
Software Architecture Fundamentals
Whitepaper

Randolf Rotta, rottaran@b-tu.de

Vladimir Nikolov, vladimir.nikolov@uni-ulm.de

Lutz Schubert, lutz.schubert@uni-ulm.de

19th April 2016



Contents

1 Overview 1

2 Components, Architectural Styles, and Patterns 2

3 Existing Architectural Styles 4

4 Peer-to-peer style 6

5 Connectors 8

6 Behavior in Parallel/Distributed Systems 10

7 Non-functional Properties 14

8 Technical Aspects 17

ii



1 Overview

A software system’s architecture is the set of principal design decisions about the
system and lays out the path for the system’s construction and evolution. The
design decisions consider all aspects of the system including the basic structure,
the behavior, the interactions, as well as non-functional properties [GS94, TMD09].
Architectures are a description of elements (“what”), form (“how”), and rationale
(“why”) [PW92]. Architectures are about the reuse of ideas, patterns, and experience,
whereas product families exercise the reuse of components, structure, implement-
ations, and test suites. The idea of software components was first expressed on a
conference sponsored by the NATO Science Committee in 1968 [MBNR68].

The composition and interplay of processing, data (information and state), and
interaction needs to be described in some way. Software architectures and archi-
tecture styles provide vocabularies for this purpose. The next section introduces
the basic vocabulary. The next two sections review often used architecture styles
and connector types, mostly based on [TMD09].1 Then, computational models with
focus on parallel and distributed systems are discussed. The last section reviews
best-practice design guidelines that address non-functional requirements of software
architectures.

1See also http://csse.usc.edu/classes/cs578_2013/

1

http://csse.usc.edu/classes/cs578_2013/


2 Components, Architectural Styles, and

Patterns

Software components encapsulate processing functionality and/or data. Components
may just manage data without processing, provide processing for external data, or
combine both. Access to their functionality and data is restricted through well defined
interfaces and usage contracts. All dependencies to the execution environment
are explicitly defined. Software connectors are architectural building blocks that
regulate the interactions between components. Connectors can be much more
sophisticated than method calls and shared data access, for example streams, event
buses, multicasts, and adaptors. The system’s configuration is a set of specific
associations between components and connectors and the architectural topology
governs design rules about these associations.

Architectures can exist at quite different levels of abstraction. For example, the
World Wide Web is an component-based architecture although no single peace of
software implements the whole architecture. The takeaway herein is, that compon-
ents do not necessarily have to be exactly the objects that are provided by some
object-oriented programming language. Neither does such a programming language
provide a reasonable architecture – except for very narrow minded languages. More
general purpose languages simple defer more design decisions into the software
architecture.

An architectural pattern is a set of decisions that are applicable to a recurring
design problem and can be reused in many different architectures. In contrast,
an architectural style is a named collection of architectural design decisions and
constraints that provide the foundation for architectures. Based on experience and
reasoning, they result hopefully in better architectures with respect to functional
and non-functional objectives.

An architectural style consists of a vocabulary of design elements, composition
rules, and a semantic interpretation. The vocabulary is a set of high-level types that
categorize components, connectors, and data elements into, for example, clients,
servers, pipes, sensors, actors, and regulators. The composition rules are a collection
of allowable structural patterns that provide essential invariants of the style, for

2



Software Architecture Fundamentals (Whitepaper)
2 Components, Architectural Styles, and Patterns

example layered versus peer-to-peer composition. The semantic interpretation
provides a computational model that describes the behavioral rules of the design
elements and translates the allowed compositions into well-defined meanings, for
example a processing pipeline or a control circuit.

The main benefits of defining and using a style are design reuse by applying the
style’s solutions to new problems, code reuse by exploiting the style’s invariant
aspects, and comprehensibility of the system structure through the style’s semantics.
By combining the component and connector types, the composition rules and the
semantic interpretation, style-specific analyses become possible. This can even
extend to style-specific visualizations of the system structure.

A software system has actually two different architectures at any given point in time:
The prescriptive (as-intended) architecture and the descriptive (is-implemented) ar-
chitecture. Due to the human nature of programmers, the implemented architecture
can drift away from the intended architecture (without violating prescriptive de-
cisions) or erode by violating prescriptive decisions. Thus ideally, the evolution of
software should first adapt the prescriptive architecture and just then change the
actual implementation.

Most architecture styles exhibit a mismatch between their elements and the capab-
ilities of the target programming language and operating environment. Architecture
frameworks bridge this gap by, for example, providing reusable connectors for com-
munication, generators for glue components, and suitable activity schedulers. They
provide the infrastructure “middleware” that helps to implement architectures. As
such, frameworks are usually not directly present in the application’s architecture.
For example, a comparison of different frameworks for the C2 style can be found
in [MMMR02].

3



3 Existing Architectural Styles

Two traditional language influenced styles are the main program with subroutines
and the object-oriented style. In the latter, the system is decomposed into objects as
main component type. Method calls via object references are used as connectors.
The objects are responsible for the consistency of their internal state and hide details
of the state to the outside. In practice this style is too general, leaving a lot room
for incompatible solutions, for example how the objects become connected to other
objects and which side effects are allowed for method invocations.

Component-oriented systems without any language-level objects exist. For ex-
ample, the components of aviation control systems are usually physical boxes with
literally hard-wired connectors between boxes. Still, many software architectures
benefit from using objects as building blocks for more sophisticated components and
connectors.

The following paragraphs review prevalent architectural styles. The review will
begin with basic styles and conclude with heterogeneous styles that are a combination
of simpler styles. Further examples of distributed and concurrent architectural styles
can be found in [Kha02, SEHT04, Ere06].

Data-Flow styles. The batch sequential style is probably one of the oldest architec-
tures, dating back to the tabulating machines of Hollerith [Hol94]. Each component
processes a large batch of data. After completing the batch, the resulting output
is passed to the next component. Components may be connected over sneakernet
(humans that carry around stacks of punch cards or the like) with considerable
bandwidth [Tan89]. The latest revision, known as Google’s MapReduce, uses slightly
more sophisticated infrastructure.

The pipe and filter style improves upon the high latency of batch sequential
architectures. The components are filters that are connected with pipes. The pipes
stream the application’s data from one component to the next. The filter components
are independent as they share no state and have no knowledge about the source and
destination of the streamed data, including other filters in the pipeline. This enables

4



Software Architecture Fundamentals (Whitepaper)
3 Existing Architectural Styles

the concurrent and interleaved execution of filters and the analysis of throughput
and latency.

Client/Server and Layered styles. The components are categorized into clients
and servers. The important characteristic of this style is that the servers do not know
the identity and number of clients. Only the clients know the servers they use. Both
are connected by request-response mechanisms like remote procedure calls.

The layered style extends the client/server style hierarchically. Each layer acts
as a server to higher layers and as a client to lower layers. Connections between
components of the same layer are often deemed a bad practice. One advantage of
this style is, that it is sometimes possible to replace whole layers without changing
the interface to above layers. A layer that fully decouples layers above from all layers
below is a virtual machine.

Blackboard style. This style has two component types. The central blackboard
components store the system state and all other components operate on the black-
board. The control flow is driven by be blackboard. Examples are the Linda tuple
spaces and the model components in Model-View-Controller patterns. Shared memory
can also serve as blackboard.

Implicit Invocation styles. In these styles, components emit events instead of
calling specific methods of other components. The emitter of an event does neither
know which components will handle it nor which effects this will have. Listener
components register at event sources by providing methods that handle specific
events. Because components can assume only little about the effects of their events,
they should be quite reusable. Control about the order of execution is moved
completely to the system. In practice, it can become quite difficult to reason about
cross-component interaction without analyzing the system’s configuration at run-
time.

A widely used form is the publish/subscribe style. Components register at other
components for specific events and published events are broadcasted to all sub-
scribers. Another style is the event bus. All components connected to an event bus
can emit any event to it and receive all events on the bus. Receivers may filter events
according to own criteria. Thus, components communicate only with event buses
directly. TACO’s object groups can be interpreted as event buses.

5



4 Peer-to-peer style

The state and behavior is distributed over several components (peers) and each
component can act as client and server to other peers and components. As a
decentralized structure, every peer has is own control flow. State data may be
replicated or partitioned but such details are hidden to the outside. One example are
the service fleets of the factored operating system fos [WA09].

Finally, the following three styles review examples of heterogeneous styles that
combine more basic strategies.

C2 style. The C2 style [TMA+96] is based on layers that are connected through
implicit invocation mechanisms. Higher layers can be informed about state changes
by emitting notification messages and actions can be requested from lower layers
by emitting request messages. The components are not connected directly between
layers. Instead, all messages are routed through connectors, such as message queues,
event buses, or publish/subscribe connectors.

Myx style. The architectural elements of the Myx style1 are components and
connectors. The imported and exported interfaces of each element are classified into
a top versus bottom domain and interfaces from the top domain can be linked only to
interfaces from the bottom domain. Cyclical links are prohibited. Calls towards a
bottom interface are allowed to be synchronously blocking but all other calls have to
be asynchronous, that is use implicit invocation. The top to bottom linking constraint
enforces a layered architecture where asynchronous communication promotes loose
coupling and prevents deadlocks. Still, the one-directional synchronous calls enable
good performance for most of the local communication.

Quasar architecture style. The Quasar development methodology, among many
other things, provides an example architectural style that categorizes components
and interfaces into five types 0, A, T, AT, and R. The 0 type is used for basic reusable
components and data types like containers and strings. Type A components represent

1See http://isr.uci.edu/projects/archstudio/myx.html

6

http://isr.uci.edu/projects/archstudio/myx.html


Software Architecture Fundamentals (Whitepaper)
4 Peer-to-peer style

application specific code and type T represents components that are determined by a
technical programming interface, for example a file system or resource management
interface. Accordingly, AT components mix application-specific and technology-
specific code. In order to improve the chances for later reuse, such components
should be strongly avoided because they most certainly do not fit in a different
application or technology context. Instead, Quasar advocates the introduction of
type R components. These provide the small glue between A and T components and
may sometimes be generated. To connect A and T components without creating a
direct AT dependency, standard interfaces (type 0) and adapters from the R category
may be used.

The 0,A,T,R-partitioning can be refined into domain specific component types.
The motivation is, that general categories are more easy to identify than individual
components. Then, the allowed dependencies between these categorical types are
defined as an acyclic directed graph, quite similar to layered styles. Experience tells,
that changes to components of a category affect the dependent categories and, thus,
higher categories are more likely to change more often. And conversely, changes in
lower categories get longer deferred and stronger suppressed the more components
depend on it.

Service Oriented Architecture style. There is a lot of hype and buzz around
SOA, especially in proximity to web services.2 Hidden beyond all that noise are a
couple of useful architectural ideas: The system’s components are partitioned into
the application and several services. Each service is designed to be autonomous
(maintained and developed independently), distributable (can be placed anywhere),
and loosely coupled (independent from other services). This style aims at the reuse
of services between multiple application while still being able to evolve each service
independently.

2"The Large Hadron Collider was created to help unlock the secrets of the universe. And also to create
a working SOA implementation." http://soafacts.com/

7

http://soafacts.com/


5 Connectors

Connectors are, like components, architectural elements. Unlike components, their
purpose is to model application-independent interaction mechanisms instead of
providing new application features. They provide the architecture’s communication
channels and are used to transfer data elements, control flow, or both. While con-
nectors are first-class elements of the architecture with own identity and dedicated
specifications, they often have no identity inside software implementations. Instead,
they are usually provided by the language or architecture framework and their
implementation can be distributed through the whole code.

The explicit modeling of connectors has a couple of benefits. They provide means
to abstract interaction patterns, which improves reusability by reducing the direct
dependencies between components. As predetermined breaking points, they aid
the distribution of components in a distributed system and enable the dynamic
replacement of components and whole subsystems. This also simplifies the migration
of components in distributed systems. Finally, their clear semantic interpretation can
be helpful for system analysis.

The simplest connectors are method calls and access to shared data. As can be
seen in the previous section, many architectural styles include more specific and
more constrained connectors like, for example, data stream pipes, blackboards,
publisher/subscriber mechanisms, and event buses. Taylor et al. [TMD09] provide a
categorization of connectors with respect to their main role in the system (Commu-
nicators, Coordinators, Converters, and Facilitators) and with respect to basic types
(procedure calls, data access, events, streams, linkage, distributor, arbitrator, and
adapter).

Communicators separate communication from computation by transporting inform-
ation. Communicators can be used to abstract over hardware-dependent communica-
tion mechanism and to constrain the communication structure, for example in order
to enforce security measures. Examples are procedure calls, events, shared data
access, and streams.

Coordinators separate control from computation by steering the control flow
between components and the order of concurrent interactions. Note that all con-

8



Software Architecture Fundamentals (Whitepaper)
5 Connectors

nectors are coordinators to some degree. Examples are procedure calls, events, and
arbitrators.

Converters are used to bridge mismatched interfaces when connecting independ-
ently developed components. Examples are wrappers and adapters.

Facilitators improve and mediate the interactions between components that, in
contrast to converters, were intended to interact by design. They can be used, for
example, for load balancing and for synchronization of critical sections. Examples
are linkage, arbitrators, and distributors.

9



6 Behavior in Parallel/Distributed Systems

Each component has an internal state that is encoded by the component’s data,
including any data that is shared between components. Interaction between compon-
ents triggers some activity at the target component with following possible effects:
Change of the component’s state; Creation of new, possibly temporary, components;
And further interactions with other components. The concrete activity depends natur-
ally on the component’s state as well as the type of interaction. The actual behavior
is constrained by a computational model that defines when and in which order, if any,
these effects become visible. It also defines how the behavior of a component, i.e. its
activities in dependence to state and interaction, can be described.

The connectors provided by the architecture describe the available types of inter-
action. Shared data connectors play a special role because they expose parts of a
component’s internal state and allow to change it without supervision by any affected
component. Shared data hands control from the component to the connector. Without
care, concurrent activities will result in inconsistent and unpredictable behavior.
As a consequence, most behavior models heavily restrict the use of shared data or
abandon it completely.

Fork-Join model. Functions serve as components, which have no internal state,
usually. The only interaction between functions is by function call, which creates an
activation record for execution at some unspecified time and place. Lacking internal
state, the behavior of functions depends only on the arguments passed through the
call. The behavior is constrained to spawning function calls and, then, wait for the
completion of all of them. Thus, only cycles of compute-fork-join-compute are possible,
which enables very efficient data management, low memory footprint, and distributed
execution by work stealing. However, reacting to events from external sources does
not fit into this model or at least prevents many significant optimizations.

Because of the strict parent-child dependencies created by the forks, the control
flow can never deadlock.

Examples: Cilk, and less ideological: OpenMP.

10



Software Architecture Fundamentals (Whitepaper)
6 Behavior in Parallel/Distributed Systems

Communicating Sequential Processes (CSP). The components are logical
threads of execution, called processes. Internally, they might employ any beha-
vior model but traditionally it is very simple single threaded execution. Processes
interact by messages. Each process is responsible for receiving and handling its
incoming messages explicitly. Some variants address messages to specific target pro-
cesses, others send messages into and receive from logical communication channels
without knowing the other processes connected to the channel. Beyond peer-to-peer
message exchange, process groups and multicast channels provide the functionality
of bus connectors. One important advantage is that this model does not rely on
shared memory and thus results in good performance on distributed memory sys-
tems. However, mapping the inevitable shared information onto message exchange
is completely up to the user.

Processes can deadlock when waiting mutually for a message before sending the
awaited message. One work around are non-blocking communication primitives.

Examples: MPI, go language, Barrelfish OS, LogP model.

Shared Memory Programming. Components can be functions and objects. The
functions are executed by several sequential processes similar to the CSP model.
But instead of messages, all interactions inside processes are expressed by func-
tion/method calls and between processes by direct access to shared data. Calls are
executed immediately in the callers control flow. Thus, a component’s internal state
can be manipulated concurrently. The immanent risk of data inconsistencies lead to
elaborate shared data connectors that coordinate concurrent access, for example
mutual exclusion, read-copy-update, transactional memory, and special purpose
concurrent data structures (associative maps, sets, arrays).

Processes can deadlock when mutual exclusion mechanisms are used. This is
circumvented by non-blocking and wait-free shared data connectors.

Examples: PRAM, Linux.

Actor model. The components are called actors. Each actor has an internal state
and a message handler. Actors communicate via dynamically typed asynchronous
messages and messages to the same actor are handled sequentially in an arbitrary
order. In reaction to an message, the actor can create new actors, send messages to
other actors, and set the handler that will be used for the next message. The order of
these actions is arbitrary and can even be parallel. In the pure form everything is an
actor and the handler is the only internal state. Pragmatic implementations support

11



Software Architecture Fundamentals (Whitepaper)
6 Behavior in Parallel/Distributed Systems

additional state data that is manipulated directly in order to reduce the message
count. The message handler parses the message by pattern matching. The current
state is usually not analyzed. Instead, the handler for the next message is switched.

The inversion of control in the actor model is notable: Unlike method calls between
objects, the caller of a service does just specify what he needs and the target
activity specifies when that call will be handled. Messages to different actors can
be handled in parallel, for example by a thread pool. Because all messages are
sent asynchronously, handlers will never block nor wait and, thus, programs cannot
deadlock. However, the message queues of actors can become arbitrarily (but finite)
long during the execution of well-defined but appropriately crafted programs. System
analysis can eliminate this situation.

The original actor model is actually a Turing-complete formal model of computa-
tion. Unlike many other models it does not rely on the composition of sequential
processes. For reasons of efficiency and interoperability with existing software, many
implementations extend the model more or less.

Examples: Erlang, Actors in Scala, libcppa, Ptolemy II.
The event-reactive programming model REFLEX is quite near to the actor model

but has some own twists. Interaction is described by typed events that are emitted to
an event sink of matching type, which immediately processes the event. Most sinks
just store the event’s data by changing their internal state and may then enqueue
an activity in a global task queue. The activities may be executed in any order
determined by a scheduling strategy. Sinks are combined into a component and
represent the component’s interface. Their activities share the component’s state,
but activities are not allowed to block and thus concurrent state access is not possible.
To eliminate arbitrarily long messages queues, sinks can drop or merge events and
suppress the repeated enqueuing of activities.

Distributed Objects. This is an object-oriented refinement of CSP with objects
as components. The objects are assigned to a process and global pointers act as
one-directional message channels that may cross processes. The objects interact via,
possibly remote, method calls. The execution of local and incoming method calls can
be immediate or distributed over a pool of local worker threads, depending on the
implementation and configuration.

Without worker threads, programs can easily deadlock. With worker threads,
the model inherits concurrent manipulation of component-internal state from the
shared memory model with all its challenges. Due to the structural similarities to the

12



Software Architecture Fundamentals (Whitepaper)
6 Behavior in Parallel/Distributed Systems

actor model, programs can produce arbitrarily long messages queues. This can also
manifest in arbitrary many blocked threads that wait for some future result. On a
side note, CILK demonized future variables for exactly this reason.

Examples: CORBA, Java RMI, .NET Remoting, X10, TACO
The popularity of this model comes from its similarity to sequential local object-

oriented programming and the assumed ease of porting existing object-oriented
code into this model. A very good discussion of the inherent problems can be found
in [KWWW94]. Four aspects of distributed systems differ significantly from local
systems, namely latency, memory access, partial failures, and concurrency. The
effects of latency and the semantic differences of remote and local memory access
can be hidden through languages and frameworks in exchange for performance.
However, partial failures and concurrency issues cannot be hidden. Unified dis-
tributed object models know no difference between local and remote objects. In
consequence, they either ignore these problems or enforce complicated handling
of failures and concurrency even on simple local tasks. Kendal et al. conclude that
reliable distributed objects systems cannot be based on the same kind of objects
all the way down. Instead, there has to be a visible line between local and remote
interactions.

13



7 Non-functional Properties

Non-functional properties are the result of architectural design choices and constrain
how easy it will be to implement a system and how well it will work. While most
of the design work usually focuses on the functional requirements alone, the non-
functional properties will determine the overall system’s success in the end. Design
guidelines may help to achieve desired non-functional properties. This section
reviews guidelines derived from [TMD09].

Examples for non-functional properties are the following quality attributes: modi-
fiability, efficiency, and dependability. Modifiability measures the ease of use for
the programmer. This will be influenced by the size of interfaces, the number of
architectures elements to choose from, the implementation’s complexity in number
of lines, and the system’s support for heterogeneity, adaptability, and extensibility.
The analyzability of a system can improve its modifiability by facilitating debugging
tasks. The efficiency concerns the system’s performance in dimensions like, for
example, processing time, memory and cache usage, and communication bandwidth
utilization. The performance scalability can be studied with respect to the input
size, to event frequencies, and to the system size, that is the number of software
components or the number of cores and processors. A system is dependable when it
works as intended without failure. This is a collection of properties like reliability,
robustness, fault-tolerance, and safety. The reliability considers only the systems
design limits and correct inputs. It can be quantified, for example, by the mean time
between failures. In contrast, the robustness considers the behavior with respect to
unexpected inputs outside of the system’s specification.

• Partition the system’s functionality hierarchically along concerns into separ-
ate components. Separate data, meta-data, and processing into dedicated
components. For example, the Model-View-Presenter pattern moves all state
information out of the presenter (as controller) into model components (as data
containers). It is a good idea to make processing components independent from
data format changes to some degree.

• Make dependencies explicit and avoid unnecessary dependencies. This can
be achieved by moving interaction concerns out of components into explicit

14



Software Architecture Fundamentals (Whitepaper)
7 Non-functional Properties

connectors. Independent interaction concerns should be split into separate
connectors. Appropriate connectors can be chosen to increase scalability. Use
connectors to control the dependencies between components. Avoid cyclic
dependencies by all means.

• Separate components from instantiation, linking, and configuration concerns.
Dependencies like references to other components and system-dependent con-
figuration can be provided from the outside by constructor arguments and
configuration interfaces. This approach is known as dependency injection
principle.

• Keep components and interfaces simple and compact – the KISS principle.
Interfaces can often be simplified by providing task-specific interfaces to the
same functionality. Components that implement several related interfaces
reduce the component count. Consider the possibility to compose connectors.

• Use asynchronous interactions when possible. This inversion of control lets the
callee decide when and how to process requests and, hence, reduces control
flow dependencies.

• Be careful with broadcasts and distribution transparency with respect to per-
formance. Frequently interacting components should be placed closely together
with respect to the number of intermediate components and the distribution
over processors.

• Include exception and fault handling concerns in the architecture design.

• Make the system observable: Non-intrusive health monitoring, for example
about the utilization of memory and bandwidth resources, can help to identify
bottlenecks and resource management mistakes early. Some simple reflection
capabilities also can help during debugging, at least can be used to generate
meaningful exception reports.

Another collection of guidelines is the SOLID principle1: Single responsibility, Open-
closed, Liskov substitution, Interface segregation and Dependency inversion. Most
are covered above already. The open-closed principle says that components should
be open for extension but closed for modification in such a way that its behavior
can be altered without changing its code. The Liskov substitution demands that

1http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

15

http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod


Software Architecture Fundamentals (Whitepaper)
7 Non-functional Properties

subtypes do not tighten the base type’s contract, which is usually defined through
interfaces. And interface segregation prefers many client-specific interfaces in favor
of convoluted general-purpose interfaces.

Finally, Kendal et al. [KWWW94] concludes some guidelines with respect to dis-
tributed systems: Accept the fundamental differences between local and remote
interactions by classifying interfaces into “local use only” and “remote usable”. Only
the design of remote interfaces has to consider message frequencies, serialization
of message data, and reliably in presence of partial failures. The way interfaces
are implemented, either by hand or by IDL compilers, should exploit the knowledge
about local-only vs. remote use. While implementing components, the programmer
should differentiate explicitly between local and remote interactions. Making the
difference visible will help to avoid mistakes.

16



8 Technical Aspects

This subsection reviews technical aspects that usually come up during design and
implementation.

Interfaces. Interfaces can be defined and used at many different places inside
the architecture. Therefore a naming convention is helpful: A component takes the
importer role with respect to an interface if it makes method calls to that interface.
A component is an interface’s exporter if it implements its methods. Standard
interfaces are defined externally, that is separately from its importers and exporters.
In comparison, submitted interfaces are defined by the exporter and requested
interfaces are defined by the importer. In order to connect a requested interface to a
submitted interface, obviously an adapter between both is needed.

Errors and Exceptions. Errors are an explicit part of the interface definitions.
They are expected to occur regularly during normal operation. In comparison, ex-
ceptions are thrown by implementations when situations outside of the specification
are detected. They are expected to occur almost never. One strategy is to introduce
security facades in the design that catch such exceptions and trigger diagnosis and
repair. Unfortunately, the exception mechanisms of languages like Java and C++ are
also used by their standard libraries to signal regular errors. Thus, an architecture
should define stricter rules for exceptions and errors.

Resolving cyclic depencencies. A cyclic dependency is a group of two or more
components whose direct dependency graph contains a cycle. Such cycles reduce
the composability of the system considerably because no single component can be
replaced easily without also replacing the other components of the cycle. Depending
on the behavior model, such cycles can also lead to deadlocks in the control flow.
Finally, cyclic dependencies can make the compilation process much more difficult
when virtual methods are replaced by templating mechanisms for higher efficiency.

Two transforms can be applied to break such cycles. It may be possible to arrange
the components into a meaningful layered architecture without any two dependent

17



Software Architecture Fundamentals (Whitepaper)
8 Technical Aspects

components on the same layer. Then, at least one dependency of the cycle will have
to go from a lower to a higher layer. These dependencies should be replaced by
implicit invocation connectors like publisher/subscriber or event buses. In the case
where two cyclical dependent components cannot be sorted into meaningful layers,
the whole interaction between both components should be moved into a coordinator
component above both. Then, only the coordinator has a direct dependency to both
components.

Inheritance versus Composition. Extension by inheritance is based on the idea
that an application derives a specialized class from a class that was provided by the
environment. Here, code reuse focuses on inheriting previously defined behavior
and extending it with small pieces of application-specific behavior. The interface(s)
and connections as seen by the environment cannot be extended. Without generic
programming mechanisms like C++ templates, inheritance provides a strict one-
to-one relation: The implementation results in a single new class and instances of
the base class (i.e. components) can be replaced transparently by instances of the
derived class.

Extension by composition focuses on the interaction between components instead
of how they are implemented. The system is extended by changing the connections
between its components and by inserting further components. Here, code reuse
focuses on the reuse of existing components and interfaces, although inheritance
may still be used to implement new components.

Composition enables a combinatorial explosion that is only limited by the mismatch
between imported and exported interfaces. As such it lies the foundation for highly
flexible program families. On a historical note, for example even the huge Enter-
prise JavaBeans framework moved in its third version radically from extension by
inheritance to extension by composition and related strategies. Obviously, a major
architectural challenge is to organize the components and interfaces in a way that
does not prevent recombination because of too strong dependencies.

Component Containers. Extendable architectures that are based on the composi-
tion of components and that apply the dependency injection principle, end up with
one or several configuration components. These encode specific deployments of the
system by describing which components are instantiated and how they are created,
composed and configured.

18



Software Architecture Fundamentals (Whitepaper)
8 Technical Aspects

This results in very simple repetitious code that can be generated to a high degree.
Component containers are off-the-shelf components for this task. They use a simple
standardized description language that is more compact and easier to read than
manually written code. From this description, static initialization code can be
generated or it is interpreted dynamically. Also, helpful visualizations of the system
structure can be generated from this description.

Most container implementations provide a life-cycle management for their com-
ponents. Advanced component containers can include constraint solvers in order to
automatically figure out how to fulfill open dependencies and configure requested
components. Dynamic containers may also generate glue components or compile
specialized components on demand. This can be used, for example, to replace virtual
method interfaces by concrete type information at load time in order to reduce
run-time overhead.

Examples are the PocoCapsule/C++ container for embedded systems1. Not so
obvious containers are the Linux depmod module loading mechanism and the loader
for dynamic shared object libraries.

1See, for example http://www.pocomatic.com/docs/whitepapers/pococapsule-cpp/

19

http://www.pocomatic.com/docs/whitepapers/pococapsule-cpp/


Bibliography

[Ere06] Justin R Erenkrantz. Architectural styles of extensible rest-based ap-
plications. In Institute for Software Research, Report UCI-ISR-06-12.
Citeseer, 2006.

[GS94] David Garlan and Mary Shaw. An introduction to software architecture.
Technical report, Pittsburgh, PA, USA, 1994.

[Hol94] Herman Hollerith. The electrical tabulating machine. Journal of the
Royal Statistical Society, 57(4):678–689, 1894.

[Kha02] Rohit Khare. Decentralized software architecture. Technical report,
DTIC Document, 2002.

[KWWW94] Samuel C Kendall, Jim Waldo, Ann Wollrath, and Geoff Wyant. A note on
distributed computing. 1994.

[MBNR68] M Douglas McIlroy, JM Buxton, Peter Naur, and Brian Randell. Mass-
produced software components. In Proceedings of the 1st International
Conference on Software Engineering, Garmisch Pattenkirchen, Ger-
many, pages 88–98. sn, 1968.

[MMMR02] Nenad Medvidovic, Nikunj Mehta, and Marija Mikic-Rakic. A family
of software architecture implementation frameworks. In Jan Bosch,
Morven Gentleman, Christine Hofmeister, and Juha Kuusela, editors,
Software Architecture, volume 97 of IFIP — The International Federation
for Information Processing, pages 221–235. Springer US, 2002.

[PW92] Dewayne E Perry and Alexander L Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software Engineering Notes,
17(4):40–52, 1992.

[SEHT04] Girish Suryanarayana, Justin R Erenkrantz, Scott A Hendrickson, and
Richard N Taylor. Pace: An architectural style for trust management
in decentralized applications. In Software Architecture, 2004. WICSA

20



Software Architecture Fundamentals (Whitepaper)
Bibliography

2004. Proceedings. Fourth Working IEEE/IFIP Conference on, pages
221–230. IEEE, 2004.

[Tan89] Andrew S Tanenbaum. Computer networks, volume 4. Prentice-Hall
Englewood Cliffs (NY), 1989.

[TMA+96] Richard N Taylor, Nenad Medvidovic, Kenneth M Anderson, E James
Whitehead Jr, Jason E Robbins, Kari A. Nies, Peyman Oreizy, and
Deborah L. Dubrow. A component-and message-based architectural
style for gui software. Software Engineering, IEEE Transactions on,
22(6):390–406, 1996.

[TMD09] Richard N Taylor, Nenad Medvidovic, and Eric M Dashofy. Software
architecture: foundations, theory, and practice. Wiley Publishing, 2009.

[WA09] David Wentzlaff and Anant Agarwal. Factored operating systems (fos):
The case for a scalable operating system for multicores. SIGOPS Oper.
Syst. Rev., 43(2):76–85, April 2009.

21


	Overview
	Components, Architectural Styles, and Patterns
	Existing Architectural Styles
	Peer-to-peer style
	Connectors
	Behavior in Parallel/Distributed Systems
	Non-functional Properties
	Technical Aspects

