
Annotated multiTree output 
 
A simplified version of the two high-threshold (2HT) model, applied to two experimental 
conditions, is used as an example to illustrate the output provided by multiTree (version 0.46). 
The model is simplified in that a single parameter is assumed for both target and lure 
detection. Moreover, the guessing parameters in both conditions are set equal to .5 
(g1=g2=.5). For a description of the 2HT model, see e.g.  

Erdfelder, E., Hilbig, B. E., Auer, T.-S., Aßfalg, A., Moshagen, M., & Nadarevic, L. (2009). 
Multinomial processing tree models: A review of the literature. Zeitschrift für Psychologie / 
Journal of Psychology, 217, 108–124. 

Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: 
Applications to dementia and amnesia. Journal of Experimental Psychology: General, 117, 34-50. 
 
 
 
 
###  29.11.2013 [14:06]  ### 
 
 
File:       X:\mpt\2HT.mpt 
Data Set 1: Example Data 
 
 
 
Estimation proceeded normally. 
 
 

 
 
The multiTree output starts with some general information about the model and data used. In 
this example, a model file called “2HT.mpt” located at “X:\mpt” has been used to fit data set 
number 1 which has the title “Example Data”. It is always a good idea to check whether 
multiTree has actually analyzed the data set you intended. 

Thereafter multiTree informs us that the “Estimation proceeded normally” which is a good 
sign since it indicates that multiTree encountered no particular problems during parameter 
estimation or the like. Otherwise, multiTree will print a warning message here. Typical warning 
messages are: 

 
- EM algorithm did not converge. 

This is usually solved by increasing the maximum number of iterations. 
 

- One or more variance estimates are negative.  
This may be due to a number of reasons including nonidentification, model misspecification, 
local minima, boundary parameter estimates, and/or small sample sizes. 



  
 
 
 
Model Fit 
 
 
PD^lambda=0.0 (df=2)   = 2.25279      p = 0.32420 
                         Bootstrapped p = 0.31000 
 
ln(likelihood)         = -1440.88409 
MDL (FIA)              = 1447.33013 
cFIA                   = 6.44604 
AIC                    = 2885.76818 
BIC                    = 2897.90999 
Delta AIC              = -1.74721 
Delta BIC              = -13.88903 
 
 

 
 
The next section presents information related to model fit.  

First, multiTree gives the minimized value of the chosen PDλ divergence statistic. By default, 
λ= 0, so PDλ=0 is the G2 test-statistic. Here, the minimized value of G2 is 2.25 with 2 degrees of 
freedom. As G2 is asymptotically χ2(df)-distributed under H0, the p value refers to obtaining a 
test-statistic at least as large as the observed  G2 if H0 is true. Here, p = .324 is clearly larger 
than any conventionally applied alpha-error level, so, assuming sufficient power, we can retain 
the H0 that the model fits the data. 

Under certain circumstances (such as parameter estimates that lie on the boundary of the 
admissible parameter space), the asymptotic distribution of PDλ may not be χ2(df), but rather a 
mixture of independent χ2 distributions. A simple remedy is to use the parametric bootstrap to 
estimate the exact distribution and to obtain the p-value from that simulated PDλ distribution. 
If a bootstrap has been requested, multiTree prints the bootstrapped p-value directly below 
the p-value obtained from the asymptotic χ2(df)-distribution. In the present examples, these p-
values are virtually identical. 

Next, multiTree gives the natural logarithm of the maximized likelihood function up to a 
constant. The omitted constant is identical for all models, given the same data set, and can 
therefore be neglected. Note that different software packages might omit other components 
of this constant which leads to differing values for the loglikelihood and derivative indices 
such as AIC, BIC, or FIA. However, since only the differences within such a model selection 
index are relevant, the results lead to the same conclusions.  

Below the loglikelihood, multiTree gives (if requested) the Fisher Information 
Approximation (FIA) of the Minimum Description Length (MDL) principle, along with the 
corresponding complexity term (cFIA). Within the MDL framework, a model is preferred over 
other models, if it can describe the data by the shortest code, and thus, if it provides the best 
trade-off between fit (as measured by the log of the maximized likelihood) and complexity (as 
measured by the complexity term cFIA). Unlike AIC or BIC, which approximate model 
complexity by the number of free parameters, FIA also considers the functional form of a 



model. FIA is thus particularly informative for the comparison of models with an identical 
number of parameters, e.g. models containing order restrictions or inequality constraints. 

For a non-technical introduction, see  

Wu, H., Myung, J.I., Batchelder, W.H. (2010). Minimum description length model selection of 
multinomial processing tree models. Psychonomic Bulletin and Review, 17, 275-286.  

For technical and implementation details, see 

Wu, H., Myung, J.I., Batchelder, W.H. (2010). On the Minimum Description Length Complexity 
of Multinomial Processing Tree Models. Journal of Mathematical Psychology, 54, 291-303. 

Below, multiTree gives the information criteria AIC and BIC. The interpretation of AIC and BIC 
is simplified by considering delta AIC and delta BIC. These compare the values of the 
estimated model with the ones of the saturated model. Thus, negative values indicate to 
retain the model, whereas positive values indicate to discard the model. Here, both delta AIC 
and delta BIC are negative, thus supporting the present model. 

 
 
 
Difference to Baseline Model 
 
 
PD^lambda=0.0 (df=1)   = 1.03372      p = 0.30929 
                         Bootstrapped p = 0.34000 
 
AIC difference         = -0.96628 
BIC difference         = -7.03719 
Ratio of AIC weights   = 0.61849 
Ratio of BIC weights   = 0.97121 
 
MDL (FIA) difference   = -3.10873 
cFIA difference        = -3.62559 
Lower-Bound N          = 2 
Actual N               = 3200 
 
 
      Baseline   Current 
d1    free       free 
d2    free       free 
g1    = g2       = g2 
g2    free       0.5 
 
 

 
 

The next section provides information relating to model comparisons, which necessarily 
requires that a baseline model has been defined previously and multiTree was requested to 
compare the currently estimated model with the baseline model. In the present example, such 
a baseline model has indeed previously been defined. multiTree prints the restrictions on the 
parameters of the baseline and the current model at the end of the section. Here, the baseline 
model restricted g1 = g2, whereas the remaining parameters were freely estimated. The 
current model additionally restricted g2 = .5 yielding g1 = g2 = 0.5. Thus, the current model is 
nested in the baseline model.  



Note that multiTree is pretty dumb concerning nestedness. multiTree considers models with 
different df as nested, and models having the same df as non-nested. So, if you estimate a 
nested model that has the same df as the nesting model (say, by using order constraints), you 
can ignore multiTree complaining that the model is not nested in the baseline model. Vice 
versa, multiTree happily computes difference statistics whenever the df differ, even if the 
models under scrutiny are actually non-nested. Also note that multiTree always obtains the p-
value for the difference statistic by referring to a χ2 distribution, although this assumption only 
holds if λ =0, i.e. for the G2 test statistic. 

The output regarding model comparisons starts with the difference of the PDλ statistics of 
the nested and the nesting model, along with the p-value obtained from a χ2(df) distribution, 
where df is the difference of the df between the nested and the nesting model. Here, the G²-
difference is 1.03 with 1 df, which is associated with p = .30, indicating that the current model 
is not significantly worse compared to the baseline model. We would conclude that the 
parameters g1 and g2 do not significantly differ from .5 and thus retain the (more 
parsimonious) model with g1 = g2 = .5.  

If a bootstrap has been requested, multiTree also prints the p-value obtained from a simulated 
bootstrap difference distribution. The bootstrapped p-value can be used regardless of 
whether the models are nested and regardless of the chosen value for λ, as no assumption 
with respect to the distributional form is required. Here, the bootstrapped p-value basically 
matches the p-value obtained from the χ2(df=1) distribution. 

Next, multiTree gives the difference in AIC and BIC values as well as the ratio of the AIC and 
BIC weights. The difference values are the difference in the AIC and BIC values, respectively, of 
the current model and the baseline model, so negative values indicate that the current model 
has a smaller AIC / BIC and thus should be preferred. The ratio of the AIC and BIC weights can 
be interpreted as evidence ratio, that is, as probability that the current model is the better 
model (in terms of information loss) compared to the baseline model. In our example, both 
the differences (AIC & BIC difference < 0) and the ratios (AIC & BIC ratios > .5) indicate that the 
current model is to be preferred. 

For more details on evidence ratios, see  

Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. 
Psychonomic Bulletin & Review, 14, 779–804. 

 

Next, multiTree gives the MDL (FIA) and cFIA differences (provided that FIA has been 
computed for both the baseline and the current model), which is simply the difference of the 
FIA and cFIA values, respectively, of the current and the baseline model. Negative values for 
the FIA difference indicate to prefer the current model, as FIA is smaller for the current model. 
Here the FIA difference is -3.1, thus supporting the current model.  The cFIA difference is -3.62, 
showing that the current model is simpler (as measured by cFIA) than the baseline model. 
Note that FIA is an asymptotic approximation to the normalized maximum likelihood (NML), a 
more direct implementation of the MDL principle requiring considerable computing 
resources. Unlike NML, FIA might be biased in small samples. Particularly, if the actual N is 
smaller than the lower-bound N, model comparisons using FIA are biased in that FIA always 



prefers the more complex model. In other words: Do not use FIA for model comparisons 
unless the actual N is larger than the lower-bound N and take great care in interpreting the 
results if the actual N is close to the lower-bound N. Here, the actual N (=3200) well exceeds 
the lower-bound N (=2), so there is no indication to distrust FIA. Note that the lower-bound N 
is undefined when comparing models with the same number of free parameters. In this case, 
there is no immediate reason to discard the FIA comparison (although FIA might be biased, 
the rank order of the models under scrutiny is at least stable across all sample sizes). Also note 
that the lower-bound N should be computed for all pairs of models under consideration, and 
not only for the baseline model in comparison to the remaining models. For more details on 
the lower-bound N, see 

Heck, D. W., Moshagen, M., & Erdfelder, E. (2014). Model comparisons by minimum description 
length: Lower-bound sample sizes for the Fisher information approximation. Journal of 
Mathematical Psychology, 60, 29–34. 

 
 
 
 
 
Parameter Estimates, Standard Errors, and Confidence Intervals 
 
d1 = 0.64000 (0.01921) [0.60235 - 0.67765] 
d2 = 0.69250 (0.01804) [0.65715 - 0.72785] 
g1 = g2 
g2 = 0.50000 (constant) 
 

 
 
 
Now, multiTree gives the parameter (point-) estimates along with standard errors and 
confidence intervals (by default, 95%).  For parameters that are restricted to be equal to 
another parameter, multiTree simply refers to the target parameter (here, g1 = g2). 
Concerning parameters that are restricted to be equal to a constant value (here g2 = 0.5), 
multiTree prints the constant value (and no standard errors or CIs, since constants do not have 
any variability by definition). So, in the present example, the set of restrictions on the 
parameters jointly imply that g1 = g2 = 0.5. d1 and d2 are free parameters that need to be 
estimated. The point estimates for these parameters are .64 and .69 with estimated standard 
errors of .019 and .018, respectively.  

The standard errors printed here are obtained through the Fisher Information Matrix (see 
below). In some situations, this approach may fail in that you get ridiculously large estimates 
or no standard errors at all, e.g. due to negative variance estimates. In such a situation, you can 
ask multiTree to bootstrap standard errors via the ‘Analysis -> Bootstrap’ command. 



 
 
 
 
Moments 
 
 
Category   Observed     Expected     Ratio         
O1o        984.00000    983.99942    1.00000 
O1n        216.00000    216.00058    1.00000 
N1n        328.00000    327.99981    1.00000 
N1o        72.00000     72.00019     1.00000 
O2o        1025.00000   1015.49958   1.00936 
O2n        175.00000    184.50043    0.94851 
N2n        329.00000    338.49986    0.97194 
N2o        71.00000     61.50014     1.15447 
 

 
 
 

On request, multiTree outputs the difference between observed and expected category 
counts (given the current parameter estimates). This is sometimes useful to investigate 
sources of misfit. In the present example, the table shows that there is an excess of observed 
‘old’-responses (‘o’) given to new-items (‘N’) in the second condition (‘2’). 

 
 
 
Inverse of the observed Fisher Information Matrix 
 
 
    d1       d2       g1       g2        
d1  0.00037  0.00000  0.00000  0.00000   
d2  0.00000  0.00033  0.00000  0.00000   
g1  0.00000  0.00000  0.00000  0.00000   
g2  0.00000  0.00000  0.00000  0.00000   
 
 
Condition number: 1.13441 
log(Condition number): 0.05477 
 
Effective rank: 2 
 
 
Eigenvalues 
 
3074.28798 
2710.01575 
 

 
 
On request, multiTree also prints the inverse of the observed Fisher-Information matrix (the 
matrix of the negative second partial derivates of the likelihood function with respect to the 
parameters) which is an estimate of the asymptotic variance-covariance matrix of the 
parameters. Accordingly, the diagonal contains the variance estimates of the parameters, so 
the standard errors are obtained by taking the square root, which obviously only works for 
positive estimates. Here, the variance estimate for parameter d1 is .00037. Taking the square 



root gives .0192, which matches the standard error of d1 as presented in the parameter 
estimates section. If for some reason the Information matrix is singular (and thus non 
invertible), multiTree prints the non-inverted matrix instead. Note that the matrix printed by 
multiTree also contains fixed model parameters, with each cell being equal to zero. The actual 
Fisher-Information matrix only comprises free parameters, so in the present example it is 
actually a 2*2 matrix (and not a 4*4).  

multiTree also gives the rank and the Eigenvalues of this matrix. The condition number is the 
ratio of the largest to the smallest Eigenvalue and can be used as a measure of whether the 
computer number-representation (16 decimal digits by the IEEE floating point format) is 
sufficiently precise for the numerical problem at hand. If the condition number is large, the 
problem is said to be numerically ill-conditioned. More specifically, a rule of thumb is to 
interpret the logarithm of the condition number as the number of decimal digits lost due to 
lack of precision.  In the present example, the logarithm of the condition number is log(1.134) 
= 0.05, so there is no need to worry. However, if the condition number is large, say 1012, 12 
decimals are basically random due to lack of precision, which comes on top to imprecision 
due to numerical estimation. In effect, some numbers given in the output most likely reflect 
pure random noise. Note that the Eigenvalues themselves need to be numerically 
approximated. This is also subject to numerical imprecision, so you might even obtain 
negative estimates for some Eigenvalues. 

 
 
 
 
Jacobian Matrix (given current parameter estimates) 
 
 
      d1         d2         g1         g2          
O1o   0.50000    0.00000    0.00000    0.36000     
O1n   -0.50000   0.00000    0.00000    -0.36000    
N1n   0.50000    0.00000    0.00000    -0.36000    
N1o   -0.50000   0.00000    0.00000    0.36000     
O2o   0.00000    0.50000    0.00000    0.30750     
O2n   0.00000    -0.50000   0.00000    -0.30750    
N2n   0.00000    0.50000    0.00000    -0.30750    
N2o   0.00000    -0.50000   0.00000    0.30750     
 
 
Effective rank = 3 
 

 
 
On request, multiTree computes the Jacobian matrix (the matrix of the first partial derivates 
of the model equations with respect to the parameters), evaluated at the final parameter 
estimates. As is the case for the Fisher Information matrix, multiTree also prints columns 
(containing zeros) for parameters that are restricted to be equal to another parameter. The 
actual Jacobian matrix computed by multiTree omits these parameters. 

The Jacobian is most useful to check identifiability. A model is globally identified, if there is a 
one-to-one relationship between arbitrary values for the parameters and associated category 
probabilities. If different sets of parameter values predict the same category probabilities 
equally well, the model cannot be identified, because there is no means to determine which 



set of parameter estimates is ‘correct’.  The rank of the Jacobian is an indication of how many 
free parameters an identifiable model can have: If the rank exceeds the number of free 
parameters, the model is not identified. In the present example, the rank is 3, which indicates 
that our model with two free parameters (d1 and d2) may be identified. Note that the rank of 
the Jacobian can only be used to rule out identifiability. You can use multiTree to obtain 
simulation evidence in favour of identifiability through the ’Identifiability -> Simulated 
Identifiability’ command. If the rank of the Jacobian exceeds the number of free 
parameters, multiTree also provides the nullspace. For details on how to use the nullspace to 
diagnose non-identifiability, see  

Schmittmann, V., Dolan, C., Raijmakers, M., & Batchelder, W. H. (2010).  Parameter identification 
in multinomial processing tree models. Behavior Research Methods, 42, 836–846. 
 
 
 
 
 
Iteration History 
 
Estimation #1  (this run yielded the smallest discrepancy) 
Iter  Fit      d1       d2       g1       g2        
0     541.503  0.32756  0.27537  0.50000  0.50000   
1     344.040  0.40465  0.36543  0.50000  0.50000   
2     194.754  0.47245  0.45297  0.50000  0.50000   
3     99.0592  0.52621  0.52764  0.50000  0.50000   
4     46.3443  0.56544  0.58458  0.50000  0.50000   
5     20.8069  0.59237  0.62440  0.50000  0.50000   
6     9.61935  0.61009  0.65057  0.50000  0.50000   
7     5.06338  0.62142  0.66710  0.50000  0.50000   
8     3.29787  0.62854  0.67726  0.50000  0.50000   
9     2.63526  0.63297  0.68342  0.50000  0.50000   
10    2.39145  0.63569  0.68710  0.50000  0.50000   
11    2.30279  0.63737  0.68930  0.50000  0.50000   
12    2.27077  0.63839  0.69061  0.50000  0.50000   
13    2.25924  0.63902  0.69138  0.50000  0.50000   
14    2.25510  0.63940  0.69184  0.50000  0.50000   
15    2.25362  0.63964  0.69211  0.50000  0.50000   
16    2.25309  0.63978  0.69227  0.50000  0.50000   
17    2.25289  0.63986  0.69236  0.50000  0.50000   
18    2.25283  0.63992  0.69242  0.50000  0.50000   
19    2.25280  0.63995  0.69245  0.50000  0.50000   
20    2.25279  0.63997  0.69247  0.50000  0.50000   
21    2.25279  0.63998  0.69248  0.50000  0.50000   
22    2.25279  0.63999  0.69249  0.50000  0.50000   
23    2.25279  0.63999  0.69249  0.50000  0.50000   
24    2.25279  0.64000  0.69250  0.50000  0.50000   
25    2.25279  0.64000  0.69250  0.50000  0.50000   

 
 
The output ends with a round-up of the estimation process (if requested) labelled the 
iteration history. This is basically implemented for educative purposes. Each row prints the 
parameter estimates and the associated fit-statistic for the current iteration. The first row (‘Iter 
0’) contains the starting values for the parameters (drawn randomly by default). multiTree 
directly minimizes the PDλ fit statistic (which is equivalent to maximizing the likelihood), so 
the column labelled ‘Fit’ gives the PDλ statistic for the current parameter estimates. Here, the 
starting values for the parameters d1, d2, g1, and g2 were .327, .275, .5, and .5, respectively. 



The model with these particular values for the parameters is associated with a PDλ statistic of 
541.5. The final parameter estimates after 25 iterations were .64, .6925, .5, and .5, respectively, 
yielding PDλ = 2.25. The algorithm stops if either the maximum number of iterations (by 
default, 5000) is reached or convergence is achieved. The latter means that the change in 
model fit between one iteration to the next is smaller than the convergence criterion (by 
default, 10-9). Accordingly, it can be seen that model fit from the 20th to the 25th iteration only 
changes beyond the 6th decimal, which is not displayed in the output. 

If more than one run of the EM algorithm has been requested (by default, three) to avoid 
getting stuck in a local minimum, multiTree prints the iteration history of each run and also 
marks the run yielding the smallest discrepancy. If there is a global minimum on the fitting 
function, different runs will yield results differing in (say) the 8th decimal only. However, this 
option is sometimes useful to check the behaviour in the presence of local minima on the 
fitting function.  


