1}| =3
k—w k
where | - | denotes the cardinality.

E.2 Lemma:
For (,,)nen, the following conditions are equivalent:

n—1
N 1
() Jim = ) fril = 0.
- =0

(ii) There exists a subsequence N of Ny with d(N) =1 such that lim z, = 0.

Proof. We define Ni :={0,1,..., k—1}.
(i) = (ii): Let Jy := {n € Ny : || > 1}, k > 0, and observe that J; € Jo € ---.
—1
1

Since || = % . %|Jk N N,|, each Ji has density 0. Therefore, we can choose
i=0
integers 0 = ng < ny; < ng < --- such that
L i A Na < ——  forn>
— N ——  forn = ny.
n k+1 n k+1 k

Define J := [ Jen(Jr+1 0 (Nnyy, \Vn, ) and show d(J) = 0.
Let nx < n < ng41. Then, we obtain

JNAN,=((JnN,)u(Jn (NANR)) € (e 0 Npy) v (Jes1 0 N,

and conclude that
1

1 1

If n tends to infinity, the same is true for k, and hence, J has density 0. Obviously,
the sequence N := N\J has the desired properties.

(ii) = (i): Let € > 0 and ¢ := sup{|z,| : n € No}. Because of (ii) and d(N\N) =0
there exists n. € N such that n > n. implies |z, | < € forn € N and %|(N\N)0Nn| <
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e. If n = n.we conclude that

IS i=t 9wl R
w2 lmil = i+ @

i€(N\N)nN,, iENNN,
< —|(N\N)n N,|+¢
<(c+1)-e
n
E.3 Lemma:
Take a sequence (zy,)nen of complex numbers such that
o
Z n|zni1 — zn|2 < 0.
n=1
1 n
If lim — Z z; = 0, then lim,,_,, z, = 0.
n—wn ]
Proof. Define ¢, := >/_ k|zk+1 — 2|*. Then
2n—3 2n—3 1/2
max{|znik —2n| 1 1 <k <n—2} < Z |21 — 2zi| < ( Z |2k 1 — 212 (n — 2))
k=n k=n
< Cp
n—2 1 n
and |zn]| = |bn-1 — 2b2p—2 + —— (Znak — 2zn)| for b, := =) z.
n—1 n
k=1 =1
n

E.4 Lemma:
Let N;, i = 1,2,... be a subsequence of Ny with density d(N;) = 1. Then there
exists a subsequence N of Ny such that d(N) = 1 and N\N; is finite for every i € N.

Proof. There exists an increasing sequence (k;);eny € N such that
) 1
1-27"< E|NZ n{0,...,k—1}| forallk >k,
If we define N := (),.y N; v {0,...,k; — 1}, then N has the desired properties. m

E.5 Lemma:
If (zy,)nen is a sequence of psoitive reals satisfying x,,+m < zp, +,, for all n,m e N,
then lim,, ., “* exists and equals inf,cy 2.

Proof. Fix n > 0, and for j > 0 write j = kn + m where k € Ng and 0 < m < n.
Then

Tj _ Bkntm ko Tm _ KTn o Tm T Tm

i kn4+m  kn kn S kn | kn n | kn’
If j — oo then & — o0, too, and we obtain
T T x
lim sup <™ andeven limsup =L < inf =%,
joow ] n jow ] neN n

Tn

On the other inf,cy 22 < liminf,,_,,, 22, and the lemma is proved. ]
n n
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Appendix S. Invariant Measures

If (X;¢) is a TDS it is important to know whether there exists a probability
measure v on X which is invariant under ¢. Such an invariant measure allows
the application of the measure-theoretical results in the topological context. It is
even more important to obtain a ¢-invariant measure on X which is equivalent to
a particular probability measure (e.g. to the Lebesgue measure). The following two
results show that the answer to the first question is always positive while the second
property is equivalent to the mean ergodicity of some induced linear operator.

S.1 Theorem (Krylov-Bogoliubov, 1937):
Let X be compact and ¢ : X — X continuous. There exists a probability measure
v € C(X) which is p-invariant.

Proof. Consider the induced operator T := T, on C(X). Its adjoint 7" leaves
invariant the weak*-compact set & of all probability measures in M (X). If vy € 2,
then the sequence {T} vy : n € N} has a weaks#-accumulation point v. It is easy to
see (use IV.3.0) that T'v = v, i.e. v is p-invariant. n

As a consequence we observe that every TDS (X; ) may be converted into an
MDS (X, B, u; ¢) where B is the Borel algebra and p some ¢-invariant probability
measure. Moreover, the set &2, of all p-invariant measures in &7 is a convex
o(C(X)', C(X))-compact subset of C'(X)’. Therefore, the Krein-Milman theorem
yields many extreme points of &7, called “ergodic measures”. The reason for that
nomenclature lies in the following characterization.

S.2 Corollary:
Let (X;¢) be a TDS. p is an extreme point of &, if and only if (X, B, u; ¢) is an
ergodic MDS.

Proof. If (X, B, u;¢) is not ergodic there exists A € B, 0 < pu(A) < 1, such that
p(A) = A and p(X\A) = X\A. Define two different measures

(B nA)
m(B):= p(A)
_ BN (X\A))
/,LQ(B) = M—\m fOI' Be B

Clearly, p = p(A) - p1 + (1 — u(A)) - po, and g not an extreme point of Z,.

On the other hand, assume (X, B, ;) to be ergodic. If p = 1(pu1 + po) for
pis p2 € P, then py < 2p and hence py € L (p)’ = L*(p). But the fixed space
of Ty, in L (p) contains p and pyand is one-dimensional by (IV.6), (IV.4.e) and
(IIT.4). Therefore we conclude p = i1, i.e. y must be an extreme point of &Z,. =

The question, whether there exist ¢-invariant probability measures equivalent to
some distinguished measure, is more difficult and will be converted into a “mean
ergodic” problem.

S.3 Theorem:

Let p be a strictly positive probability measure on some compact space X and let
¢ : X — X be Borel measurable and non-singular with respect to p (i.e. u(4) =0
implies u(p~1(A)) = 0 for A € B). The following conditions are equivalent:
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(a) There exists a @-invariant probability measure v on X which is equivalent to
L.

(b) For the induced operator T := T, on L™ (X, B, 1) the Cesaro means T' converge
in the o(L™, L')-operator topology to some strictly positive projection P €
Z(L*(p)), ie. Pf>0for 0 < feL™.

(c) The pre-adjoint 7" of T' = T,, is mean ergodic on L'(u) and T"u = u for some
strictly positive u € L*(p).

Proof. The assumptions on ¢ imply that T = T, is a well-defined positive con-
traction on L*(u) having a pre-adjoint 7" on L'(m) (see Schaefer [1974], IIL.9,
Example 1).

(a) = (c): By the Radon-Nikodym theorem the p-invariant probability measure v
equivalent to p corresponds to a normalized strictly positive T-invariant function
we LY(p). But for such functions the order interval

[—u,u]l :=={f e L' (n): —u < f < u}

is weakly compact and total in L' (y). Therefore Tu = u implies the mean ergodicity
of T as in (IV.6).

(c) implies (b) by a simple argument using duality theory.

(b) = (a): The projection P : L™ (u) — L™ (p) satisfies PT' = TP = P and maps
L* () onto the T-fixed space. Consider

vg:=poP

which is a strictly positive ¢-invariant linear form on L*(u). Since the dual of
L* () decomposes into the band L!(y) and its orthogonal band we may take v as
the band component of vy in L' (u).

By Ando [1968], Lemma 1, v is still strictly positive and hence defines a mea-
sure equivalent to p. Moreover, T"v is contained in L!(u) and dominated by vy,
hence T'v € v. From T1 = 1 we conclude T'v = v and that v is ¢ invariant.
Normalization of v yields the desired probability measure. n

These abstract results are not only elegant and satisfying from a theoretical
standpoint, they can also help to solve rather concrete problems:

Let ¢ : [0,1] — [0, 1] be a transformation which is piecewise C?, i.e. there is a finite
partition of [0 1] in intervals A, such that ¢ can be extended continuously from
the interior A to the closure A; and the resulting function ; is twice continuously
differentiable on A;. Moreover we assume that the derivatives ¢; do not vanish on
/L-, ; is increasing or decreasing.

In this case, ¢ is measurable and non-singular with respect to the Lebesgue measure
m, and

Tf:=fop
defines a positive contraction on L* ([0, 1], B,m) satisfying 71 = 1 and having a
pre-adjoint 77 on L'(m).
As a consequence of this theorem, one concludes that ¢ possesses an invariant prob-
ability measure which is absolutely continuous with respect to m iff dim F/(7") > 1.
In particular, this follows if 7" is mean ergodic.
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To find out under which conditions on ¢ this holds, we observe that the pre-adjoint
T’ can be written as

ZfO% (2)1p,(2),

where B; = ;(A;) and o; is the absolute value of the derivative of 0; !

In fact: For every x € (0,1),
T 1
J’ T'fdsz’f~1(0@)o<pdm=J, f dm.
0 0 ©—1(0,x)

Thus 7" f is the derivative g of the function g(z) = Sw—l(o o/ dm.

If ¢ is piecewise C?, we can calculate this derivative and obtain the above formula.
Recall that the variation v(f) of a function f : [a,b] — R is defined as

—sup{2|f _)|:a=t0<t1---<tn=b}.

neN

With this concept and using some elementary analysis, one proves that

() o(f - 9) < f f - gl dm

if f is piecewise continuous and g continuously differentiable.
After these preparations we present the main result.

S.4 Proposition:
Let ¢ : [0,1] — [0,1] be piecewise C? such that

= inf{|4(t)] : t € (0,1) and ¢ differentiable at t} > 1.

Then there exists a ¢-invariant probability measure on [0, 1] which is absolutely
continuous with respect to the Lebesgue measure m.

Proof. By (S.3) we have to show that the pre-adjoint 77, of T}, is mean ergodic on
L'(m). The first part of the proof is of a technical nature. Choose n € N such that
s™ > 2 and consider the map
D ="
which again is piecewise C2. Clearly,
inf{|®(t)| : t € (0,1) and @ differentiable at t} > s" > 2.

Now we estimate the variation v(77,f) for any piecewise continuous function f :
[0,1] — R. To this purpose we need some constants determined by the function ®.
Take the partition of [0, 1] into intervals A; corresponding to ¢ and write

Ty f(x Zfo@ oi(x)1p, (x)

where B; = ®;(4;) and o;(x) = |

1. For o; we have o;(z) < s7" <

2. Put k := max{|;(z)| : = €
1,...,m}.

(@, ) (@)].
%freveryxeB
B;: i 1,...,m}-max{|<i>i(x)| cx e A io=
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3. For the interval A; = [a;_1,a;] we estimate

[f (@i + [f(ai)| < 2inf{[f(2)] : x € Ai} +o(f]a,)

2
m(Al) J’ai |f| dm + U(f|A7)

<

<2hJ, |f]dm + +vu(f

i

Ai)

for h := max{m(%i):izl,...,m}.

Now, we can calculate:

o(Tpf) < D o(fo &7 (@)oi(2) - 1, (x))

N
Il
-

<

s

@
Il
—_

(ol - v(F 0 07" (@) - 15,(a)) +J [Fo @7 6] dm)
B;
(by inequality (%) above)

<

~

(s7(1F @) + I (@)l + ol

s

@
Il
—

Ai))+kJBi |fo® ! 0 dm)

(since max{|®;(z)| : z € Ag;i = 1,...,m} = min{oy(z) : x € Bi;i=1,...,m})

i(s"(zhL If] dm + 20(f]a,)) + kJA‘, 7] dm)

1
(b + k)| fll1 + 257 v(f).

Observing that v(1) = 0 and 741 is again piecewise continuous, we obtain by
induction

<
<

r—1
r ; h+k
v(Ty 1) < (h+ k) Z (2s7")' < PEE every r € N,
= 1—-2s—n

and therefore
h+k
1—2s—n’
ie. T5"1 < M -1 for r € N and some M > 0. For the final conclusion the abstract

mean ergodic theorem (IV.6) implies that Ty is mean ergodic. Since Ty, = T),", the
same is true for 77, by (IV.D.2). n

176" e < T3 1y +0(T5"1) <1+

In conclusion, we present some examples showing the range of the above propo-
sition.

S.5 Examples:

1. The transformation

2t forOstS%
(p(t):z 1
2—2t f0r§<t<1

satisfies the assumptions of our proposition and has a @-invariant measure. In
fact, m itself is invariant.



2. For
t

1
ol):= {7 PrOsiss
2%—1 for i <t<1

The assumption |¢(t)| > 1is violated at ¢ = 0. In fact, there is no p-invariant and
with respect to m absolutely continuous measure on [0, 1], since T, ;" f converges
to 0 in measure for f € L'(m) (see Lasota-Yorke [1973]).

3. For p(t) := 4t - (1 — t) is strongly violated, nevertheless there is a @-invariant
measure: Indeed, the equation S[O)m] fdm = Sgrl[o,z] f dm together with the
plausible assumption that f(¢) = f(1 —t) leads to

T %7% l1-x
F(x):zl[f(t)dt:lf fO)dt=2-F(3 — iV1—2).
0 0
By substituting = = sin® € we obtain
F(sin?¢) = 2F(% — %cosf) = 2F(sin? g)
which shows that F(z) = arcsin /x is a solution. Thus the function
1
)= — =
f=) 2\/x(1 —x)

yields a g-invariant measure f -m on [0, 1]

4. Finally, p(t) := 2(t — 27 for 27" < ¢ < 2!'% i e N, has ¢;(t) = 2, but infinitely
many discontinuities. Again there exists no @-invariant measure since T(;n f
converges to zero in measure for f e L'(m).

References: Ando [1968], Bowen [1979], Brunel [1970], Hajian-Ito [1967], Lasota
[1980], Lasota-Yorke [1973], Neveu [1967], Oxtoby [1952], Pianigiani [1979], Taka-
hashi [1971].
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V.5.
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Appendix V. Akcoglu’s Individual Ergodic Theorem

113



114

Appendix Y. Mean Ergodic Operator Semigroups
Y.1.
Y.2.
Y.3.
Y .4.
Y.5.
Y.6.
Y.7.
Y.8.
Y.9.
Y.10.
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