
Global Architecture of MyThOS
Whitepaper

Randolf Rotta, rottaran@b-tu.de

Vladimir Nikolov, vladimir.nikolov@uni-ulm.de

Lutz Schubert, lutz.schubert@uni-ulm.de

19th April 2016



Contents

1 Overview 1

2 Logical View: Components, Layers, and Subsystems 3
2.1 Software Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Functional Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Physical View: Deployment, Placement, Connections 9

4 Process View: Dynamic Interactions 11

5 Development View: Implementation Artifacts, Interfaces, Types, Mod-
ules 13
5.1 Software Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Build-Time Configuration Modules . . . . . . . . . . . . . . . . . . . . . 16

5.2.1 Module Specification . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.2 Target Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 17

ii



1 Overview

This chapter introduces the global architecture and design of MyThOS. Summarized
in broad terms it is a monolithic modular multikernel with optional sharing and a
fine-grained asynchronous execution model.

Classic microkernel designs combine a modular component-based software archi-
tecture with strong isolation between components by executing them in separate
protection domains. MyThOS follows the same component-based design style but
makes isolation optional by allowing kernel-mode components for performance crit-
ical system services. This hopefully simplifies the implementation of high throughput
task and thread scheduling approaches. Hence, from a puristic point of view, MyThOS
has a monolithic kernel but nevertheless is based on a modular design.

Systems like Barrelfish [BBD+09] propose the multikernel style in which each
hardware thread runs an independent kernel and all communication is facilitated via
explicit message passing. This shared-nothing approach enables the operating system
to coordinate across heterogeneous processors and distributed memory whereas
applications can use shared memory where supported. MyThOS follows the same
style by deploying a local task and memory management on each hardware thread.
However, MyThOS also allows hybrid deployments in which groups of threads can
share local resources and tasks. This should improve the load balancing between
service threads in order to increase the overall responsiveness and throughput.

In order to actually achieve high throughput on many-core architectures, parallel-
ism and locality is needed. To this end, MyThOS uses a fine-grained asynchronous
execution model based on tasklets as non-blocking pieces of work. The basic com-
munication across cores and threads is achieved by sending tasklets like active
messages and parallelizable tasks can generate multiple tasklets for local load bal-
ancing. On top of this, interactions between components are mapped to request
tasklets in combination with continuation passing for the responses. The classic
interrupt handling epilogues also map to tasklets naturally.

The chapter follows along the 4+1 view model of Kruchten [Kru95] with some
minor modifications. The scenarios were already summarized in the previous chapter
in the form of objectives and requirements. Subsequent chapters will discuss the
design of selected subsystems in more detail.

1



Global Architecture of MyThOS (Whitepaper)
1 Overview

The first subsection (Sec. 2) describes the logical view, which consist of common
services, mechanisms, and design elements that fulfill the functional requirements.
This analysis extends the scenarios from the previous section by adding the services
and system components that are needed to provide the requested functionality. The
physical view in Section 3 discusses the deployment. This includes the placement
and replication of specific components onto processors or hardware threads as well
as the basic memory layout. Subsection 4 discusses the dynamic view, which focuses
on life-cycle management of components, how interactions between components are
carried out, and the necessary scheduling of tasks on hardware threads. Finally, the
development view in Section 5 describes implementation aspects, for example, how
interfaces and components are implemented in principle, as well as how files and
folders should be structured.

2



2 Logical View: Components, Layers, and

Subsystems

The logical organization of the operating system is based on reusable software
components that provide a specific service by encapsulating the necessary code and
state. Variants of the operating system are deployed by composing and configuring
these components. Many of the hardware-independent components can also be
reused via user-mode libraries.

In order to restrict dependencies and improve reusability, the logical architecture
is decomposed vertically into software layers, e.g. local versus global services, and
horizontally by functional subsystems, e.g. memory versus thread management.
The following subsection (Sec. 2.1) gives an overview about the software layers of
MyThOS. Then, Section 2.2 discusses important subsystems.

2.1 Software Layers

The main purpose of the software layers in MyThOS is restricting dependencies in
order to improve the reusability. The lower layers are based on dependencies to
basic mechanisms such as local memory management, asynchronous task scheduling,
or inter-core and inter-thread communication. The upper layers are responsible
for hardware-independent abstractions and application-specific support. Figure 2.1

Figure 2.1: MyThOS architecture layers

3



Global Architecture of MyThOS (Whitepaper)
2 Logical View: Components, Layers, and Subsystems

shows the layers’ vertical organisation and the following paragraphs describe each
layer.

Synchronous Local Services (SLS): This layer contains components for the local
hardware configuration and management on each hardware thread and pro-
cessor core. The requirements of these components are as simple as possible,
for example no asynchronous processing, no communication, and just statically
allocated memory.

The components of this layer operate synchronously and immediately, based on
request from higher layers and from hardware events. Policies and decision
making should be left to higher layers in order to improve the reusability.
Hence, hardware events are passed to the layers above via registered callback
functions or specific hook functions. All processing should be non-blocking and
wait-free in order to simplify the scheduling on higher layers.

Event Executive (EVE): This layer provides the mechanisms for all asynchronous
processing ranging from scheduling local activities within hardware threads
to pushing tasks to other threads, cores, and processors. All events generated
from incoming messages and the hardware that cannot be processed locally and
immediately are encoded into tasklets. The EVE layer schedules the execution
of these tasklets.

Besides processing local and received tasklets, distributed and parallel pro-
cessing also requires some concurrency control mechanisms. The EVE layer
provides ordering mechanisms such as future variables (promises) as well as
basic mutual exclusion mechanisms. The mutual exclusion mechanisms should
be non-blocking, that is, enqueue waiting tasklets.

This layer uses just the data structures and components from the lower Syn-
chronous Local Services layers. Some convenience functions for faster pro-
totyping may rely on dynamic memory allocation, which may fail if the local
reserves are depleted.

Asynchronous Local Services (ALS): This layer builds upon the low-level compon-
ents of the Synchronous Local Services in order to add asynchronous processing
interfaces that make use of the Event Executive layer. This is mostly a glue layer
to connect the local services with the upper Distributed Kernel Services. In
contrast to the distributed services, this layer does operate only locally without
relying on the existence of other hardware threads or cores.

4



Global Architecture of MyThOS (Whitepaper)
2 Logical View: Components, Layers, and Subsystems

Distributed Kernel Services (DKS): The components of this layer, finally, bring
together all the hardware threads by coordinating their activities globally. These
services can be provided via centralized components that are assigned to a
specific thread group or distributed/replicated components that coordinate in a
peer-to-peer style. Examples are the management of shared memory pools and
shared address spaces, configuring thread groups, implementing consistency
protocols for replicated objects, and global garbage collection if necessary.

Application Runtime Services (ARtS): This layer implements runtime support for
applications ranging from high-level abstractions for protection domains (sys-
tem call interfaces and access control), execution contexts (software threads),
and scheduling control up to application-specific programming environments
like C/C++, Fortran and mechanisms like MPI/OpenMP. Parts of this can be
integrated as components into the kernel or reside as library inside the applica-
tions. The components of this use the Local and Distributed Kernel Services
and, hence, should be reasonably hardware-independent.

Support Services, Supervisor, Applications: On top of the hierarchy, the user-
mode threads reside. The application threads use system calls to communicate
with components from the ARtS layer. Depending on the deployment and usage
scenario, the calls are forwarded to a separate supervisor application and
external support services. The supervisor is helpful to manage the high-level
scheduling and migration of data and activities in scenarios like the media
cloud.

2.2 Functional Subsystems

The functional subsystems introduce a horizontal decomposition that focuses on
specific responsibilities. Subsystems may span multiple layers by composing com-
ponents from different layers. In order to gain wider flexibility in the application
layers, the subsystems are little bit more fine grained than might be necessary with
a fixed process/thread model.

Address Space Management: These components manage logical address spaces
for kernel and application threads. For this purpose, the processor’s address
translation and access protection is configured by creating respective mapping
tables from logical to physical addresses. The final logical address space is

5



Global Architecture of MyThOS (Whitepaper)
2 Logical View: Components, Layers, and Subsystems

composed of various partial spaces, for example by combining the application-
independent kernel-space with the current application’s user-space layout.

Components for optional reverse mappings from physical addresses to all uses
in logical address spaces are provided as well. These are necessary, for example,
to properly release physical memory ranges when removing or overwriting
existing mappings. Likewise, a mapping from partial address spaces to all
hardware threads that currently use these is provided in order to update the
processor’s translation caches when needed.

Managing free versus used ranges in logical address spaces is left to the
Memory Management subsystem. The needed data structures are very similar
to the management of free memory. The Memory Management uses the Address
Space Management for on-demand growing and shrinking of memory heaps.
The Address Space Management just needs a simple physical page allocator to
dynamically create and reuse mapping tables.

Memory Management: This subsystem contains reusable components for man-
aging free and used address ranges, generic memory allocators, and specific
allocator instances for common purposes.

Core-Private Memory (like thread-local memory in the user-space) is provided
to manage objects with global identity but a separate instance per hardware
thread. This is needed, for example, to access the local scheduler on each
hardware thread.

Each hardware thread has a local synchronous memory allocator that works
independent from the other threads and enables quick dynamic allocation of
local kernel objects. However, the limited amount of physical memory combined
with the large number of hardware threads implies that the local memory
reserve is quite small. The physical memory of large objects has to be allocated
asynchronously from a shared pool. For this purpose, a global memory allocator
is provided that leaves the mapping into thread-specific address spaces to the
user.

Protection Management: Protection domains are a software-level abstraction that
control the access to kernel objects, communication channels, storage (phys-
ical memory) and logical address spaces. For this purpose, the Protection
Management subsystems implements an object-capability model [DVH66] with
communication semantics based on the actor model [HBS73].

6



Global Architecture of MyThOS (Whitepaper)
2 Logical View: Components, Layers, and Subsystems

The Protection Management subsystems provides components that handle sys-
tem calls from the local application thread, system calls received from other
threads, and requests from external management tools received via commu-
nication channels. This is a two step procedure. First, a shared component
implements the capability-based dispatching of requests to service components.
These service components are responsible for the service-specific decoding
of the requests into method calls or appropriate actions and the encoding
of responses. Also, this subsystem provides portals for basic communication
between applications.

Scheduling: The scheduling subsystem provides quite different components mech-
anisms on the various layers. On the Event Executive layer (EVE), tasklets are
implemented as abstraction for lightweight kernel-internal asynchronous tasks.
A tasklet scheduler for each hardware thread is provided, which processes local
and received tasklets. Finally, the subsystem provides mechanisms to create
and manage optional hardware-thread groups.

On the Kernel Services layers (ALS, DKS), execution contexts are implemented
as abstractions for application threads. These include mechanisms to sus-
pend and activate execution contexts on a hardware thread and migration
mechanisms between hardware threads.

On the Application Runtime Services layer (ARtS) and the Supervisor layer,
more specific application process and thread models are implemented based
on the execution contexts and tasklet-based coordination of the lower layers.
This concerns the creation, activation and migration of application threads. The
Hardware Thread Manager (HWTM) components keep track of the utilization
state of the hardware threads and help to direct thread creation requests to
free hardware threads.

Communication: This subsystem implements the various communication channels
required for the tasklet exchange between hardware threads, request/response
exchange to external tools, remote system call channels, and user-mode com-
munication. The channel variants cover, for instance, message queues for
small fixed-size messages over cache-coherent shared memory as well as non-
coherent PCIe2 shared memory. For the use in simulators/emulators, simple
channels for communication over virtual serial ports are provided. Finally,
the communication subsystem is responsible for the high-level implementa-

7



Global Architecture of MyThOS (Whitepaper)
2 Logical View: Components, Layers, and Subsystems

tion of preemptive notifications that interrupt threads and enforce handling of
important messages.

Processor Management: The Processor Management subsystem contains mostly
support components on the Synchronous Local Services layer. These provide
access to hardware-specific configuration registers, the thread-local interrupt
controllers, and the frequency/voltage scaling. They set up the processor-
specific interrupt handling as well as the system call entry and return. On
the Distributed Kernel Services layer, the processor wide thermal and power
management is implemented.

Debugging Support: The debugging subsystem provides easy to use mechanisms
for generating textual log messages and detailed trace events. The log/event
recording is designed from ground up for highly concurrent usage with high
throughput and low overhead.

This subsystem would also be the home of remote execution control services
like debugger stub. Such components provide means to suspend and resume
software and hardware threads and to query memory contents and component
states.

8



3 Physical View: Deployment, Placement,

Connections

The physical view discusses deployment aspects such as the placement of software
components onto processors and their hardware threads as well as the placement of
crucial data structures in the physical and logical address spaces. This also depends
on the layout of private, local and shared memory regions and the sharing of address
spaces accross hardware threads.

In MyThOS the execution of software threads is not dedicated and controlled by a
central scheduling mechanism. An application has control about when and on which
computing resource an EC is initialized and activated. For this purpose an EC can be
dynamically or statically bound to a hardware computational unit, i.e. a hardware
thread residing on a specific core and CPU. Applications are also provided with the
possibility to move ECs to different computational units on its own discretion. When
using the thread management facility provided by MyThOS, the responsibility of
selecting a computational unit for a newly created EC is transferred to the kernel.
However, there are no guarantees about which computational unit is selected for a
specific EC.

Upon creation, each EC is assigned to a Protection Domain (PD), which manages
the logical address space and therefore the physical memory of this EC. The address
space of a PD represents a logical address space, i.e. the mapping from logical
memory addresses to a region of physical memory, which is then shared between
all ECs that belong to that PD. In addition, each EC is able to freely allocate or
deallocate further physical memory and to map or unmap it into that address space.

Physical memory is structured into several parts, that serve different purposes. The
init segment is placed into the area of physical memory with the lowest addresses.
It contains the boot code for both the BSP and all APs. Since these code parts are
executed in real mode, they cannot be located at high memory addresses. These
code parts are called as the first instructions of a newly booted processor and are
responsible to set up basic page tables to switch to protected mode. These page
tables and all page tables created in later stages are located in the following part of
the physical memory. Subsequently, all kernel code is located, which during runtime

9



Global Architecture of MyThOS (Whitepaper)
3 Physical View: Deployment, Placement, Connections

is mapped into the upper half of the logical address space. Directly behind the Core
Local Memory is located, where configurations for each hardware thread is stored.
The remainder of main memory is left for runtime mappings by the operating system,
which are managed by the memory management facility within the kernel. From this
memory area mappings into both user- and kernel-space are possible, which are then
located in either the lower or upper half of the logical address space.

10



4 Process View: Dynamic Interactions

In MyThOS dynamic interactions between processes residing on different compu-
tational units are realized with an asynchronous communication strategy. More
formally, different software components residing on different processor cores can
interact over well defined interfaces and communication channels by transmitting
asynchronous tasks between each other. Thereby, tasks are serialized within so
called “active messages”, containing parameters for their remote invocation and a
reference to an object and a function which is to be invoked. The asynchronicity is
then achieved by decoupling a request from its actual execution time via differently
prioritized task-queues for each processing unit. When a task is picked-up from a
queue it is executed by the respective processing unit to completion. This allows for
an efficient implementation on task-level, where all tasks of one priority level can
share the same stack, memory segment and protection level.

Our current strategy involves three different priority levels for the tasks, i.e. kernel,
user and idle tasks.

Kernel Tasks are high-priority jobs which involve kernel-specific functions. They
have the highest eligibility for execution and are therefore processed in advance
to user or idle tasks. Typical representatives for such high-priority tasks are
for example remote system call invocations, or epilogues of locally received
interrupts. In general, kernel-tasks require almost immediate kernel interven-
tion and should not be preempted by user-activities on the receiving core’s
side. Moreover, although the kernel address space layout may vary between
hardware threads, the layout of the kernel code and core-local storage is the
same. Protection mechanisms between kernel components are not needed and
they may fully trust each other. Therefore, communication channels can pass
function and object pointers without the need of pointer conversions.

User Tasks are communication requests on application-level, i.e. between user-
processes and components. This kind of communication and asynchronous
task processing has a lower urgency than the one on kernel-level. From a
more abstract point of view, tasks placed in the user-level queue of a core are
used to call user-space code on the receiving core. Since there is no global

11



Global Architecture of MyThOS (Whitepaper)
4 Process View: Dynamic Interactions

scheduling mechanism for processes, the process activation is controlled by
the asynchronous user-level communication requests.

Idle Tasks have the lowest priority within our architecture. They are processed
locally by a core only in presence of spare time, i.e. when no kernel- or user-
activities are pending and waiting for their execution. Idle-Tasks are destined
for local cleanup operations, e.g. data deallocation or management of freed
address spaces within free memory pools.

Tasks are represented by either a function pointer, a functor or a lambda expression,
regardless of their priority level. For transmission those are wrapped into a tasklet
and placed in the queue of the given priority level of the receiving core. When
issuing a call to an execution context, an additional function can be passed. This
continuation is a function pointer, functor or lambda expression, which is valid in
the sending core’s context. After the completion of the task by the execution context
of the receiving core, the continuation is placed into the task queue of the sending
core. Thereby the continuation notifies the sending core of the finished execution
and enables the core to process the results of the original message, without actively
waiting for the task to finish. Continuations can also be used to be notified of the
completion of other types of messages.

Communication among different hardware threads or different nodes may some-
times be difficult, because of differences in data representation like e.g. endianness
or word lengths. In order to provide applications with an easy way of communic-
ation, stubs are employed. On the sender side the stub encodes the message into
a standardized format, which is then used for transmission. On the receiver side a
corresponding stub function unwrappes the received message and delivers it to the
appropriate endpoint. Thereby, stubs act as a transparent way of communication,
without the need of the application to know technical details about the receiver side.
This method can for example be used to transparently delegate system calls to a
distant hardware thread, rather than executing them locally. However, the interface
for applications does not change, regardless of the actual point of execution.

12



5 Development View: Implementation

Artifacts, Interfaces, Types, Modules

The development view describes implementation aspects on the architectural level of
abstraction. This covers, for example, interaction rules between architectural layers,
implementation strategies for interfaces and components, the compilation process,
as well as the basic file and folder structure.

In order to be able to actually reuse software components, a strategy for their
configuration and deployment is needed. This is an old problem with many good
solutions. Unfortunately, the initial development work in MyThOS showed that a
single runtime-only configuration strategy is not sufficient because some components
depend on specific hardware and compilers whereas some performance critical
options require a static compile-time configuration. Hence, the following three
configuration strategies have to work together in MyThOS and the implementation
of components and interfaces needs to be aligned to these strategies.

Run-time instantiation. MyThOS, as many-core operating system, bears similarity
to distributed system because many of the system’s services cannot simply
exist globally but, instead, require a separate instance per core or hardware
thread. This is achieved through the use of software components. The run-time
deployment creates, configures and connects these components. The reusability
of the components is improved further by applying the dependency injection
principle, preferring composition over specialisation by inheritance, and using
generic type parameters instead of interfaces where suitable.

Link-time composition. Not all parts of the operating system code can be com-
piled for every target architecture and even within a single architecture not
everything is needed for each configuration. Therefore, the build configuration
has to select which files are compiled and linked into the final kernel image,
application libraries and support tools.

Compile-time configuration. Unfortunately, some configuration options cannot be
deferred to the run-time instantiation because they interact with hardware

13



Global Architecture of MyThOS (Whitepaper)
5 Development View: Implementation Artifacts, Interfaces, Types, Modules

requirements or would introduce indirections with significant impact on the
performance. For example, the global descriptor table’s layout is clearly con-
figurable but has to be known to low-level code at compile-time. In order to
achieve this configurability, MyThOS uses file-based code modules that repres-
ent implementation and configuration variants. These modules are also used to
configure the link-time composition of the kernel and tools.

The following subsections discuss the applied implementation strategies for soft-
ware components and the code modules in more detail.

5.1 Software Components

A software component is an object or a group of objects that work together to provide
a specific service and is designed with substitute-ability, reusability, and composition
in mind. The distinction to arbitrary language-level objects are the more restricted
rules governing the component’s life cycle and interactions. Language-level objects
are used to implement components, but also to implement data structures, containers,
communication channels, functors, messages and so on.

Most of the kernel’s components follow a quite simple life cycle. The high-level
boot sequence of the operating system is implemented in boot/PLATFORM/kernel.cc.
Here, all static components of the kernel, which will be present until power-off, are
instantiated and configured. A couple of typical deployment structures can be reused
across platforms and various parts of the kernel. In order to facilitate their reuse, the
deployment code is factored out into helper components, which names begin with
Deploy for easy recognition.

Later on, additional components representing Execution Contexts, Protection Do-
mains, and similar have to be created on demand. These dynamic components will be
torn down based on garbage collection strategies or based on management decisions
from higher layers such a the cloud management or hypervisor. In order to factor
out the details of their creation, static factory components are used. For example,
the external application loader is connected to a factory for Execution Contexts and
Protection Domains, which enables the loader to start actual applications.

The reusability of components is improved further by applying the dependency
injection principle. This strategy separates all code responsible for instantiation
and configuration from the component’s implementation. Instead of searching for
other needed components from within the component, all such dependencies and
configuration options are injected from the outside via constructor arguments and

14



Global Architecture of MyThOS (Whitepaper)
5 Development View: Implementation Artifacts, Interfaces, Types, Modules

setter functions. This helps to reduce the component’s dependencies and assumptions
about its runtime environment. For example, such components can be instantiated
and connected very differently depending on the chosen hardware platform without
the need to change the component implementation.

The components can interact with each other through multiple mechanisms: Local
Synchronous, Local Asynchronous , Remote Method Call, and System Call Interfaces.
The mechanism of choice depends on the architecture layer and the differences
between local and remote interactions.

The most well know mechanism are Local Synchronous Interfaces, which are
conventional C++ method calls. The “client” component has a pointer to a “server”
component and the pointer is either typed to the server’s implementation type or the
a interface class that contains virtual method declarations. In MyThOS, the interface
class names use the I prefix. At the moment of the method call, the control flow
moves into the server component and immediately processes the request. Results
can be passed simply via the return value.

In contrast, Local Asynchronous Interfaces guarantee that the control flow returns
immediately and the request is processed asynchronously. Results cannot be passed
via the return value in consequence. No results are needed in many occasions, for
example, when emitting event notifications to higher architecture layers. In the cases
where a result or completion acknowledgement is needed, the last method argument
has to be a continuation object (also known as callback function). In MyThOS, the
Local Asynchronous Interfaces are named with the AI prefix.

Both interface styles use virtual methods in order to hide the server component’s
implementation details. Routing all accesses through virtual methods enables the
easy substitution of component variants during deployment. However, it incurs
an implementation dependency to the imported interfaces and a runtime overhead
because the static compiler cannot optimise across calls to virtual methods. In C++,
template programming can be used to replace the imported interface with a template
type argument. This can be combined with the virtual method trampoline technique
in order to enable compiler optimisation whenever the implementation type is known
to the client.

The Remote Method Call Interfaces and System Call Interfaces are generated
from interface definitions and look like local synchronous or asynchronous interfaces
to the client component. Their major difference is the communication mechanism,
which is used internally to transmit the call to the server side. On the server side, the
message handling processes these requests similar to active messages. For system
calls, argument passing is implemented via the caller’s stack and the processor’s

15



Global Architecture of MyThOS (Whitepaper)
5 Development View: Implementation Artifacts, Interfaces, Types, Modules

system call instructions are used to transition synchronously into the operating
system kernel. Within the MyThOS kernel, a mapping to asynchronous interfaces is
used in order to be compatible with the non-blocking task-based execution model.

The synchronous interfaces are easy to use and usually the most efficient. However,
the methods behind these interfaces are not allowed to wait, for example, for answers
from remote or asynchronous interactions. Whenever an asynchronous interaction
is needed inside the method implementation, an asynchronous interface has to be
exported. Using just asynchronous interfaces for everything is not an option, because
they require a basic infrastructure for their execution model and require careful
resource management.

Therefore, synchronous interfaces shall be used for purely local interactions from
higher to lower architecture layers. In order to avoid deadlock situations, asyn-
chronous interfaces are used for interactions from lower to higher layers. Just the
distributed kernel services and asynchronous local services export asynchronous
interfaces to higher layers.

5.2 Build-Time Configuration Modules

The process of building MyThOS involves compiling a large amount of source files
and linking them appropriately. A convenient way to describe dependencies among
source files and build configurations for different target architectures and use cases
is provided. Using this mechanism, each functional module can be described inde-
pendently of the others. This makes the development and integration of additional
modules and the adaption to new target architectures more convenient. This con-
figuration facility consists of two parts, which are module specification and target
configuration.

5.2.1 Module Specification

Each functional unit, e.g. units for debug output, are described separately from each
other. Each source file of the functional unit can be assigned to one of the following
groups

Header Files can be included by other modules and should specify the interface of
the unit.

Kernel Files are compiled into the kernel image and provide the functionality of the
unit.

16



Global Architecture of MyThOS (Whitepaper)
5 Development View: Implementation Artifacts, Interfaces, Types, Modules

This corresponds to the traditional separation of interface and implementation
in C++. Additionally a module can specify compiler flags, that have to be used to
compile the unit.

5.2.2 Target Configuration

The configuration of a build target contains a list of the modules, that should be
included into the kernel image for the given target. It also specifies the source
directories, containing all required modules and their specifications, and the target
directory for the configuration process.

After both module specification and target configuration are present, the provided
configuration utility is used to create a valid build directory. For this purpose, it
traverses all the modules, which are specified in the target configuration, resolves
their dependencies from their source code and gathers all required files into the build
directory. Additionally it creates a makefile, which can be used to build MyThOS
for the given architecture. After the configuration process, the build directory
contains all source files, which are required to build MyThOS, in an appropriate
folder structure. Using this utility, the MyThOS kernel can be conveniently adapted
to different architectures and extended by additional modules.

17



Bibliography

[BBD+09] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,
T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: a new
OS architecture for scalable multicore systems. In 22nd Symposium on
Operating Systems Principles, pages 29–44. Association for Computing
Machinery, Inc., 10 2009. ISBN: 978-1-60558-752-3.

[DVH66] Jack B. Dennis and Earl C. Van Horn. Programming semantics for multi-
programmed computations. Commun. ACM, 9(3):143–155, March 1966.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular
actor formalism for artificial intelligence. In Proceedings of the 3rd
International Joint Conference on Artificial Intelligence, IJCAI’73, pages
235–245, San Francisco, CA, USA, 1973. Morgan Kaufmann Publishers
Inc.

[Kru95] Philippe B Kruchten. The 4+ 1 view model of architecture. Software,
IEEE, 12(6):42–50, 1995.

18


	Overview
	Logical View: Components, Layers, and Subsystems
	Software Layers
	Functional Subsystems

	Physical View: Deployment, Placement, Connections
	Process View: Dynamic Interactions
	Development View: Implementation Artifacts, Interfaces, Types, Modules
	Software Components
	Build-Time Configuration Modules
	Module Specification
	Target Configuration



