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Abstract. Developing constraint solvers which are key requisites of con-
straint programming languages is time consuming and difficult. In this
paper, we propose a generic algorithm that symbolically constructs rule-
based solvers from the intensional definition of the constraint. Unlike the
well-established “generate and test” approach, our symbolic construction
approach is capable of generating recursive rules from a recursive con-
straint definition. Combining the two approaches gives better filtering
capabilities than either of the approaches acting alone.

1 Introduction

“Constraint Programming represents one of the closest approaches com-
puter science has yet made to the Holy Grail of programming: the user
states the problem, the computer solves it.” [E. Freuder]

The validity of this statement for a Constraint Logic Programming (CLP) lan-
guage is contingent on the existence of constraint solvers. These associate con-
straints with filtering algorithms that remove variable values which cannot be-
long to any solution of the problem.

Constraint Handling Rules (CHR) is a multi-headed guarded and concur-
rent constraint logic programming language. To incorporate constraint solvers
in CHR, a scheme was proposed in [1] to automatically derive the solvers given
the intentional definition of the constraints. The scheme is based on a generate
and test approach where rule candidates are enumerated and tested for validity
against the constraint definition. Although the approach performs an extensive
search for valid rules, given a recursive constraint definition it is unable to gen-
erate recursive rules.

To overcome this, we propose a scheme where valid rules are symbolically
constructed from the clauses of a CLP program defining the constraint. The idea
behind the construction stems from the observation that if in a non-overlapping
CLP program the execution of a clause leads to a solution, the execution of all
other clauses will not. Thus our constructed CHR rules simplify the constraint to
the body of a clause only if all other clauses do not hold. Moreover, we combine
the two schemes to achieve better filtering.



Example 1 (Motivation). Consider the lexicographic order constraint [2–4]. Given
two sequences L1 and L2 of variables of the same length, then lex holds if L1

is lexicographically smaller than or equal to L2. The following CLP program
defines the lex(L1, L2) constraint:

lex([], [])
lex([X1|T1], [X2|T2]) ← X1<X2

lex([X3|T3], [X4|T4]) ← X3=X4 ∧ lex(T3, T4)

The generate and test approach [1] generates rules that reason about the first
elements of the two lists such as:

lex(L1, L2)⇒ L1=[X1|T1] ∧ L2=[X2|T2] | X1≤X2 (1)

The symbolic construction approach proposed in this paper generates the fol-
lowing solver:

lex(L1, L2)⇔ L1=[] ∨ L2=[] | L1=[] ∧ L2=[] (2)
lex(L1, L2)⇔ L1=[X1|T1] ∧ L2=[X2|T2] ∧X1 6=X2 | X1<X2 (3)
lex(L1, L2)⇔ L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2 | X1=X2 ∧ lex(T1, T2) (4)

Given the query 〈lex([A1, A2, A3], [B1, B2, B3])〉 where the domains of the vari-
ables are defined as follows:

A1={1, 3, 4}, A2={2, 3, 4}, A3={1, 2}
B1={1}, B2={2}, B3={0, 1, 2}

The generate and test approach enforces the constraint A1≤B1, which removes
the values {3, 4} from the domain of A1. The solution becomes:

A1={1}, A2={2, 3, 4}, A3={1, 2},
B1={1}, B2={2}, B3={0, 1, 2},

lex([A1, A2, A3], [B1, B2, B3])

For the symbolic construction approach since A1≥B1, rule (4) is executed en-
forcing equality on the values of A1 and B1 before calling lex recursively on the
remaining list elements. Since A2≥B2 rule (4) is applied again, whereas for A3

and B3 no rule is applicable. The solution becomes:

A1={1}, A2={2}, A3={1, 2},
B1={1}, B2={2}, B3={0, 1, 2},

lex([A3], [B3])

Combining both approaches prunes the domains of the variables further since
rule (1) is applicable to lex([A3], [B3]) and filters the domain ofB3. The combined
solution becomes:

A1={1}, A2={2}, A3={1, 2},
B1={1}, B2={2}, B3={1, 2},

A3≤B3, lex([A3], [B3])

We will proceed with the lex constraint in all examples of this paper.



The paper is a revised and extended version of [5] and is organized as fol-
lows. In section 3, we present the symbolic construction approach and prove
soundness and termination of the constructed solvers. In section 4, we apply
post-processing methods to improve the run-time complexity of the solvers. Fi-
nally, section 5 combines the symbolic construction approach with the “generate
and test” approach to achieve better filtering.

2 Preliminaries

2.1 Intentional Definition

Let p be a constraint. A CLP program P defines p if p occurs with the same
arity in the head of all the clauses and all true instances of p are accounted for
(closed world assumption). The program P is of the usual form:

p(t̄1)← C1, p(t̄2)← C2, . . . , p(t̄n)← Cn

where t̄i stands for a sequence of terms and Ci is a conjunction of built-in and
user-defined constraints. Built-in constraints are those defined by a constraint
theory and for which solvers are available. These solvers are assumed to be
well-behaved (terminating and confluent), closed under negation, and achieve
arc-consistency. User-defined constraints are those for which solvers are needed.
The symbolic construction approach requires that there are no variables in Ci

that are not in t̄i and that all clauses are non-overlapping (i.e. in a computation
at most one clause can lead to a solution).

Definition 1. The logical reading of P denoted by P ∗ is given by its Clark
completion [6]:

∀x̄ (p(x̄)↔
n∨

i=1

∃ȳi (x̄=t̄i ∧ Ci))

where x̄ is a sequence of distinct fresh variables and ȳi is the sequence of vari-
ables in t̄i. The expression x̄=t̄i stands for the conjunction of equations between
respective elements of the sequences x̄ and t̄i.

Example 2 (Clark Completion). The Clark completion of the CLP program
defining lex is:

∀L1, L2 lex(L1, L2) ↔
(L1=[] ∧ L2=[]) ∨
∃X1, X2, T1, T2 (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1<X2) ∨
∃X3, X4, T3, T4 (L1=[X3|T3] ∧ L2=[X4|T4] ∧X3=X4 ∧ lex(T3, T4))



2.2 Constraint Solver

CHR [7] specifies how new constraints interact with the constraint store and is
thus especially suited for writing constraint solvers. It has two main rule types:

Simplification Rule: H ⇔ G | B
Propagation Rule: H ⇒ G | B

where the head H are user-defined constraints, the guard G are built-in con-
straints and the body constraints B are both.

Definition 2. The logical meaning of a simplification rule is a logical equiva-
lence provided the guard holds:

∀x̄∀ȳ (G→ (H ↔ ∃z̄ B))

where x̄ is the set of variables occurring in H, the variables ȳ are the set occurring
in G but not in H and z̄ are the variables occurring in B only. Similarly, the
logical meaning of a propagation rule is an implication provided the guard holds.

Prompted with a query, applicable rules are executed until a fixpoint is
reached where no more rules can be applied or a contradiction occurs. A rule is
applicable provided that constraints from the query match the head and imply
the guard. Execution of a simplification rule rewrites constraints that match the
head by the body while execution of a propagation rule adds the body constraints
to the constraint store.

2.3 Generate and Test Approach

In this section, we summarize the generate and test approach presented in [1].
Given a CLP program defining the constraint as well as the syntactic form of
the candidate rules defined by the following sets:

– Baselhs contains constraints that must appear in the head of all rules,
– Candlhs contains constraints to be used in conjunction with Baselhs to form

the head, and
– Candrhs contains constraints that may appear in the body.

The generate and test approach generates valid rules as follows. Candidate prop-
agation rules of the form H ⇒ B are enumerated, and subjected to a validity
test based on the observation that a rule is valid if the execution of the goal
H ∧ ¬(B) finitely fails with respect to the CLP program.

Example 3 (Generate and Test Approach). Given the syntactic form of candidate
rules for lex as:

Baselhs={lex(L1, L2)}
Candlhs={L1=[], L2=[], L1=[X1|T1], L2=[X2|T2], X1≤X2, X1>X2, X1<X2, . . .}
Candrhs=Candlhs



The generate and test approach generates (among others) the following rule for
lex:

lex([X1|T1], [X2|T2])⇒ X1≤X2

The rule is generated since executing the goal 〈lex([X1|T1], [X2|T2]), X1>X2〉
fails as demonstrated by the following derivation tree:

lex([X1|T1], [X2|T2]), X1>X2

ttjjjjjjjjjjjjjjj

�� ))TTTTTTTTTTTTTTT

[X1|T1]=[], [X2|T2]=[], X1>X2

��

X1<X2, X1>X2

��

X1=X2, lex(T1, T2), X1>X2

��
false false false

3 Symbolic Construction Approach

The symbolic construction approach (Fig. 1) constructs a solver for a constraint
by symbolically transforming the Clark completion of the CLP program defining
the constraint to semantically valid rules. The idea of the transformation stems
from the observation that in a non-overlapping CLP program if the execution
of one clause leads to a solution then the execution of all other clauses will not.
Thus to construct a rule that simplifies the constraint to the body of one clause,
the negation of the bodies of all other clauses is added to the guard. This ensures
that the rule is applicable only when all other clauses are not valid and hence
maintains consistency with the constraint definition.

begin
p: left hand side of the Clark completion
Disjuncts: set of disjuncts of right hand side of the Clark completion
Rules={}: resultant rule set

for each D in Disjuncts do
Other=Disjuncts\{D}
Rules=Rules ∪ {p⇔ ¬Other | D}

end for
end

Fig. 1. Symbolic Construction Algorithm



3.1 Guard Determination

More formally, given the definition of a constraint p(x̄):

∀x̄

(
p(x̄)↔

n∨
i=1

∃ȳi (x̄=t̄i ∧ Ci)

)

The symbolic construction algorithm constructs rules of the form:

p(x̄)⇔ ¬
n∨

j=1,j 6=i

∃ȳj (x̄=t̄j ∧ Cj) | x̄=t̄i ∧ Ci for each i ∈ {1, . . . , n}

where x̄=t̄j stands for the conjunction of equations between respective elements
of the sequences x̄ and t̄j . According to the soundness proof (given in the next
section), this is equivalent to:

p(x̄)⇔
n∧

j=1,j 6=i

∀ȳj (x̄ 6=t̄j) ∨ ∃ȳj (x̄=t̄j ∧ ¬Cj) | x̄=t̄i ∧ Ci

where x̄ 6=t̄j stands for the disjunction of negated equations between respec-
tive elements of the sequences x̄ and t̄j and ¬Cj is a disjunction of negated
constraints. The symbolic construction approach distinguishes between the two
cases for negated constraints: Negated built-ins are replaced by the correspond-
ing positive constraints since built-ins are closed under negation. Negated user-
defined constraints are discarded and constructing an entailment checker that
determines if a user-defined constraint does not hold is left for future work. Thus,
the general form of the rules is:

p(x̄)⇔
n∧

j=1,j 6=i

|x|+mj∨
k=1

Ek
j | x̄=t̄i ∧ Ci

where
Ek

j =∀ȳk
j

(
xk 6=tkj

)
for k ∈ {1, . . . , |x|},

E
|x|+k
j =∃ȳj

(
x̄=t̄j ∧ ¬ckj

)
for k ∈ {1, . . . ,mj},

the ȳk
j is the sequence of variables in the term tkj and mj is the number of built-in

constraints in Cj .

Example 4 (Symbolic Construction Approach). The lex constraint has three dis-
juncts namely:

D1 : L1=[] ∧ L2=[]
D2 : ∃X1, X2, T1, T2 (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1<X2)
D3 : ∃X3, X4, T3, T4 (L1=[X3|T3] ∧ L2=[X4|T4] ∧X3=X4 ∧ lex(T3, T4))



To construct a rule that simplifies lex to the first disjunct, the negation of the
other two disjuncts is added to the guard:

¬(∃X1, X2, T1, T2 (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1<X2) ∨
∃X3, X4, T3, T4 (L1=[X3|T3] ∧ L2=[X4|T4] ∧X3=X4 ∧ lex(T3, T4)))

This is equivalent to:

(∀X1, T1(L1 6=[X1|T1]) ∨ ∀X2, T2(L2 6=[X2|T2]) ∨
∃X1, X2, T1, T2(L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2)) ∧

(∀X3, T3(L1 6=[X3|T3]) ∨ ∀X4, T4(L2 6=[X4|T4]) ∨
∃X3, X4, T3, T4(L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 6=X4))

where negated built-ins are replaced by the corresponding positive constraints
and negated user-defined constraints discarded.

Since the arguments of lex are (ordered) lists, the constraint ∀X,T L6=[X|T ]
can be simplified to L=[]. The expression becomes:

(L1=[] ∨ L2=[] ∨ (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2)) ∧
(L1=[] ∨ L2=[] ∨ (L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 6=X4))

Thus the constructed rule is:

lex(L1, L2)⇔
(L1=[] ∨ L2=[] ∨ (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2)) ∧
(L1=[] ∨ L2=[] ∨ (L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 6=X4))
| L1=[] ∧ L2=[]

3.2 The Solver Properties

In this section we prove soundness and termination as well as discuss complete-
ness of the constructed solvers.

Soundness. A simplification rule H ⇔ G | B is valid w.r.t. a CLP program P
and the constraint theory CT iff P ∗ ∪ CT |= ∀x̄ (∃ȳ G→ (H ↔ ∃z̄ B)).

Theorem 1 (Soundness). The symbolic construction algorithm constructs valid
simplification rules w.r.t. the CLP program and the constraint theory.

Proof (Soundness). Consider Clark’s completion of the CLP program defining a
constraint p:

∀x̄

(
p(x̄)↔

(
n∨

i=1

∃ȳi (x̄=t̄i ∧ Ci)

))



For every i ∈ {1, . . . , n}, we therefore have:

∀x̄

 ¬ n∨
j=1,j 6=i

∃ȳj (x̄=t̄j ∧ Cj)

→ (p(x̄)↔ ∃ȳi (x̄=t̄i ∧ Ci))


and consequently:

∀x̄

  n∧
j=1,j 6=i

¬∃ȳj (x̄=t̄j ∧ Cj)

→ (p(x̄)↔ ∃ȳi (x̄=t̄i ∧ Ci))


which is the logical reading of a CHR rule:

p(x̄)⇔ G | x̄=t̄i ∧ Ci

where G is equivalent to:

n∧
j=1,j 6=i

¬∃ȳj (x̄=t̄j ∧ Cj)

Recall that ȳj denotes the variables in t̄j and that ȳj is disjoint from x̄.
Therefore, for every j ∈ {1, . . . , n} and every valuation of x̄ such that x̄ = t̄j is
satisfiable, there exists a sequence of terms ūj such that:

(x̄ = t̄j)⇔ (ȳj = ūj)

This observation guarantees the existence of a function uj for each j ∈
{1, . . . , n} that maps from sequences of terms to sequences of terms such that:

(∃ȳj x̄=t̄j)⇒ ((x̄=t̄j)⇔ (ȳj=uj(x̄)))

and consequently:
(x̄ = t̄j)⇒ (ȳj=uj(x̄))

Using function uj , we have that:

¬∃ȳj (x̄=t̄j ∧ Cj)

is equivalent to:
¬∃ȳj (x̄=t̄j ∧ ȳj=uj(x̄) ∧ Cj)

From there, the substitution property of equality gives us:

¬∃ȳj (x̄=t̄j ∧ Cj [ȳj/uj(x̄)])

We move the negation to the inside of the formula and get:

∀ȳj (x̄ 6=t̄j ∨ ¬Cj [ȳj/uj(x̄)])



As the variables ȳj do not appear in the formula ¬Cj [ȳj/uj(x̄)], we can move it
outside of the universal quantification:

∀ȳj (x̄ 6=t̄j) ∨ ¬Cj [ȳj/uj(x̄)]

Applying (A ∨B)⇔ (A ∨ (¬A ∧B)) gives us:

∀ȳj (x̄ 6=t̄j) ∨ (∃ȳj (x̄=t̄j) ∧ ¬Cj [ȳj/uj(x̄)])

As the variables ȳj do not appear in the formula ¬Cj [ȳj/uj(x̄)], we can move it
into the scope of their existential quantification:

∀ȳj (x̄ 6=t̄j) ∨ ∃yj (x̄=t̄j ∧ ¬Cj [ȳj/uj(x̄)])

According to the definition of the function uj , x̄=t̄j implies ȳj=uj(x̄):

∀ȳj (x̄ 6=t̄j) ∨ ∃yj (x̄=t̄j ∧ ȳj=uj(x̄) ∧ ¬Cj [ȳj/uj(x̄)])

We apply the substitution property of equality again to get:

∀ȳj (x̄ 6=t̄j) ∨ ∃yj (x̄=t̄j ∧ ȳj=uj(x̄) ∧ ¬Cj)

As (x̄=t̄j)⇒ (ȳj=uj(x̄)), this is equivalent to:

∀ȳj (x̄ 6=t̄j) ∨ ∃yj (x̄=t̄j ∧ ¬Cj)

Therefore, the guard G of the generated CHR rule is equivalent to: n∧
j=1,j 6=i

(∀ȳj (x̄ 6=t̄j) ∨ ∃yj (x̄=t̄j ∧ ¬Cj))


Termination. In [8] proving the termination of CHR solvers is based on poly-
nomial interpretations where the rank of a term or an atom is defined by a
linear positive combination of the rankings of its arguments. The basic idea is
to prove that the rank of the head of a rule is strictly larger than that of its
body. Moreover, built-in solvers are assumed to be well-behaved (terminating
and confluent) and thus the rank of built-in constraints is defined as 0.

Theorem 2 (Termination). For constraints defined by a CLP program where
the rank of the head of every clause is strictly larger than that of its body, the
symbolic construction approach constructs terminating solvers.

Proof (Termination). If for each clause of the CLP program, the rank of the
head of the clause is strictly larger than that of its body, then the constructed
solver terminates. The head and body of a constructed rule are the same as
the clause and only built-in constraints which are defined as 0 are added to the
guard. Thus the head of a constructed rule is strictly larger than that of its body
and the solver terminates.



Completeness. The constructed solvers can not guarantee propagation com-
pleteness for non-trivial constraints since negated user-defined constraints are
ignored.

4 Solver Optimization

To improve the runtime efficiency of the solvers and readability of the rules,
redundant guard entailment checks are removed. This is achieved by expanding
the guard expressions to disjunctive normal form and splitting each disjunct into
a new rule. Then, we apply the redundant rules removal algorithm of [9] on the
complete rule set. After redundant rules are removed, guards originating from
the same rule are recombined to avoid loss of completeness.

4.1 Guard Splitting

The symbolic construction approach constructs rules of the form:

p(x̄)⇔
n∧

j=1,j 6=i

|x|+mj∨
k=1

Ek
j | x̄=t̄i ∧ Ci

where
Ek

j =∀ȳk
j

(
xk 6=tkj

)
for k ∈ {1, . . . , |x|},

E
|x|+k
j =∃ȳj

(
x̄=t̄j ∧ ¬ckj

)
for k ∈ {1, . . . ,mj},

the ȳk
j is the sequence of variables in the term tkj and mj is the number of built-in

constraints in Cj .
To split the guard into rules (Fig. 2), we distribute the conjunction over the

disjunction and get a formula in disjunctive normal form where the number of
disjuncts is Πn

j=1,j 6=i|x| + mj . Then each disjunct is simplified to an equivalent
conjunction of constraints by the available built-in solver and superfluous dis-
juncts removed. These include multiple occurrences of a disjunct (irrespective of
the order of constraints within the disjunct) and false. Each simplified disjunct
is split into a new rule.

Example 5 (Guard Splitting). Consider the previously constructed rule of lex:

lex(L1, L2)⇔
(L1=[] ∨ L2=[] ∨ (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2)) ∧
(L1=[] ∨ L2=[] ∨ (L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 6=X4))
| L1=[] ∧ L2=[]



begin
Rulesin: initial rule set
Rulesout={}: resultant rule set

while Rulesin 6={} do
Remove from Rulesin an element denoted R
R is of the form p⇔ E | D
G is the cartesian product of the n−1 conjuncts of the guard E

while G6={} do
Remove from G an element denoted Ge

Gsimp: the result of executing Ge by the built-in solver
if Gsimp 6=false then

Rulesout=Rulesout ∪ {p⇔ Gsimp | D}
end if

end while
end while

end

Fig. 2. Guard Splitting

Transforming the guard expression to disjunctive normal form, we get:

(L1=[] ∧ L1=[]) ∨
(L1=[] ∧ L2=[]) ∨
(L1=[] ∧ L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 6=X4) ∨
(L2=[] ∧ L1=[]) ∨
(L2=[] ∧ L2=[]) ∨
(L2=[] ∧ L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 6=X4) ∨
(L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2 ∧ L1=[]) ∨
(L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2 ∧ L2=[]) ∨
(L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2 ∧ L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 6=X4)

To simplify the resultant expression, each disjunct is executed by the built-in
constraints solver and superfluous disjuncts removed. We assume that for the
conjunction of constraints, the built-in solver:

– Removes identical occurrences of constraints
– Simplifies constraints (e.g. L=[]∧L=[X|T ]⇔ false andX≥Y ∧X 6=Y ⇔ X>Y )
– Propagates new constraints (e.g. L1=[X1|T1] ∧ L2=[X2|T2] ∧ L1=[X3|T3] ∧
L2=[X4|T4]⇒ X1=X3 ∧ T1=T3 ∧X2=X4 ∧ T2=T4)

The expression simplifies to:

(L1=[]) ∨ (L1=[] ∧ L2=[]) ∨ (L2=[]) ∨ (L1=[X1|T1] ∧ L2=[X2|T2] ∧X1>X2)



which splits into the following rules:

lex(L1, L2)⇔ L1=[] | L1=[] ∧ L2=[]
lex(L1, L2)⇔ L1=[] ∧ L2=[] | L1=[] ∧ L2=[]
lex(L1, L2)⇔ L2=[] | L1=[] ∧ L2=[]
lex(L1, L2)⇔ L1=[X1|T1] ∧ L2=[X2|T2] ∧X1>X2 | L1=[] ∧ L2=[]

4.2 Redundant Rules Removal

To remove redundant rules, the algorithm of [9] is used. The idea of the algorithm
is based on operational equivalence of programs. The algorithm (Fig. 3) basically
checks if the computation step due to a rule can be performed by the remainder
of the program. It determines this by executing the head and guard in both the
program and the program without the rule in it. If the results are identical upto
renaming of variables and logical equivalence of built-in constraints), then the
rule is obviously redundant and can be removed.

begin
Rulesin: the initial rule set
Rulesout: the resultant rule set without redundancy
Rulesout=Rulesin

while Rulesin 6={} do
Remove from Rulesin an element denoted R
lhs: the head and guard of the rule R
S1: the result of executing lhs in Rulesout

Rulesremaining=Rulesout\{R}
S2: the result of executing lhs in Rulesremaining

if S1 is identical to S2 then
Rulesout=Rulesremaining

end if
end while

end

Fig. 3. Redundancy Removal Algorithm

Example 6 (Redundant Rules Removal). Consider the following two rules of lex:

lex(L1, L2)⇔ L1=[] | L1=[] ∧ L2=[]
lex(L1, L2)⇔ L1=[] ∧ L2=[] | L1=[] ∧ L2=[]

The second rule is redundant since its operation is covered by the first rule.
Removing the second rule from the rule set and querying the remaining set with



its head and guard 〈A=[] ∧B=[] ∧ lex(A,B)〉, the first rule is applied and gives
the same result 〈A=[] ∧B=[]〉 as the second rule.

After redundant rules are removed, guards originating from the same rule are
recombined to avoid loss of completeness. Further guard optimization techniques
have been addressed in [10].

5 Combined Approach

To improve the filtering capabilities of our constructed solvers, we propose ex-
tending our solvers with rules generated by the orthogonal approach “generate
and test” of [1]. To reduce the search space of the generate and test method, the
symbolic construction algorithm is run first and the constructed rules eliminated
from the enumeration tree of the generate and test. Moreover, the algorithm of [9]
is used to remove the redundant rules of the combined solver. In general, the
combined solvers are more expressive than the solvers of either approaches.

Example 7 (Combined Approach). The combined solver for lex is given below.
The first three rules represent the solver obtained from the symbolic construction
approach and the last rule is added by the generate and test.

lex(L1, L2)⇔ L1=[] ∨ L2=[] | L1=[] ∧ L2=[] (1)
lex(L1, L2)⇔ L1=[X3|T3] ∧ L2=[X4|T4] ∧X3 6=X4 |

L1=[X1|T1] ∧ L2=[X2|T2] ∧X1<X2 (2)
lex(L1, L2)⇔ L1=[X1|T1] ∧ L2=[X2|T2] ∧X1≥X2 |

L1=[X3|T3] ∧ L2=[X4|T4] ∧X3=X4 ∧ lex(T3, T4) (3)
lex([X1|T1], [X2|T2])⇒ X1≤X2 (4)

The solver is sound. All rules are logical consequences of the constraint def-
inition.

The solver terminates. The interesting case for termination is the recursive
rule (3). The ranking function for lex(L1, L2) is defined as the positive combi-
nation of the rank of its arguments:

rank(lex(L1, L2)) = length(L1) + length(L2)

The length of a list is expressed in the ranking function scheme as:

length([]) = 0
length([H|T ]) = 1 + length(T )

All other constraints in the rule are built-ins and are ranked as 0. The rule
terminates since the rank of the head and guard is greater than that of its body:

rank(lex([X1|T1], [X2|T2])) > rank(lex(T1, T2))



The solver is not propagation complete. In [4] the below complete lex solver
was presented:

lex([], [])⇔ true (5)
lex([X1|T1], [X2|T2])⇔ X1<X2 | true (6)
lex([X1|T1], [X2|T2])⇔ X1=X2 | lex(T1, T2) (7)
lex([X1|T1], [X2|T2])⇒ X1≤X2 (8)

lex([X1, U |T1], [X2, V |T2])⇔ U>V | X1<X2 (9)
lex([X1, U |T1], [X2, V |T2])⇔ U≥V ∧ T1=[ | ] |

lex([X1, U ], [X2, V ]) ∧ lex([X1|T1], [X2|T2]) (10)

The solver consists of three pairs of rules: the first two correspond to base cases
of the recursion, the middle two perform forward reasoning, and the last two
perform backward reasoning. By comparison we find that the backward rea-
soning rules are not subsumed by our combined lex solver rendering the solver
incomplete.

Consider the query 〈lex([A1, A2, A3, A4], [B1, B2, B3, B4])〉 where the domains
of the variables are defined as follows:

A1={1, 3, 4}, A2={1, 2, 3, 4, 5}, A3={1, 2}, A4={3, 4, 5}
B1={1}, B2={0, 1, 2, 3, 4}, B3={0, 1}, B4={0, 1, 2}

In the case of the combined solver for lex, rule (3) is fired since A1≥B1 enforcing
equality on the values of A1 and B1 before calling lex recursively on the remain-
ing list elements. The relation between A2 and B2 satisfies none of the guards,
thus rule (4) is fired which enforces A2≤B2. The solution becomes:

A1={1}, A2={1, 2, 3, 4}, A3={1, 2}, A4={3, 4, 5},
B1={1}, B2={1, 2, 3, 4}, B3={0, 1}, B4={0, 1, 2},

A2≤B2, lex([A2, A3, A4], [B2, B3, B4])

In the case of the lex solver of [4], rules (8), (7), (10), and (9) are applied in that
order and further constrain the domains of the variables to:

A1={1}, A2={1, 2, 3}, A3={1, 2}, A4={3, 4, 5},
B1={1}, B2={2, 3, 4}, B3={0, 1}, B4={0, 1, 2},

A2<B2, lex([A2, A3], [B2, B3])

6 Conclusion

In this paper we have presented an algorithm that automatically constructs
rule-based solvers from the constraint definition. The algorithm is an orthogonal
approach to the general direction of the work done in the field as it is based
on symbolic construction rather than a generate and test method. Contrary to



other approaches, given a recursive constraint definition the algorithm is able
to generate recursive rules which allow reasoning over arguments of arbitrary
length.

The constructed solvers are a good basis for constraint reasoning and can
be extended manually or with rules generated using other approaches. We have
proposed extending our rules with those generated by the algorithm in [1]. In
general, the solvers generated using the combined approach are more expressive
than those generated by either of the two approaches acting alone.

An interesting direction for future work to improve the expressiveness of
the generated solvers is to incorporate negated user-defined constraints in the
symbolic construction approach.
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7. Frühwirth, T.: Theory and Practice of Constraint Handling Rules, Special Issue
on Constraint Logic Programming. Journal of Logic Programming 37(1-3) (1998)
95–138
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