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Emergence of Specialized Decision-Makers
Decision-Maker: optimizes a utility U in state s:

as; = argmax U(s, a)
a

Central Idea:
Limited resources such as

» Linear Decision-Makers
» Limited information processing

drive specialization. ' 2
Motivation: Linear decision-makers are easy to
analyze.

1 Genewein, T., Leibfried, F., Grau-Moya, J., and Braun, D.A. Bounded rationality, abstraction, and
hierarchical decision-making: An information-theoretic optimality principle. Frontiers in Robotics and Al,
2:27, 2015.

2Hihn, H., Gottwald, S., and Braun, D. A. (2018). Bounded rational decision-making with adaptive
neural network priors. In IAPR Workshop on Atrtificial Neural Networks in Pattern Recognition.
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Bounded Rationality and Specialization

Intelligent agents must invest their re-
sources such that they optimally trade off
utility versus processing costs 3 4

Herbert A. Simon

conedtheterm  CONSEQUENce: Specialization
Bounded Rationality

3Simon, H. A. A behavioral model of rational choice. The Quarterly Journal of Economics,
69(1):99-118, 1955.
4Gershman, S. J,, et al. Computational rationality: A converging paradigm for intelligence in brains,

minds, and machines. Science (2015)
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Information-theoretic Bounded Rationality °

Unlimited Resources

High uncertainty iy Low uncertainty

DONOOD oo™t

p(als)

Limited Resources

High uncertainty S Remaining uncertainty

ODO0000 ~obsenaton” € @oaDd

plals)
p(als)

max E U(s,a)] st. I(S;A) < C
p(a19) p(s),p(a|s)[ ( )] ( )

p*(als) = argmaxE [U(s, a)] — 1I(S; A)
p(als) Z

Mutual Information: I(S; A) = Ep(4)s) [DkL(p(als)||p(a))]

Ortega, P. A., and Braun, D.A.. Thermodynamics as a theory of decision-making with

(1)
(@)

information-processing costs. Proceedings of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences, 469(2153), 2013.
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Hierarchical Decision-Making

Extend to two-level hierarchy with experts x € X ©

S—-X—-A (3)
Extended objective:

max E[U(s,a)] — 1

1
I(S; X) — —I(S;AlX). (4
plals.x),p(x]s) 5, [(S:X) = 5 (SIAIX). (4)

6Genewein, T, Leibfried, F., Grau-Moya, J., and Braun, D.A. Bounded rationality, abstraction, and
hierarchical decision-making: An information- theoretic optimality principle. Frontiers in Robotics and
Al, 2:27, 2015.
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Learning via Gradient Descent
Parametrize distributions with parameters ¢ and ¥:

B 1 g(X’S) 1 pﬁ(a|37x)
Hoxa) = o8 = 5109700y~ 59 p(ai)
()

p(x)

(x,8) =Ep,ams) [U(S a) - 512 log W} )

Expert Objective

max  Epas) [[(x.8) — 7 log 20| (6)

Approximate the prior distributions p(x) and p(a|x) by
running means.
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Utilities for Classification and Regression

1. cross-entropy loss
L(y,§) =3 yilog 5 = — > yilog i

2. mean squared error L(y, ) = >;(Ji — ¥i)?
max E f(x,s) — L log PeXI)
po(xls) |T(X, 8) = 57109 =555
n N 1 po(¥]8, x)
f(X, S) Epﬁ(y‘x,s) |: E(y7y) - @IO 1;)((j‘/||x)

Expert Objective
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Classification
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Reinforcement Learning: Setup

Markov Decision Process as a tuple (S, A, P, r), where
» S is the set of states
» A the set of actions
» P:S x AxS —[0,1] is the transition probability
» r: S x A— Ris areward function

Find policy mp maximizing expected reward:

> r(st, at)] : (10)

0" =argmaxE..,
0 t=0

J(me)
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RL Objective

Penalize deviation from a prior policy:

> 1 7T(at|St)
argmaxE, ~t <r(s ,at) — — log ) . (1)
maxEr |3t (rlsna) = 5 log =)

Similar to MaxEnt RL 7, Trust Region Policy Optimization
8 Mutual Information Regularized RL °

7Eysenbach, B. and Levine, S. If MaxEnt RL is the Answer, What is the Question?. arXiv preprint
(2019).
Schulman, J., et al. Trust region policy optimization. In International Conference on Machine
Learning (2015)
gLeibfried, F., and Grau-Moya, J. Mutual-information regularization in markov decision processes
and actor-critic learning. Conference on Robot Learning (2019).
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RL Objectives

Advantage-Actor-Critic '° Selection Stage Objective:

; 1
Max Ex,(xjs) [f(s, x) — - log ™XIS)

5 w<x)}’ (12)

where

A 1 s
f(S, X) = Eﬂ'ﬁ(als,x) [r(s, a) - @ log ljr((a;is);)x):| (13)

Expert Objective

1 OSchuIman, J., et al. High-dimensional continuous control using generalized advantage estimation.
International Conference on Learning Representations (2015)
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Reinforcement Learning - Continuous Control Problems

Cumulative Reward per Episode
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1 Schulman, J., et al. Trust region policy optimization. In International Conference on Machine

Learning (2015)
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Gain Scheduling

X =Aix+ Bju+e, forx € X;
1 ifx>0
-1 ifx<O
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Conclusion

» Principled method applicable to a variety of tasks

» Resource limitation drives specialization

» No prior task information required: utility driven
partitioning

» Normative framework to analyze hierarchical
structures

» System build only by linear decision-makers
» Open Questions

» High dimensional tasks
» Sample efficiency in RL
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