Basics (cont.)

- Characteristics of data communication technologies
- OSI-Model
- Topologies
- Packet switching / Circuit switching
- Medium Access Control (MAC) mechanisms
- Coding
- Quality of Service (QoS)

Network Topology Considerations

- Status
 - locations of the network devices (systems, segmentation devices, etc.)
 - traffic matrix
 - cost matrix
- Variables
 - topology
 - connecting capacity
 - stream size
- Target
 - minimum costs (at a given performance)
- \Rightarrow Topological considerations are the basis for the wiring strategy

Fully Meshed Network

- Advantages
 - Topology with the highest reliability
 - Direct connectivity between all nodes
- Disadvantages
 - expensive
 - difficult to expand
 - complex wiring

Partly Meshed Network

- Advantages
 - relatively high reliability
 - alternative routes available in case of failure of the dedicated node
- Disadvantages
 - still not suitable for large networks
 - complex wiring

Star Topology

- Advantages
 - simple expansion
 - straightforward network management
- Disadvantages
 - single point of failure (in case of failure of the central node: collapse of the network)

Hierarchical Network Topology (Tree)

- Advantages
 - Easy to expand
 - In case of failure of a superior node only failure of subsystems
- Disadvantages
 - branches can be disconnected in case of failure of a superior node

Bus Topology

- Advantages
 - connectivity between dedicated nodes is not affected by failure of another node
- Disadvantages
 - shared bandwidth
 - (no further development)

Ring Topology

- Advantages
 - all stations have equal priority for the medium access
- Disadvantages
 - shared bandwidth
 - (no further development)

Different Paradigms for Communication Networks

- circuit-switched
- packet-switched

Circuit-Switching

- Dedicated line (virtual or physical)
- Exclusive use of the line resources for the communication partners.
- Line has to be established (signaling)
- Highest level of QoS

Example: public telephone system

Circuit-Switching (illustration)

Packet-Switching

- Segmentation of payload in packets of constant or variable size
- Autonomous transport of the packets through the network
- The packets must contain a destination address (and as a rule also the source address)
- Special case: cell switching, partial address (e.g. ATM)

Example: Shared bandwidth network

Packet-Switched (illustration)

Modes of Communication Services

- connection-oriented or connectionless
- sequencing
- error control
- flow control
- full-duplex or half duplex
- byte stream or message oriented

Connection-Oriented

- Establishment of virtual circuits
- There are three steps involved: (signaling)
 - connection establishment
 - data transfer
 - connection termination
- From the application program's perspective a dedicated circuit is established between the target systems, although the data transport mechanism is based on a packet-switching network.

Example: TCP

Connectionless

- Datagram service
- Messages called datagrams are transmitted from the source to the target system.
 Each datagram is transmitted independently and must contain all information that is necessary to reach the destination.

Example: UDP

Sequencing

 In a packet-switching network, it is possible for two consecutive packets to take different routes from the source to the destination system, which could change the original sequence of the packets

Example: TCP provides this service, UDP does not

Error Control

- Guarantees that error-free data is received
- Technique: e.g. checksum and positive acknowledgement

Example: TCP provides this service, UDP does not

Flow Control

- assures that the sender does not overwhelm the receiver by sending data at a higher rate than the receiver can process the data
- In case flow control is not provided, the receiver could lose data because of lack of resources.

Example: TCP provides this service, UDP does not

Full-Duplex or Half-Duplex

• A full-duplex service allows data to be transferred in both directions at the same time between dedicated devices

 A half-duplex service allows only unidirectional communication at the same time

Byte Stream or Messages

Byte stream
Example: TCP
data of application
data
data
data
data
data
data

• Messages

Example: UDP

		message A			message B	
					_	
header	message A			header		message B

Basics (cont.)

- Characteristics of data communication technologies
- OSI-Model
- Topologies
- Packet switching / Circuit switching
- Medium Access Control (MAC) mechanisms
- Coding
- Quality of Service (QoS)

Medium Access Control (MAC)

- Within OSI layer 2a
- Several nodes are connected to the same physical medium
- An access protocol is required, if these nodes share the medium

If two or more nodes send a signal on the medium at the same time (collision)

- Interference of the signals on the medium
- Demodulation of the signal fails at the receiver(s)
- Send data is not received correct

Medium Access Control (MAC)

- Contention-based MAC protocols
 - Nodes compete for the channel access
 - Detects and/or avoids collision of data frames
- Allocation of the medium based on reservation of resources
 - Division of available resources in fair (equal) sized portions for N users (basic idea)
 - Frequency Division Multiplexing (FDM) Division of available bandwidth
 - Time Division Multiplexing (TDM) Allocation each N-th time slot to one specific user
 - Code Division Multiplexing (CDM)
 - Space Division Multiplexing (SDM)

Medium Access Methods

Aloha

- Pure Aloha
 - Any station starts transmission at any time
 - Station waits for acknowledge (ACK)
 - Retransmission if no ACK has arrived after a certain time interval
 - High collision probability
 - → max. throughput is low (18,4% of available bandwidth)
- Slotted Aloha
 - Improved Aloha protocol
 - Stations are only allowed to send at the beginning of discrete timeslots
 - Probability of collisions is reduced
 - higher max. throughput (36,8% of available bandwidth)

CSMA (Carrier Sense Multiple Access)

- General approach: when there is data to be sent, listen to the medium if anyone else is transmitting at the moment
- 1-persistent CSMA
 - Wait for free medium, then start transmission
 - Collisions due to propagation delay and simultaneous transmission begins
 - Performance better than using ALOHA
- p-persistent CSMA
 - Slotted approach
 - After medium becomes free, a station transmits with a probability p, It defers to the next slot with probability q = 1 - p
 - If the medium is still idle at the beginning of the next slot, this process is repeated

CSMA (Carrier Sense Multiple Access)

- non-persistent CSMA
 - Sense the medium and start transmission if the medium is free
 - If medium is busy, station does not continue sensing.
 - Instead the station waits for a random number of time and repeats the process.
 - Better channel utilization but longer delays than 1-persistent CSMA

CSMA vs. ALOHA

Comparison of channel utilization for the different approaches

Source: Computer Networks, 4th Edition, Andrew S. Tanenbaum

CSMA with Collision Detection (CSMA/CD)

- Collision detection by monitoring the signal on the medium while sending
- Medium must have been free for the time of a Interframe Gap (IFG) before sending
- If a collision is detected while transmitting
 - Transmit a jam signal
 - → all stations will recognize the collision
 - Wait for a random time and reattempt (backoff)