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Emergence of Specialized Decision-Makers
Decision-Maker: optimizes a utility U in state s:

a∗s = arg max
a

U(s,a)

Central Idea:
Limited resources such as

I Linear Decision-Makers
I Limited information processing

drive specialization. 1 2

Motivation: Linear decision-makers are easy to
analyze.

1
Genewein, T., Leibfried, F., Grau-Moya, J., and Braun, D.A. Bounded rationality, abstraction, and

hierarchical decision-making: An information-theoretic optimality principle. Frontiers in Robotics and AI,
2:27, 2015.

2
Hihn, H., Gottwald, S., and Braun, D. A. (2018). Bounded rational decision-making with adaptive

neural network priors. In IAPR Workshop on Artificial Neural Networks in Pattern Recognition.
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Bounded Rationality and Specialization

Herbert A. Simon
coined the term

Bounded Rationality

Intelligent agents must invest their re-
sources such that they optimally trade off
utility versus processing costs 3 4

Consequence: Specialization

3
Simon, H. A. A behavioral model of rational choice. The Quarterly Journal of Economics,

69(1):99–118, 1955.
4

Gershman, S. J., et al. Computational rationality: A converging paradigm for intelligence in brains,
minds, and machines. Science (2015)
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Information-theoretic Bounded Rationality 5

Observation

Observation

High uncertainty Low uncertainty 

High uncertainty Remaining uncertainty 

Unlimited Resources

Limited Resources

p(
a|

s)

p(
a|

s)

p
(a

|s
)

p
(a

|s
)

max
p(a|s)

Ep(s),p(a|s) [U(s,a)] s.t. I(S;A) ≤ C (1)

p∗(a|s) = arg max
p(a|s)

E [U(s,a)]− 1
β

I(S;A) (2)

Mutual Information: I(S; A) = Ep(a|s) [DKL(p(a|s)||p(a))]

5
Ortega, P. A., and Braun, D.A.. Thermodynamics as a theory of decision-making with

information-processing costs. Proceedings of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 469(2153), 2013.
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Hierarchical Decision-Making

Extend to two-level hierarchy with experts x ∈ X 6

S → X → A (3)

Extended objective:

max
p(a|s,x),p(x |s)

E[U(s,a)]− 1
β1

I(S;X )− 1
β2

I(S;A|X ). (4)

6
Genewein, T., Leibfried, F., Grau-Moya, J., and Braun, D.A. Bounded rationality, abstraction, and

hierarchical decision-making: An information- theoretic optimality principle. Frontiers in Robotics and
AI, 2:27, 2015.
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Learning via Gradient Descent
Parametrize distributions with parameters θ and ϑ:

J(s, x ,a) = U(s,a)− 1
β1

log
pθ(x |s)

p(x)
− 1
β2

log
pϑ(a|s, x)

p(a|x)
(5)

max
θ

Epθ(x |s)

[
f̂ (x , s)− 1

β1
log pθ(x |s)

p(x)

]
(6)

f̂ (x , s) = Epϑ(a|x ,s)

[
U(s,a)− 1

β2
log

pϑ(a|s, x)
p(a|x)

]
︸ ︷︷ ︸

Expert Objective

(7)

Approximate the prior distributions p(x) and p(a|x) by
running means.
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Utilities for Classification and Regression

1. cross-entropy loss
L(y , ŷ) =∑i yi log 1

ŷi
= −∑i yi log ŷi

2. mean squared error L(y , ŷ) =∑i(ŷi − yi)
2

max
θ

Epθ(x |s)

[
f̂ (x , s)− 1

β1
log pθ(x |s)

p(x)

]
(8)

f̂ (x , s) = Epϑ(ŷ |x ,s)

[
−L(ŷ , y)− 1

β2
log

pϑ(ŷ |s, x)
p(ŷ |x)

]
︸ ︷︷ ︸

Expert Objective

(9)
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Reinforcement Learning: Setup

Markov Decision Process as a tuple (S,A,P, r), where
I S is the set of states
I A the set of actions
I P : S ×A× S → [0,1] is the transition probability
I r : S ×A → R is a reward function

Find policy πθ maximizing expected reward:

θ∗ = arg max
θ

Eτ∼πθ

[ ∞∑
t=0

r(st ,at)

]
︸ ︷︷ ︸

J(πθ)

. (10)
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RL Objective

Penalize deviation from a prior policy:

arg max
π

Eπ

[ ∞∑
t=0

γt
(

r(st ,at)−
1
β

log
π(at |st)

π(a)

)]
. (11)

Similar to MaxEnt RL 7, Trust Region Policy Optimization
8, Mutual Information Regularized RL 9

7
Eysenbach, B. and Levine, S. If MaxEnt RL is the Answer, What is the Question?. arXiv preprint

(2019).
8

Schulman, J., et al. Trust region policy optimization. In International Conference on Machine
Learning (2015)

9
Leibfried, F., and Grau-Moya, J. Mutual-information regularization in markov decision processes

and actor-critic learning. Conference on Robot Learning (2019).
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RL Objectives

Advantage-Actor-Critic 10 Selection Stage Objective:

max
θ

Eπθ(x |s)
[
f̂ (s, x)− 1

β1
log

πθ(x |s)
π(x)

]
, (12)

where

f̂ (s, x) = Eπϑ(a|s,x)
[
r(s,a)− 1

β2
log

πϑ(a|s, x)
π(a|x)

]
︸ ︷︷ ︸

Expert Objective

(13)

10
Schulman, J., et al. High-dimensional continuous control using generalized advantage estimation.

International Conference on Learning Representations (2015)
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Reinforcement Learning - State Partition
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Reinforcement Learning - Continuous Control Problems
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11
Schulman, J., et al. Trust region policy optimization. In International Conference on Machine

Learning (2015)
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Gain Scheduling

ẋ = Aix + Biu + ε, for x ∈ Xi

Bi =

{
1 if x ≥ 0
−1 if x < 0

(14)
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Conclusion

I Principled method applicable to a variety of tasks
I Resource limitation drives specialization
I No prior task information required: utility driven

partitioning
I Normative framework to analyze hierarchical

structures
I System build only by linear decision-makers
I Open Questions

I High dimensional tasks
I Sample efficiency in RL
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