Asymptotic Predictions of the Pearce-Model for Negative Patterning and for a Biconditional Discrimination

Klaus G. Melchers *

Universität Zürich

According to Pearce’s (1987; 1994) configural theory, presentation of a stimulus i activates both its specific configural unit as well as the configural units of similar stimuli. The overall activation V_i of the US representation in a trial is then determined by the aggregate associative strength of all the configural units that are activated:

$$V_i = E_i + e_i.$$ \hfill (1)

In Equation 1, E_i is the associative strength of the configural unit that corresponds to stimulus i and e_i is the summed associative strength that generalizes to i from similar stimuli. e_i is given by

$$e_i = \sum_{j=1}^{n} S_j \times E_j,$$ \hfill (2)

where E_j is the associative strength of a configural unit of another stimulus j that is activated because of the similarity S_j between stimuli i and j. This similarity in turn depends on the number of identical components shared between i and j (at least as long as these

* Klaus G. Melchers, Psychologisches Institut, Universität Zürich, Rämistrasse 62, CH-8001 Zürich, Switzerland, k.melchers@psychologie.unizh.ch
components have the same salience). In his applications of the model, Pearce (1987, 1994) assumes that this similarity is given by

\[S_j = \frac{N_c}{N_i} + \frac{N_c}{N_j}, \]

(3)

where \(N_c \) is the number of common elements between stimuli \(i \) and \(j \), \(N_i \) is the number of elements in stimulus \(i \), and \(N_j \) the number of elements in stimulus \(j \). The similarity between A and AB would, for example, be \((1/1) \times (1/2) = 0.5\) according to Equation 3 and the similarity between the compounds AB and BC would be \((1/2) \times (1/2) = 0.25\).

Asymptotic Predictions for a Negative Patterning Task

In a negative patterning task, an A+, B+, AB- discrimination has to be learned. At asymptote, A and B should both activate the US representation with values of 100 for \(V_A \) and \(V_B \) and the compound AB should not activate the US representation at all, so that \(V_{AB} \) should be 0. Together with \(A S_{AB} = B S_{AB} = 0.5 \) this yields:

\[V_A = V_B = E_A + 0.5E_{AB} = E_B + 0.5E_{AB} = 100 \]

\[\therefore E_A = E_B = 100 - 0.5E_{AB}. \]

Inserting this term for \(E_A \) and for \(E_B \) in the equation for AB leads to:

\[V_{AB} = E_{AB} + 0.5(100 - 0.5E_{AB}) + 0.5(100 - 0.5E_{AB}) = 0 \]

\[\therefore E_{AB} + 100 - 0.5E_{AB} = 0 \]

\[\therefore E_{AB} = -200 \]

\[\therefore E_A = E_B = 100 - [0.5 \times (-200)] = 200. \]
When one compares the asymptotic associative strengths E_{AB} for the reinforced compound and E_A and E_B for the nonreinforced elements, then their difference is 400.

Asymptotic Predictions for a Biconditional Discrimination

In a biconditional discrimination, an AB+, BC-, CD+, DA- discrimination has to be learned. At asymptote, the compounds AB and CD should both activate the US representation with values of 100 for V_{AB} and V_{CD} and the compounds BC and DA should not activate the US representation at all, so that V_{BC} and V_{DA} should both be 0. As the similarity S_j is 0.25 for each pair of compounds that share one component it follows that

$$V_{AB} = V_{CD} = E_{AB} + 0.25E_{BC} + 0.25E_{DA} = 100 \quad (6)$$

and

$$V_{BC} = V_{DA} = E_{BC} + 0.25E_{AB} + 0.25E_{CD} = 0. \quad (7)$$

Since $E_{BC} = E_{DA}$, Equation 6 becomes

$$E_{AB} + 0.5E_{BC} = 100. \quad (8)$$

Similarly, as $E_{AB} = E_{CD}$ rearrangement of Equation 7 leads to

$$E_{BC} = -0.5E_{AB}. \quad (9)$$
Insertion of E_{BC} in Equation 8 then yields the asymptotic associative strengths of E_{AB} and E_{CD}:

\[E_{AB} + 0.5(-0.5E_{AB}) = 100 \] \hspace{1cm} (10)

\[\therefore E_{AB} - 0.25E_{AB} = 100 \]

\[\therefore E_{AB} = 133.3 \]

\[\therefore E_{CD} = 133.3. \]

Insertion of E_{AB} and E_{CD} in Equation 9 then leads to the asymptotic associative strengths of E_{BC} and E_{DA}:

\[E_{BC} = E_{DA} = -0.5E_{AB} = -66.7. \] \hspace{1cm} (11)

When one compares the asymptotic associative strengths E_{AB} and E_{CD} of the reinforced compounds with those of the nonreinforced compounds, E_{BC} and E_{DA}, then their difference is 200, only half of the difference that resulted for negative patterning.

References
