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Computation of Transverse Optical Modes

in Vertical-Cavity Surface-Emitting Lasers

Markus Daubenschüz

We present a finite-difference-based eigenvalue method for the computation of optical
modes in waveguides with cylindrical symmetry. This approach is combined with the ef-
fective index method to determine the transverse modes in the resonator of vertical-cavity
surface-emitting lasers (VCSELs) and to investigate the thermal guiding and the guiding
provided by the buried oxide layers. We introduce the mathematical fundamentals of the
finite difference method which is first applied to a step-index waveguide structure that al-
lows a comparison with analytical solutions. Field distributions and polarizations of the
modes are shown. Afterwards, multi-step and graded refractive index profiles as they arise
in VCSELs are analyzed and the influence of the oxide width on the guiding is investigated.

1. Introduction

VCSELs are key optoelectronic devices for data communication in high-performance com-
puting, data centers, and in-building networks [1, 2]. The performance of such lasers de-
pends on numerous design parameters that influence the current flow, the heat generation
inside the device, and the optical characteristics. To develop and optimize next-generation
VCSELs with data rates of 28 Gbit/s and above [3, 4] or to enable new applications, an
accurate prediction of the influence of design changes is inevitable. Therefore we have es-
tablished a quasi-three-dimensional simulation framework to compute the electro-thermal
characteristics of different epitaxial and geometrical designs [5, 6]. The simulations are
based directly on the epitaxial design protocols. Beside the electrical and thermal char-
acteristics, the knowledge of the optical properties is a major aspect. To complete our
tool we have implemented a set of algorithms to compute the transverse modes inside the
cavity. In Sect. 2 we show the mathematical foundation of the eigenvalue method based
on finite differences and we compare the results with analytical solutions of step-index
optical fiber structures. The next section extends the technique to VCSEL structures
with rotational symmetry and a more complex refractive index profile.

2. Finite Difference Method

The implementation of the mode solver is based on the finite difference method (FDM).
The underlying refractive index distribution is obtained by approximating the laser cav-
ity by a longitudinally homogeneous waveguide structure. The mathematical approach
of the FDM is the separation of electric and magnetic fields and the computation of
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transverse fields by finite differences while analytical expressions are available in the di-
rection of propagation. The generalized transmission line (GTL) equations derived from
Maxwell’s equations in cylindrical coordinates describe the relations between the electric
and magnetic fields by [7]
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where i =
√
−1 and ǫr and µr are the relative permittivity and permeability, respectively.

We have normalized the coordinates u = r, z with the free-space wavenumber k = 2π/λ as

ū = uk and the magnetic field H̄ = HZ0 with the free-space wave impedance Z0 =
√

µ0/ǫ0.
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in (1) and Ampère’s law for dielectric material
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in (2), the GTL equations are rewritten as
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The matrix elements RE and RH in (5) include the derivatives in r̄- and φ-directions and
the material parameters ǫr and µr of the structure. The two matrices have the form [8]
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The combination of the two equations in (5) leads to

∂2[E]t
∂z̄2

−QE[E]t = 0 , (9)
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∂2[H ]t
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−QH[H ]t = 0 , (10)

where we used the operation matrices QE and QH that arise from the matrix products

QE = −RHRE , QH = −RERH . (11)

Only the transverse field components are included in (9) and (10) and the derivatives
in longitudinal z̄ and transverse φ- and r̄-directions are separated. By replacing the
derivatives in (7) and (8) by finite differences one can solve the system of equations by a
transformation to principal axes
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where the matrices ΓE,H include the eigenvalues and the matrices TE,H the eigenvectors
of the QE,H matrices. The columns of eigenvectors correspond to the field distributions of
the modes in the structure, whereas the principal axis of the eigenvalues Γ contains the
propagation constants of the modes in the form

γ̄ =
√
Γ = κ̄ + in̄eff , (13)

where κ̄ = α/(2k) is the amplitude attenuation coefficient normalized with k and n̄eff is the
effective index such that the mode propagates with the propagation factor exp{−γ̄z̄} =
exp{−αz/2} exp{−in̄effkz} for a wave traveling in +z-direction. We assume structures
with material parameters not depending on the φ-direction and a perfect cylindrical sym-
metry. One can then replace the φ-dependency with

Er, H̄φ ∝ cos(mφ) , Eφ, H̄r ∝ sin(mφ) (14)

or vice versa. Therefore we can simplify (7) and (8) to the forms
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where we have substituted the derivative ∂
∂r̄

by a finite difference matrix Dr̄ [7]. The
related coordinate system for the discretization with finite differences is shown in Fig.
1. Worth to mention is the half-step shift ∆r̄/2 between the Er, H̄φ and Eφ, H̄r fields,
which is caused by the first-order derivative of the coupling between the field components
in (15) and (16). As boundary conditions in the center at r̄ = 0 we use the Neumann
condition ∂F

∂r̄
= 0 for Eφ, H̄r and the Dirichlet condition F = 0 for r̄Er, r̄H̄φ. Due to the

multiplication of Er and H̄φ with r̄ the Dirichlet boundary condition is fulfilled without
forcing the field component itself to zero.

The results of the finite difference computation are compared to an analytical solution
for a weakly guiding step-index fiber with a refractive index n̄co = 1.5 in the core with
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Fig. 1: Coordinate system for a finite differ-
ence discretization of a step-index fiber with
rotational symmetry.
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Fig. 2: Comparison of analytic and finite difference solutions of the phase parameter B =

(n̄2
eff − n̄2

cl)/(n̄
2
co − n̄2

cl) and the frequency parameter V = krco
√

n̄2
co − n̄2

cl for the first nine LP

modes of a step-index fiber (left) and two radial field distributions for refractive indices n̄co = 1.5
and n̄cl = 1.497 and a core radius rco = 15µm (right). The radius of the simulation window is
80µm and the discretization step width is 0.1µm

.

0 ≤ r ≤ r̄coλ/(2π) and n̄cl = 1.497 in the cladding with r > r̄coλ/(2π). The analytical
solutions are found by solving the characteristic equation [9, 10]

u · Jl(u)
Jl−1(u)

= −w ·Kl(w)

Kl−1(w)
(17)

with the Bessel function J describing the field distribution in the core and the modified
Hankel function K for the evanescent fields in the cladding. Solutions of the FDM are the
so-called EH and HE modes. It is convenient to approximate the modes inside a VCSEL as
a superposition of nearly degenerated EH and HE modes. These are the linearly polarized
LPlp modes in the combination EHl−1,p and HEl+1,p with the azimuthal order l and the
radial order p [9]. In Fig. 2 (left) we plot the BV diagram of the fiber for the first nine
LP modes. There is a perfect accordance of analytic and finite difference solutions. The
radial field distributions of two modes in the same fiber with core radius rco = 15 µm are
shown in Fig. 2 (right). To illustrate the origin of the LP modes we show in Fig. 3 the
two-dimensional electric field profiles and the corresponding electric field polarizations of
two quasi-degenerated EH01 and HE21 modes with an effective index n̄eff = 1.4997 for
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Fig. 3: Two-dimensional electric field profiles and electric field polarizations of the EH01 (left)
and HE21 (right) modes in a step-index fiber with n̄co = 1.5, n̄cl = 1.497, and rco = 15µm.

rco = 15 µm. The addition of these modes forms the linearly polarized LP11 mode that
is shown in Fig. 4. It should be mentioned that this mode can occur in two orientations,
namely sinφ and cosφ, and two orthogonal linear polarizations.

3. VCSEL Modes

The FDM described in the previous section enables us to evaluate the influence of dif-
ferent design parameters on the optical guiding in VCSEL structures with more complex
refractive index profiles compared to a simple step-index fiber. To determine the radial
refractive index profile we combine our approach with the effective index method [11] that
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Fig. 4: Two-dimensional electric field profile and electric field polarization of the LP11 mode
that originates from the addition of the EH01 and HE21 modes in Fig. 3.
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Fig. 5: Radial effective index profile of an oxide-confined VCSEL with one main aperture with
active radius ra1 = 3µm and five additional apertures with ra2 = 3.5µm as well as a thermally
induced index profile (left) and the same profile without the influence of the oxide layers (right).

gives a relation between the change of the resonance wavelength ∆λ and the change of
the effective index ∆n̄eff , namely

∆λ

λ
=

∆n̄eff

n̄eff

(18)

with the initial resonance wavelength λ and the effective index n̄eff . The values of ∆λ =
∆λ(r) are determined with the one-dimensional transfer matrix method [12]. With this
approximation we can evaluate the influence of thermal lensing as well as the guiding
provided by one or multiple oxide layers. Figure 5 (left) depicts the effective index profile
of an oxide-confined datacom VCSEL with one main aperture and five additional apertures
with larger diameter to reduce the capacitance of the device, as indicated in the inset.
The radii are ra1 = 3 µm and ra2 = 3.5 µm for the main and the additional apertures,
respectively. The laser cavity consists of three quantum wells sandwiched between 26
top and 33.5 bottom mirror pairs. The influence of the oxide layers on the effective
index profile is quite strong, which is due to the high index difference ∆n̄ ≈ 1.4 between
aluminum oxide and AlGaAs. The effective index steps are ∆n̄eff = 0.006 and 0.055 for
the main and the additional apertures, respectively. The profile in Fig. 5 (left) includes
both the oxide and thermal effects on the refractive index. In contrast, Fig. 5 (right)
exclusively shows the thermally induced effective index profile for a dissipated electrical
power Pdiss = 14mW. The radial temperature profile inside the cavity causes a decreasing
n̄eff with increasing radial coordinate. This n̄eff profile results in the so-called thermal
lensing, which in the given case is small compared to the built-in guiding. The LP modes
guided by the effective index profile n̄eff(r) are then computed according to Sect. 2. The
first six transverse modes of the oxide configuration of Fig. 5 (left) are displayed in Fig.
6 (left). On the right side of Fig. 6 we set the radii ra2 of the additional oxide layers to
3, 3.5, and 4 µm and compute the profiles of the corresponding fundamental LP01 modes.
Larger ra2 obvious lead to a widening of the mode profiles. This effect is expected to
saturate owing to the guiding effect of ∆n̄eff at r = ra1.
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Fig. 6: Radial field profiles of the first six transverse modes in an oxide-confined VCSEL cavity
with ra1 = 3µm and ra2 = 3.5µm (indicated as vertical lines) (left) and the resulting LP01

modes of the same structure with changing ra2 (right).

4. Conclusion

We have introduced a finite-difference-based eigenvalue method for the computation of
optical modes in cylindrical geometries. In combination with the effective index method
this approach can be used to evaluate the distributions of the linearly polarized LP modes
inside the cavity of VCSELs with complex refractive index profiles. As a brief example
we have calculated different modes of an oxide-confined VCSEL and have investigated the
influence of variations of an oxide aperture diameter on the optical guiding.
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