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1 Overview

Probably never ending is the desire for higher compute throughput in order to be able
to solve new and larger problems and to perform more complex tasks interactively.
Unfortunately, computation needs energy and energy is a limited resource. Mobile
devices have only a limited energy reserve and high performance computing centers
have only a limited power supply that reached its capacity a long time ago [KSS08].

The limited availability of electrical energy and power forces the evolution of
computing architectures towards higher energy efficiency. Specialization allows to
exploit energy-saving opportunities of specific application scenarios. One instance
are many core architectures for high throughput computing. These trade sequential
performance, fine grained interactivity, and real-time guarantees in favor of a overall
higher average throughput per watt. For example, execution pipelines increase the
best-case throughput but reduce the timing predictability and increase the interrupt
overhead.
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2 Driving Factors

Since 1965, the consequences of Moore’s Law [Moo65] promise a doubling of the
transistor count per processor every two years. His prediction is based on an
assumed technology down-scaling of processor components in combination with the
economically most profitable balance between the system size, the market size, and
the necessary investments. Technology down-scaling also provided a reduction of
the necessary supply voltage and parasitic capacitances, and an increase of the clock
frequency, known as Dennard scaling [DGR+74]. In combination, this provided a
doubling of compute throughput every two years.

Unfortunately, at some small enough technology scale, the power efficiency lost
through leakage currents is as high as the power efficiency gained through Dennard
scaling. Beyond that point, the threshold and supply voltage cannot be decreased
much. This leads to a quadratic increase of the power consumption along the
technology scaling. Experiments indicate that the 90nm CMOS technology already
reached this limit [Tay12]. A few escape routes are near-threshold computing,
reducing the clock frequency to compensate the loss of power efficiency [ZDB+07],
leakage-reduced transistor designs like Tri-Gate and FinFETs, and considering dark-
silicon architectures [Tay12].

A significant challenge is to translate the large number of available transistors into
useful compute throughput. The basic functionality of a sequential compute core can
be realized with a very small number of transistors. The remaining transistors and
chip area can be invested into memory, caches, logic that speeds up the sequential
compute core, special purpose cores, or simply into more compute cores. Pollack’s
rule [Pol99] estimates that the single-thread throughput of a core grows just approx-
imately with the square root of invested transistors.1 In comparison, investing these
transistors into more cores would provide a proportional performance grow. Hence,
in a fixed transistor and power budget, many small and simple cores offer an overall
higher compute throughput compared to few large cores with high single-thread
performance. Borkar [Bor99, BC11] discusses such tradeoffs in more detail.

1Motivated by the effects of signal delays in any 2-dimensional layout of the components.
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In conclusion, well-parallelizable computations can, in theory, be carried out with
higher energy efficiency on many core processors. In practice, parallel computation is
difficult and has its own scaling limits. Flynn [Fly72] studied the relative performance
potentials of different parallel processing approaches. The next paragraphs quickly
review these with respect to the practically attainable speedup. Within a fixed
component budged, higher speedup translates directly into higher energy efficiency.

Pipelining the processing of several instructions (SISD ) could provide a linear
speedup with the number of pipeline stages. However, conditional jumps and dynamic
data dependencies introduce so called pipeline bubbles, which limit the actual
speedup similar to Amdahl’s law [Amd67]

Another approach is to apply the same instruction onto multiple data streams
in parallel (SIMD ). This promises a linear speedup and generally better energy
efficiency because the instructions are fetched and decoded just once per vector
operation. But again, conditional jumps and dynamic dependencies can slow it down
to just logarithmic speedup. Thus, pure SIMD architectures cannot provide good
energy efficiency for general purpose use.

Speedup can also be achieved by applying multiple instructions in parallel to the
same data stream (MISD ). While popular in earlier computer systems like Colossus
Mark II, such systolic arrays eke out a niche existence in high-speed network traffic
processors nowadays. To some extend, reusing locally cached data resembles MISD.
Its importance will grow because data movements make a significant portion of the
energy use in modern processors [BC11].

Finally, many core processors can process multiple data streams independently
in parallel (MIMD ). While providing the most flexible model, the actual speedup
depends highly on the application. For fixed-size problems, the attainable speedup
is limited through Amdahl’s law [Amd67]. When increasing the problem size is
possible, the speedup is limited by the memory that the application needs per
core [Gus88, HW10]. Shared resource multiprocessors increase the utilization of
internal logic despite pipeline bubbles. This yields better energy efficiency because
unused logic components still consume energy due to leakage currents. One example
is the interleaved execution of multiple threads inside a core.

The two main bottlenecks of a processor are its communication bandwidth and the
peak compute throughput. The peak compute throughput is limited by the number of
available scalar arithmetic units and their clock speed. The bandwidth of internal
networks, to external networks and to the memory is limited by the energy efficiency
of the network links [BC11]. Communication consumes power proportional to the
distance and the bandwidth. Thus, within a fixed power budged, high bandwidth
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Table 2.1: Example Many-Core Processors.
CUs HTs/CUs SUs/CUs SU freq (GHz)

∑
dp units

∑
HTs

Intel Haswell 2–4 2 4int+2x256bit 2.0–3.9 16–32 8–16
AMD Bulldozer 6386 16 2 2x128bit 2.8–3.5 64 32
Sparc T5 16 8 2int+1dp 3.6 16 128

IBM Cyclops64 80 2 1 0.5 80 160
Godson-T 64 1 2x256bit? 1.0 512? 64
Intel Larrabee 24–48 4 512bit 1.0 192–384 96–192
Intel KNF 32 4 512bit 1.2 256 128
Intel KNC 60–62 4 512bit 1.2 480–469 240–248
Intel KNL 72 4 2x512bit 1.00–1.5 1152 288

Nvidia Fermi GF104 16 48 32sp=16dp 1.5 256 768
Nvidia Kepler GK110 13–15 64 192sp+64dp 0.732 832–960 832–960

Kalray MPPA 256 256 1 1 0.4 256 256
Tilera TilePro64 64 1 integer 0.7–0.86 - 64
Tilera TileGx72 72 1 3dp? 1.2-1.5 216? 72
Adapteva Epiphany-III 16 1 2sp 1.0 - 16
Adapteva Epiphany-IV 64 1 2sp 0.8 - 64
Azul Vega-3 54 1 ? ’slow’ ? 54
Cavium Octeon III 1–48 1 ? 2.5 ? 1–48
Infineon Aurix 3 1 DSP+1sp 0.3 3 3

communication is possible only over short distances and long-range communication is
restricted to low bandwidth. The consequence is, that in order to gain high compute
throughput most instructions have to operate on local registers and memory, and
reuse locally cached data as much as possible.
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3 Example Architectures

Instead of diving into concrete processor architectures, this section introduces a
simplified architecture model. It focuses on key design aspects that are relevant for
many core processors and abstracts over too technical details. Figure 3.1 shows a
visual representation of the model.
Scalar units (SU) perform floating point and/or integer arithmetic operations

on scalar values. They are called ’cores’ by Nvidia and ’processing elements, by
OpenCL. Several scalar units can be combined into vector units that perform the
same operation in parallel on several values akin to Flynn’s SIMD architecture.
However, configurable short vector units support operations on different scalar sizes,
so that a 512bit unit is, for example, equivalent to 16 single precision or 8 double
precision scalar units. The same applies for integer arithmetic with 1,2,4, and 8 byte
granularity.

In order to tell the scalar units what to do, an instruction stream has to be inter-
preted. This is done by a hardware thread (HT). Each hardware thread has access
to at least one scalar unit and represents one physical control flow. A compute unit
(CU) is a group of hardware threads that share a set of scalar and vector units. They
are called ’cores’ by Intel, ’modules’ by AMD, and sometimes they are simply called
’processor’. The time-sharing of scalar units between threads equals Flynn’s MIMD
resource sharing. The compute unit may implement pipelining that combines the
operations of the individual threads.

Finally, protection domains (PD) restrict which part of the memory and commu-
nication space can be accessed by the hardware threads. Protection domains might

hardware threads

compute units
protection domains

scalar and vector unit pipelines

Figure 3.1: Simplified Many-Core Model.
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be hardwired or configurable. For example, older GPU processors had only a single
protection domain that was shared by all threads. Intel processors, including the
XeonPhi series, have configurable protection domains per threads. However, sharing
a single domain between all threads of a compute unit can be more efficient.

The hardware threads have access to memory units of one or several types. All of
them are accessible from every thread, constrained only by the protection domains.
However, the access method, overhead and latency may vary, which is known as
Non-Uniform Memory Access (NUMA) architecture. In order to simplify the model,
each type of memory partitions the threads into groups that share the same nearest
memory unit. Some processor architectures like x86 multi-cores have just a single
type of memory while others like GPUs come with a whole hierarchy of private, local,
and global memory.

The access to the memory are usually routed through a hierarchy of caches. This
helps to reduce the far-distance traffic by exploiting temporal and spatial locality
in access patterns. Typically, this induces a hierarchical partitioning of the threads.
For example, all threads of a compute unit share the same level-1 cache, groups
of compute units share a level-2 cache, and so on. Caches of the same level might
be grouped together into a distributed cache, where the actually responsible cache
depends on the accessed address. So called, directories do not cache data but just
information where that data is cached in upper cache levels.

Table 2.1 summarizes key properties of several existing and upcoming many core
architectures. The first three columns show the number of compute units, hardware
threads per compute unit, and scalar or vector units per compute unit.

For a naïve comparison, the ’dp units’ column gives the total number of double pre-
cision floating point (64bit) scalar units in the processor. Note that the actual scalar
and vector units are quite different and difficult to compare because their usefulness
depends on the target applications. Compute units with out of order execution are
even more difficult to compare because they use a collection of specialized scalar
and vector units.

The computational intensity is the ratio of useful compute operations per byte
of transferred data. Many numerical HPC applications have a high floating point
compute intensity whereas network packet analysis and similar applications are use
mostly integer operations and have much more irregular control flows. Therefore,
with a fixed communication bandwidth, HPC applications benefit from more floating
point units while network applications benefit from more threads instead.
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4 Details of the Intel Knights Corner

The Knights Corner (KNC) processor is available as PCIe card with on-board memory.
The cards need a host computer to power up the card, load the operating system
image into the card’s memory, and then notifying the card’s boot loader to process
the image. All communication between KNC and host is handled over PCIe shared
memory access and message signaled interrupts. Linux kernel modules and tools
for the host are available that allow to load an operating system and to read and
write to the cards memory. On top of this, the higher level SCIF kernel modules
provide virtual communication channels, but need an appropriate back-end in the
card’s operating system.

The cores (compute units) have an in-order super-scalar architecture with two
parallel pipelines that was derived from the P54C processor. The cores were extended
by x86-64 support, a 512-bit vector processing unit, and four interleaved hardware
threads. By design of the instruction decoder, two active threads are necessary to
fully utilize the core and more are needed to mask memory access latency and other
sources of pipeline bubbles.

Inside each core are two separate first level caches for instructions and data. The
first level caches communicate to the core-local unified second level cache and a
ring network connects these with each other. The cache coherency is implemented
through a distributed third level directory. In order to avoid bottlenecks, the ad-
dresses are scattered over all parts of the directory with cache line granularity. Due
to this topology, access to the local second level cache is fast, but cache misses suffer
from a distance-dependent very irregular latency.

Of the 64bit logical address space, only 48bit are actually usable. These are
mapped with a 4 level page table structure onto a 40bit physical address space with

XeonPhi

Processor

DMAMemory

XeonPhi

Processor

DMAMemory

XeonPhi Card

Processor

DMAMemory

PCIe Host
Processor

Memory

HDD, Network...

Figure 4.1: XeonPhi extension cards controlled by a host processor.

7



Many Core Hardware Architectures (Whitepaper)
4 Details of the Intel Knights Corner

L2

TD

Core
L2

TD

Core
L2

TD

Core
L2

TD

Core
DRAM

I/O

I/O

ring network

...more cores & DRAM...

512bit VPU
core

L1D L1I
L2 cache

ring network

Figure 4.2: XeonPhi Knights Corner processor.

pages of 4KB and 2MB granularity. The 1GB page extension is not supported by the
KNC. The physical address space contains the on-board memory, memory mapped IO
registers, and direct memory access to other PCIe devices and the host memory. The
latter can be configured through an system address translation table (SMPT) with 32
pages of 16GB size.

In order to speed up the address translation, each core has a Translation Lookaside
Buffer (TLB) that is shared by all four threads. It can store translations for 4KB and
2MB pages and has an internal two-leveled TLB cache. The TLB of the Knights Corner
processor can share entries between threads only if they use the same translation
tables. In conclusion, TLB misses can be reduced by preferring 2MB pages and
sharing a single logical address space between all 4 hardware threads. Sharing parts
of the translation tables between cores reduces the needed cache space.

The underlying AMD64 architecture still has legacy segment registers, but their
base and limit configuration is fixed to cover the complete logical address space.
Just the base address of the segment registers FS and GS can be modified. With
several threads in a single address space, these registers can be used for efficient
memory access to thread-local data. Their advantage is that they do not waste
general purpose registers and should be faster than manual address calculations
from offset and base.

Unfortunately, none of the usual timer hardware (PIT, CMOS RTC, ACPI timer,
HPET) is present except for the cores’ local LAPIC timers and time stamp counters
(TSC). A special IO register holds the core’s clock frequency, which allows to calibrate
the timer.

The IO registers can be accessed only through memory mapped IO (MMIO), which
means that the registers reside at certain physical addresses and can be accessed by
normal read/write instructions. To make them accessible, they need to be mapped
into the logical address space first.

The mechanisms for synchronization between threads are surprisingly lacking.
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The helpful monitor/mwait instructions and transactional synchronization extensions
are missing. Thus, just the halt instructions and inter-thread interrupts can be
used to put threads into sleep and wake them up later. A 64bit compare-and-swap
instruction is available and a delay instruction was added that allows a thread to
skip a configurable number of cycles. Some documents mention “the introduction of
thread wakeup/sleep mechanisms through microcode and hardware support”, which
leaves some hope.

A special peculiarity of the KNC is its thermal management as most of it was moved
from hardware into the operating system software. The core clock is divided down
automatically during overheating (thermal events). However, this is inefficient and
might be insufficient. The operating system has to lower the core frequency and
voltage manually or speed up the fans if available. For this purpose, power man-
agement interrupts signal thermal events and the completion of frequency/voltage
transitions.
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5 Trends and Predictions

How will the many core processor landscape evolve until the completion of the
MyThOS project? Moore’s law estimates roughly a doubled complexity every two
years. Assuming a 4 year time frame for the project, a quadrupled complexity can be
expected. This increase in transistor count will have to be split across the number
of compute units (cores), the number of scalar units, the bit-width of the vector
units, and the number of hardware threads per compute unit. Simply increasing the
number of compute units might not hit the most optimal spot.

The target market of a processor dictates its power/energy budged and the set
of typical applications. The algorithms used in these applications cover a certain
range of computational intensities that can be averaged into a target computational
intensity. This balance point between communication bandwidth and attainable
compute throughput determines roughly how much of the power budget is spent on
communication versus scalar units for computation. Hence, the number of scalar
units per processor is more or less fixed by the target market and the relative energy
efficiency of the available technologies.

With respect to many core processors targeted by MyThOS, let’s assume that the
market does not shift away from HPC applications and that all basic components
see similar gains in energy efficiency. Then, the number of scalar units for HPC
processors might quadruple during the time of the project from the 470 of the Intel
KNC to 1800–2000 on future processors. Nvidia’s existing Kepler processor with
960 dp units and Intel’s upcoming KNL with probably 1152 dp units point into this
direction.

The quadrupled scalar units could be organized simply into larger vector units
while the number of compute units stays fixed. The past evolution from 128 to 512bits
is an example for this approach. However, the within-vector dependencies increase
with larger vectors and require special attention, the instruction sets becomes more
complex with larger vectors, and not all parts of an application can be parallelized
equally well. Thus, vector units wider than 1024 or 2048bits seem unlikely.

Using multiple vector units of a smaller size inside a compute unit is a viable al-
ternative. Increasing the number of vector units in a core with out-of-order execution
is doable because the control flow analysis can pick independent vector operations
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for concurrent execution. With in-order execution, however, their number is limited
by the number of parallel pipelines. For example, the Intel KNL is expected to have
dual-pipeline superscalar cores and, thus, can operate at most two independent vec-
tor units. Nvidia’s stream processors organize the vector units into multiple internal
pipelines and, instead of out-of-order execution within threads, they pick operations
from many threads. In-order execution is more energy efficient than out-of-order
execution and independent pipelines could as well be split into independent cores.
In conclusion, the number of scalar/vector units per compute unit will stay very low.
Another possibility would be the inclusion of more units than can be operated in
parallel akin to the dark silicon approach. Such units could support special purposes
like transcendental functions. However, this aspect is more a question of how the
vector units are counted.

With two vector units per compute unit, the projected 2000 scalar units can be
operated by 62 cores with 1024bit vectors or by 124 cores with the existing 512bit
vectors.

Finally, the number of hardware threads depends on the applications’ memory
access patterns, memory latency, and other architecture details. A minimal number
of active threads per compute unit is needed in order to keep all available scalar
units busy, that is to reach the peak compute throughput. This is determined by the
pipeline length and the instruction scheduler of the compute unit. For example, the
Intel KNC needs at least two and Nvidia Kepler GPUs at least four active threads
in each clock cycle. In order to saturate the memory/communication bandwidth,
enough outstanding requests need to be generated. A thread executed in an in-order
dual-pipeline can issue just one or two memory requests and, then, has to wait until
these are served, which depends on the memory access latency. Thus for a given
peak bandwidth, the number of necessary threads can be calculated from the latency,
the cache line width, and the number of outstanding requests per thread.

Some applications may benefit from many threads, but in general the coordination
overhead grows with the number of threads and, thus, less required threads is
often better. This can be achieved, for example, by increasing the cache line and
vector width. But wider cache lines reduce the chances for spatial reuse, decreasing
the efficiency. The number of outstanding requests can be increased, for example,
with cache prefetchers and vector scatter/gather operations for applications with
predictable access patterns. Both are already present. Finally, the latency can
be reduced by larger caches, more caching levels, and a faster network. But only
applications with high temporal cache reuse benefit from more and larger caches,
which leaves the network. For example, the Intel KNL is expected to use a faster
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2D mesh network instead of the previous ring network. This should result in a
higher bandwidth and shorter distances between compute units and memory. The
latter, however, might be compensated by the larger number of compute units. In
conclusion, it seems likely that the number of threads per compute unit stays similar,
while the number of compute units increases.

Improvements beyond the sole advances of the hardware’s technology scaling
will require progress on the side of application software and runtime environments.
Amdahl’s Law warns that the hardware gains from more threads and wider vectors
can be canceled entirely due to insufficiently parallelized software.

Application software can aim towards improved spatial and temporal reuse of
cached data including sharing of cached data between nearby compute units in order
to reduce the far-distance bandwidth utilization. They should also increase the use
of vector instead of scalar operations for data processing in order to increase the
throughput per thread and the number of outstanding memory requests.

Finally, operating systems and runtime environments can help, for example, by
following means: Focus on localized coordination and communication in order to
keep synchronization latency low, for example through support for hierarchical
organization mechanisms. Provide low overhead and low latency offloading primitives
that enable the runtime environment and the application to effectively parallelize
smaller tasks in order to make use of the many threads without the need for too fine
grained data decomposition. Use offloading to parallelize management tasks in order
to reduce waiting and interruption times for the application threads. And enable the
effective use of nearby memory to keep memory access latency low.
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