

Intermittent signals as prompts for coherence formation and the role of learners' prior knowledge

Daniel Schropp, Janina Lehmann & Tina Seufert

Theoretical Background

For a successful learning process a learner has to integrate different representations into a

How can <u>intermittent</u> signals affect learning?

In contrast to continuous signals, the absence of signals could function as a desirable difficulty which could

- Signals could support the learner during this process, and therefore improve the learning outcomes (Richter, Scheiter, & Eitel, 2016)
- Signals might function as prompts which trigger a deeper learning process (Bannert, 2009)
- A learner needs at least some prior knowledge to handle the signals in a helpful way (Seufert, 2003)

enhance the mental effort resulting in a higher learning outcome (Bjork, 1994)

- As a carry-over effect, the deeper processing triggered by prompts might also be conducted when signals are no longer available
- Learners who have to identify and link correspondences without the assistance of signals need additional resources
- Thus, facing these higher demands on learners the question arises of whether intermittent signals still have positive effects on learning and whether these effects depend on prior knowledge

Research Question

Do intermittent signals have a positive effect on learning and which role does prior knowledge thereby play?

Hypotheses

We assume an overall positive effect of intermittent signals

We assume that particularly learners with high prior knowledge can profit from intermittent signals

Method and Design

Results

- N = 102 (M_{age} = 21.32, SD_{age} = 2.57; 88.5 % female)
- Experimental factors
 - presence of signals (without / intermittent) Intermittent signals of the most relevant words or picture parts on the slides were highlighted intermittently in the first and third quarter of the lecture (12 of 27 slides)
 - learners' prior knowledge
- Dependent variable: learning outcomes
- Implemented in an online lecture for psychology students

Folie 1	Folie 3	Folie 4
Erfolgreiches Lernen	Erfolgreiches Lernen	Erfolgreiches Lernen
 Allgemeinpsychologische Perspektive: Wie funktioniert Lernen prinzipiell? 	 Allgemeinpsychologische Perspektive: Wie funktioniert Lernen prinzipiell? 	 Allgemeinpsychologische Perspektive: Wie funktioniert Lernen prinzipiell?
 Differentielle psychologische Perspektive: Was macht den guten Informationsverarbeiter aus? 	 Differentielle psychologische Perspektive: Was macht den guten Informationsverarbeiter aus? 	 Differentielle psychologische Perspektive: Was macht den guten Informationsverarbeiter aus?
 Modell der <u>Guten Informationsverarbeitung</u> GIV Pressley, Borkowski & Schneider, 1989 	 Modell der <u>Guten Informationsverarbeitung</u> GIV Pressley, Borkowski & Schneider, 1989 	 Modell der <u>Guten Informationsverarbeitung</u> GIV Pressley, Borkowski & Schneider, 1989
 Modell der <u>In</u>dividuellen <u>Vo</u>raussetzungen erfolgreichen Lernens INVO Hasselhorn & Gold, 2009 	 Modell der <u>In</u>dividuellen <u>Vo</u>raussetzungen erfolgreichen Lernens INVO Hasselhorn & Gold, 2009 	 Modell der Individuellen Voraussetzungen erfolgreichen Lernen INVO Hasselhorn & Gold, 2009

- Signals were not a significant predictor for learning outcomes $(\beta = -.22, t(101) = -1.04, ns)$
- The interaction (signals x prior knowledge) was a significant predictor for learning outcomes $(\beta = -.39, t(101) = 0.39, p = .05)$

Figure 1. Interaction effect of signals and prior knowledge (continuous, z-standardized) on learning outcomes (z-standardized).

In the condition with signals, prior knowledge seems to affect learning outcomes

$(\beta = -.26, t(101) = 1.56, p = .06)$

Conclusions

- Effective use of help requires additional resources
- Thus, for designing learning substantiate, resource-related learner characteristics such as prior knowledge, working memory capacity or other cognitive skills should be taken into account
- Further studies should additionally include a group with enduring signals and should analyze cognitive load to support our interpretation

References	Contact
Bannert, M. (2009). Promoting Self-Regulated Learning Through Prompts. Zeitschrift für Pädagogische Psychologie, 23(2), 139–145.	Daniel Schropp
Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. <i>Metacognition: Knowing about knowing</i> (pp. 185–205). Cambridge, MA: MIT Press.	Ulm University
Mayer, R. E. (2014). Cognitive theory of multimedia learning. The Cambridge Handbook of Multimedia Learning, Second Edition (pp. 43–71). Cambridge: Cambridge	Institute of Psychology and Education
Richter, J., Scheiter, K., & Eitel, A. (2016). Signaling text-picture relations in multimedia learning: A comprehensive meta-analysis. Educational Research Review. Elsevier Ltd.	Albert-Einstein-Allee 47
Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227–237.	89081 Ulm, Germany
	daniel.schropp@uni-ulm.de

coherent mental representation (Mayer, 2014)