
A Complete and Terminating Execution Model for
Constraint Handling Rules

Hariolf Betz, Frank Raiser, Thom Frühwirth

Ulmer InformatikBerichte
Nr. 201001

Januar 2010

Ulmer Informatik Berichte | Universität Ulm | Fakultät für Ingenieurwissenschaften und Informatik

A Complete and Terminating Execution Model

for Constraint Handling Rules

Hariolf Betz, Frank Raiser, and Thom Frühwirth

Faculty of Engineering and Computer Sciences, Ulm University, Germany
firstname.lastname@uni-ulm.de

Abstract. We observe that the various formulations of the operational
semantics of Constraint Handling Rules proposed over the years fall into
a spectrum ranging from the analytical to the pragmatic. While existing
analytical formulations facilitate program analysis and formal proofs of
program properties, they cannot be implemented as is. We propose a
novel operational semantics ω!, which has a strong analytical foundation,
while featuring a terminating execution model. We prove its soundness
and completeness with respect to existing analytical formulations and
we compare its expressivity to that of various other formulations.

1 Introduction

Constraint Handling Rules [1] (CHR) is a declarative, multiset- and rule-based
programming language suitable for concurrent execution and powerful program
analysis. While it is known as a language that combines efficiency with declara-
tivity, publications in the field display a tendency to favor one of these aspects
over the other. We observe a spectrum of research directions ranging from the
analytical to the pragmatic.

On the analytical end of the spectrum, emphasis is put on CHR as a mathe-
matical formalism, declarativity, and the understanding of its logical foundations
and theoretical properties. Several formalizations of the operational semantics,
found in [2, 3] and [4], belong to this side of the spectrum. Notable results build-
ing on these analytical formalizations include decidable criteria for operational
equivalence [5] and confluence [6], a strong foundation of CHR in linear logic [7],
as well as weak and strong parallelization, as presented in [8] and further devel-
oped toward concurrency in [9, 10].

A recent analytical formalization is the operational semantics ωe, given in
[11]. It consists in a rewriting system of equivalence classes of states based on
an axiomatic formulation of equivalence. It has been shown to coincide with the
operational semantics ωva, which has been introduced in [1] to set a standard
for all other operational semantics to build upon.

On the downside, these operational semantics are detached from practical
implementation in that they are oblivious to questions of efficiency and ter-
mination. Particularly, the class of rules called propagation rules causes trivial

2 Hariolf Betz, Frank Raiser, and Thom Frühwirth

non-termination in both of them. Hence, it is safe to say that the existing ana-
lytical formalizations of the operational semantics lack a terminating execution
model.

This contrasts with most work on the pragmatic side of the spectrum, which
emphasizes practical implementation and efficiency over formal reasoning. It
originates with [12], where a token-based approach is proposed in order to avoid
trivial non-termination: Every propagation rule is applicable only once to a spe-
cific combination of constraints. This is realized by keeping a propagation history
– sometimes called token store – in the CHR state. Thus, we gain a terminating
execution model for the full segment of CHR.

Building upon [12], a plethora of operational semantics has been brought
forth, such as the token-based operational semantics ωt and its refinement ωr

[13]. The latter reduces non-determinism for a gain in efficiency and sets the
current standard for CHR implementations. Another notable exponent is the
priority-based operational semantics ωp [14].

On the downside, token stores break with declarativity: Two states that differ
only in their token stores may exhibit different operational behavior while sharing
the same logical reading. Therefore, we consider token stores as non-declarative
elements in CHR states.

Recent work on linear logical algorithms [15] and the close relation of CHR
to linear logic [7] suggest a novel approach that emphasizes aspects from both
sides of the spectrum to a useful degree: In this work, we introduce the notion of
persistent constraints to CHR, a concept reminiscent of unrestricted or “banged”
propositions in linear logic. Persistent constraints provide a finite representation
of the result of any number of propagation rule firings.

We furthermore introduce a state transition system based on persistent con-
straints, which is explicitly irreflexive. In combination, the two ideas solve the
problem of trivial non-termination while retaining declarativity and preserving
the potential for effective concurrent execution. This state transition system re-
quires no more than two rules. As every transition step corresponds to a CHR
rule application, it facilitates formal reasoning over programs.

In this work, we show that the resulting operational semantics ω! is sound
and complete with respect to ωe. We show that ω! can be faithfully embedded
into the operational semantics ωp, thus effectively providing an implementation
in the form of a source-to-source transformation. All operational semantics de-
veloped with an emphasis on pragmatic aspects lack this completeness property.
Therefore, this work is the first to show that it is possible to implement CHR
soundly and completely with respect to its abstract foundations, whilst featuring
a terminating execution model.

Example 1. Consider the following straightforward CHR program for computing
the transitive hull of a graph represented by edge constraints e/2:

t @ e(X,Y), e(Y,Z) =⇒ e(X,Z)

This most intuitive formulation of a transitive hull is not a suitable implemen-
tation in most existing operational semantics. In fact, for goals containing cyclic

A Complete and Terminating Execution Model for CHR 3

graphs it is non-terminating in all aforementioned existing semantics. In this
work we show that execution in our proposed semantics ω! correctly computes
the transitive hull whilst guaranteeing termination.

The remainder of this paper is structured as follows: We summarize the
existing operational semantics ωt, ωp, and ωe in Sect. 2. Section 3 then presents
our semantics ω!, which we originally proposed in [16]. In Sect. 4, we prove
soundness and completeness of ω! with respect to the operational semantics ωe,
thus founding our semantics in the abstract line of CHR research. In Sect. 5,
we compare ω! to other operational semantics with respect to expressivity and
show how to faithfully encode it into ωp. In Sect. 6, we discuss characteristic
properties of ω!. Related work is investigated in Sect. 6.3, before we conclude in
Sect. 7.

2 Preliminaries

We first introduce the syntax of CHR and the equivalence-based operational
semantics ωe, which offers a foundation for all other semantics, although it lacks
a terminating execution model. We furthermore present its refinements ωt and
ωp.

2.1 The Syntax of CHR

Constraint Handling Rules distinguishes two kinds of constraints: user-defined
constraints (or CHR constraints) and built-in constraints. Reasoning on built-in
constraints is possible through a satisfaction-complete and decidable constraint
theory CT .

CHR is a programming language that offers advanced rule-based multiset
rewriting. Its eponymous rules are of the form

r @ H1\H2 ⇔ G | Bc, Bb

where H1 and H2 are multisets of user-defined constraints, called the kept head
and removed head, respectively. The guard G is a conjunction of built-in con-
straints and the body consists of a conjunction of built-in constraints Bb and a
multiset of user-defined constraints Bc. The rule name r is optional and may be
omitted along with the @ symbol.

In this work, we put special emphasis on the class of rules where H2 = ∅,
called propagation rules. Propagation rules can be written alternatively as

r @ H1 ⇒ G | Bc, Bb.

A variant of a rule (r @ H1\H2 ⇔ G | Bc, Bb) with variables x̄ is a rule of
the form (r @ H1\H2 ⇔ G | Bc, Bb)[x̄/ȳ] for any sequence of pairwise distinct
variables ȳ. For any rule (r @ H1\H2 ⇔ G | Bc, Bb), the local variables l̄r are
defined as l̄r ::= vars(G,Bc, Bb) \ vars(H1,H2). A rule where l̄r = ∅ is called
range-restricted.

A CHR program P is a set of rules. A range-restricted CHR program is a set
of range-restricted rules.

4 Hariolf Betz, Frank Raiser, and Thom Frühwirth

2.2 Equivalence-based Operational Semantics ωe

In this section, we recall the equivalence-based operational semantics ωe [11]. It
is operationally close to the very abstract semantics ωva, but we prefer it for its
concise formulation and the explicit distinction of global variables, CHR-, and
built-in constraints.

Definition 1 (ωe State). A ωe state is a tuple 〈G; B; V〉. The goal G is a
multiset of CHR constraints. The built-in constraint store B is a conjunction of
built-in constraints. V is a set of variables called the global variables. We use Σe

to denote the set of all ωe states.

Definition 2 (Variable Types). For the variables occurring in a ωe state σ =
〈G; B; V〉 we distinguish three different types:

1. a variable v ∈ V is called a global variable
2. a variable v 6∈ V is called a local variable
3. a variable v 6∈ (V ∪ G) is called a strictly local variable

The operational semantics ωe is founded on equivalence classes of states,
based on the following definition of state equivalence.

Definition 3 (ωe State Equivalence). Equivalence between ωe states is the
smallest equivalence relation ≡e over ωe states that satisfies the following con-
ditions:

1. (Equality as Substitution)

〈G;X
.
= t ∧ B; V〉 ≡e 〈G [X/t] ;X

.
= t ∧ B; V〉

2. (Transformation of the Constraint Store) If CT |= ∃s̄.B ↔ ∃s̄′.B′ where s̄, s̄′

are the strictly local variables of B, B′, respectively, then:

〈G; B; V〉 ≡e 〈G; B′; V〉

3. (Omission of Non-Occurring Global Variables) If X is a variable that does
not occur in G or B then:

〈G; B; {X} ∪ V〉 ≡e 〈G; B; V〉

4. (Equivalence of Failed States)

〈G;⊥; V〉 ≡e 〈G′;⊥; V〉

The following theorem gives a necessary, sufficient, and decidable criterion
for equivalence of ωe states. It has been presented and proven in [11].

Theorem 1 (Criterion for ≡e). Let σ = 〈G; B; V〉, σ′ = 〈G′; B′; V〉 be ωe

states with local variables ȳ, ȳ′ that have been renamed apart.

σ ≡e σ′ iff CT |= ∀(B → ∃ȳ′.((G = G
′) ∧ B

′)) ∧ ∀(B′ → ∃ȳ.((G = G
′) ∧ B))

A Complete and Terminating Execution Model for CHR 5

Definition 4 (ωe Transitions). For a CHR program P, the state transition
system (Σe/≡e,e) is defined as follows. The transition is based on a variant
of a rule r in P such that its local variables are disjoint from the variables
occurring in the pre-transition state.

r @ H1 \ H2 ⇔ G | Bc ⊎ Bb

[〈H1 ⊎ H2 ⊎ G;G ∧ B; V〉]
r
e [〈H1 ⊎ Bc ⊎ G;G ∧ Bb ∧ B; V〉]

When the rule r is clear from the context or not important, we may write
e rather than

r
e. By

∗
e, we denote the reflexive-transitive closure of e.

In the following, we freely mix equivalence classes and their representative,
i.e. we often write σ e τ instead of [σ] e [τ].

An inherent problem of ωe is its behavior with respect to propagation rules:
If a state can fire a propagation rule once, it can do so again and again, ad
infinitum. In the literature, this problem is referred to as trivial non-termination
of propagation rules.

2.3 Theoretical Operational Semantics

The theoretical operational semantics ωt [1, 17] uses a so-called token store to
avoid trivial non-termination. A propagation rule can only be applied once to
each combination of constraints matching the head. Hence, the token store keeps
a history of fired propagation rules based on constraint identifiers, as defined
below.

Definition 5 (Identified CHR Constraints). An identified CHR constraint
c#i is a CHR constraint c associated with a unique integer i, the constraint
identifier. We introduce the functions chr(c#i) = c and id(c#i) = i, and extend
them to sequences and sets of identified CHR constraints in the obvious manner.

The definition of a ωt state is more complicated, because identified constraints
are distinguished from unidentified constraints and the token store is added [1].

Definition 6 (ωt State). A ωt state is a tuple of the form 〈G; S; B; T〉V
n where

the goal (store) G is a multiset of constraints, the CHR (constraint) store S

is a set of identified CHR constraints, the built-in (constraint) store B is a
conjunction of built-in constraints. The token store (or propagation history) T

is a set of tuples (r, I), where r is the name of a propagation rule and I is an
ordered sequence of constraint identifiers. V is a set of variables called the global
variables. We use Σt to denote the set of all ωt states.

The corresponding transition system consists of the following three types of
transitions.

Definition 7 (ωt Transitions). For a CHR program P, the state transition
system (Σt,t) is defined as follows.

6 Hariolf Betz, Frank Raiser, and Thom Frühwirth

1. Solve. 〈{c} ⊎ G; S; B; T〉V
n t 〈G; S; B′; T〉V

n

where c is a built-in constraint and CT |= ∀((c ∧ B) ↔ B
′).

2. Introduce. 〈{c} ⊎ G; S; B; T〉V
n t 〈G; {c#n} ∪ S; B; T〉V

n+1

where c is a CHR constraint.

3. Apply. 〈G;H1∪H2∪S; B; T〉V
n t 〈B⊎G;H1∪S; chr(H1) = H ′

1∧chr(H2) =
H ′

2 ∧ G ∧ B; T ∪ {(r, id(H1) + id(H2))}〉
V
n

where r @ H ′
1 \ H ′

2 ⇔ G | B is a fresh variant of a rule in P with fresh
variables x̄ such that CT |= ∃(B) ∧ ∀(B → ∃x̄(chr(H1) = H ′

1 ∧ chr(H2) =
H ′

2 ∧ G)) and (r, id(H1) + id(H2)) 6∈ T.

When the rule r is clear from the context or not important, we may write t

rather than
r
t . By

∗
t , we denote the reflexive-transitive closure of t.

2.4 Operational Semantics with Rule Priorities

The extension of CHR with rule priorities was initially proposed in [14]. It an-
notates rules with priorities and modifies the operational semantics such that
among the applicable rules, we always select one of highest priority for execution.
The operational semantics of this extension is denoted as ωp and the formulation
we use in work was given in [18]. Its state definition coincides with that of ωt.

Definition 8 (ωp State). A ωp state is a ωt state. We use Σp to denote the
set of all ωp states.

Definition 9 (ωp Transitions). For a CHR program P with rule priorities,
the state transition system (Σp,p) is defined as follows.

1. Solve. 〈{c} ⊎ G; S; B; T〉V
n p 〈G; S; B′; T〉V

n

where c is a built-in constraint and CT |= ∀((c ∧ B) ↔ B
′).

2. Introduce. 〈{c} ⊎ G; S; B; T〉V
n p 〈G; {c#n} ∪ S; B; T〉V

n+1

where c is a CHR constraint.

3. Apply. 〈∅;H1∪H2∪S; B; T〉V
n p 〈B;H1∪S;Θ∧B; T∪t〉V

n where P contains
a rule of priority p with fresh variables of the form

p :: r @ H ′
1 \ H ′

2 ⇔ G | B

and a matching substitution Θ such that chr(H1) = Θ(H ′
1), chr(H2) =

Θ(H ′
2), CT |= ∃(B)∧∀(B → ∃̄B(Θ∧G)), Θ(p) is a ground arithmetic expres-

sion and t = (r, id(H1) + id(H2)) 6∈ T. Furthermore, no rule of priority p′

and substitution Θ′ exists with Θ′(p′) < Θ(p) for which the above conditions
hold.

When the rule r is clear from the context or not important, we may write p

rather than
r
p. By

∗
p, we denote the reflexive-transitive closure of p.

A Complete and Terminating Execution Model for CHR 7

3 Operational Semantics with Persistent Constraints ω!

In this section, we present the operational semantics ω! with persistent con-
straints, proposed in [16]. It is based on the following ideas:

1. In ωe, the body of a propagation rule can be generated any number of times,
provided that the corresponding head constraints are present in the store. In
order to give consideration to this theoretical behavior, we introduce those
body constraints as so-called persistent constraints. A persistent constraint
is a finite representation of a large, though unspecified number of identi-
cal constraints. For a proper distinction, constraints that are not persistent
constraints are henceforth called linear constraints.

2. As a secondary consequence, arbitrary generation of rule bodies in ωe affects
other types of CHR rules as well. Consider the following program:

r1 @ a =⇒ b
r2 @ b ⇔ c

If executed with a goal a, this program can generate an arbitrary number
of constraints of the form b. As a consequence of this, it can also generate
arbitrarily many constraints c. To take these indirect consequences of propa-
gation rules into account, we introduce a rule’s body constraints as persistent
whenever its removed head can be matched completely with persistent con-
straints.

3. As a persistent constraint represents an arbitrary number of identical con-
straints, we consider multiple occurrences of a persistent constraint as idem-
potent. Thus, we implicitly apply a set semantics to persistent constraints.

4. We adapt the execution model such that a transition takes place only if the
post-transition state is not equivalent to the pre-transition state. This entails
two beneficial consequences: Firstly, in combination with the set semantics
on persistent constraints, it avoids trivial non-termination of propagation
rules. Secondly, as failed states are equivalent, it enforces termination upon
failure.

We adapt the definition of ω! states with respect to ωe. The goal store G of
ωe states is split into a store L of linear constraints and a store P of persistent
constraints.

Definition 10 (ω! State). A ω! state is a tuple of the form 〈L; P; B; V〉, where
L and P are multisets of CHR constraints called the linear (CHR) store and
persistent (CHR) store, respectively. B is a conjunction of built-in constraints
and V is a set of variables called the global variables. We use Σ! to denote the
set of all ω! states.

Definition 11 is analogous to ωe, though adapted to comply with Defini-
tion 10.

Definition 11 (Variable Types). For the variables occurring in a ω! state σ =
〈L; P; B; V〉 we distinguish three different types:

8 Hariolf Betz, Frank Raiser, and Thom Frühwirth

1. a variable v ∈ V is called a global variable
2. a variable v 6∈ V is called a local variable
3. a variable v 6∈ (V ∪ L ∪ P) is called a strictly local variable

The following definition of state equivalence is adapted to comply with Def-
inition 10 and to handle idempotence of persistent constraints.

Definition 12 (Equivalence of ω! States). Equivalence between ω! states is
the smallest equivalence relation ≡! over ω! states that satisfies the following
conditions:

1. (Equality as Substitution) Let X be a variable, t be a term and
.
= the syn-

tactical equality relation.

〈L; P;X
.
= t ∧ B; V〉 ≡! 〈L [X/t] ; P [X/t] ;X

.
= t ∧ B; V〉

2. (Transformation of the Constraint Store) If CT |= ∃s̄.B ↔ ∃s̄′.B′ where s̄, s̄′

are the strictly local variables of B, B′, respectively, then:

〈L; P; B; V〉 ≡! 〈L; P; B′; V〉

3. (Omission of Non-Occurring Global Variables) If X is a variable that does
not occur in L, P, or B then:

〈L; P; B; {X} ∪ V〉 ≡! 〈L; P; B; V〉

4. (Equivalence of Failed States)

〈L; P;⊥; V〉 ≡! 〈L
′; P′;⊥; V′〉

5. (Contraction)
〈L;P ⊎ P ⊎ P; B; V〉 ≡! 〈L;P ⊎ P; B; V〉

The following definition presents an auxiliary concept that we use to formu-
late a criterion for ω! equivalence.

Definition 13 (⊲⊳). For multisets of constraints G, G′, the relation G ⊲⊳ G
′

holds iff
(∀c ∈ G.∃c′ ∈ G

′.c = c′) ∧ (∀c′ ∈ G
′.∃c ∈ G.c = c′)

The following property follows directly from Definition 13. We quote it as a
reference in upcoming proofs:

Property 1 (Properties of ⊲⊳). For multisets of constraints G, G′, all n ∈ N

G ⊲⊳ G
′ ⇒ ∃N ∈ N.G ⊆ N · G′

Theorem 2 (Criterion for ≡!). For two ω! states σ = 〈L; P; B; V〉, σ′ =
〈L′; P′; B′; V〉 ∈ Σ! with local variables ȳ, ȳ′ that have been renamed apart,

σ ≡! σ′ ⇔ CT |=∀(B → ∃ȳ′.((L = L
′) ∧ (P ⊲⊳ P

′) ∧ B
′))∧

∀(B′ → ∃ȳ.((L = L
′) ∧ (P ⊲⊳ P

′) ∧ B))

Proof.

A Complete and Terminating Execution Model for CHR 9

’⇐’: We consider two ω! states σ = 〈L; P; B; V〉, σ′ = 〈L′; P′; B′; V〉 with local
variables ȳ and ȳ′. We furthermore assume that:

CT |=∀(B → ∃ȳ′.((L = L
′) ∧ (P ⊲⊳ P

′) ∧ B
′))∧

∀(B′ → ∃ȳ.((L = L
′) ∧ (P ⊲⊳ P

′) ∧ B))

If CT |= ¬∃((L = L
′) ∧ (P ⊲⊳ P

′)), we have CT |= B = B
′ = ⊥ such

that Def. 12.4 proves σ ≡! σ′. In the following, we assume that a matching
(L = L

′) ∧ (P ⊲⊳ P
′) exists.

It follows from ∀(B → ∃ȳ′.((L = L
′) ∧ (P ⊲⊳ P

′) ∧ B
′)) by Def. 12:2 that:

σ ≡! 〈L; P; (L = L
′) ∧ (P ⊲⊳ P

′) ∧ B ∧ B
′; V〉

Def. 12:1 gives us:

σ ≡! 〈L
′; P′′; (L = L

′) ∧ (P ⊲⊳ P
′) ∧ B ∧ B

′; V〉

where P
′′ equals P

′ modulo multiplicities. By Def. 12:5 we thus get:

σ ≡! 〈L
′; P′; (L = L

′) ∧ (P ⊲⊳ P
′) ∧ B ∧ B

′; V〉

From ∀(B′ → ∃ȳ.((L = L
′) ∧ (P ⊲⊳ P

′) ∧ B)) follows by Def. 12:2 that:

σ ≡! 〈L
′; P′; B′; V〉 = σ′

’⇒’: To prove the forward direction, we have to show the compliance of the
conditions in Def. 12.1 to Def. 12.5 with our criterion. For Def. 12.1 to Def. 12.4,
compliance is analogous to Thm. 1 as proven in [11]. We consider Def. 12.5:

Let σ = 〈L;P ⊎ P ⊎ P; B; V〉, σ′ = 〈L;P ⊎ P; B; V〉 ∈ Σ! with local variables
ȳ, ȳ′. As, (P ⊎ P ⊎ P) ⊲⊳ (P ⊎ P), the following is a tautology:

|= ∀(B → ∃ȳ′.((L = L) ∧ ((P ⊎ P ⊎ P) ⊲⊳ (P ⊎ P)) ∧ B))∧

∀(B → ∃ȳ.((L = L) ∧ ((P ⊎ P ⊎ P) ⊲⊳ (P ⊎ P)) ∧ B))

⊓⊔

Based on the definition of ≡e, we define the operational semantics ω! below.
Since body constraints may be introduced either as linear or as persistent con-
straints, uniform rule application is replaced by two distinct application modes.
Note that ω! is only defined for range-restricted programs (cf. Sect. 6.2 for de-
tails).

Definition 14 (ω! Transitions). For a range-restricted CHR program P, the
state transition system (Σ!/≡!,!) is defined as follows.
ApplyLinear:

r @ (H l
1 ⊎ Hp

1)\(H l
2 ⊎ Hp

2) ⇔ G | Bc, Bb H l
2 6= ∅ σ 6= τ

σ = [〈H l
1 ⊎ H l

2 ⊎ L;Hp
1 ⊎ Hp

2 ⊎ P;G ∧ B; V〉]

r
! [〈H l

1 ⊎ Bc ⊎ L;Hp
1 ⊎ Hp

2 ⊎ P;G ∧ B ∧ Bb; V〉] = τ

10 Hariolf Betz, Frank Raiser, and Thom Frühwirth

ApplyPersistent:

r @ (H l
1 ⊎ Hp

1)\Hp
2 ⇔ G | Bc, Bb σ 6= τ

σ = [〈H l
1 ⊎ L;Hp

1 ⊎ Hp
2 ⊎ P;G ∧ B; V〉]

r
! [〈H l

1 ⊎ L;Hp
1 ⊎ Hp

2 ⊎ Bc ⊎ P;G ∧ B ∧ Bb; V〉] = τ

When the rule r is clear from the context or not important, we may write !

rather than
r
! . By

∗
! , we denote the reflexive-transitive closure of !.

4 Soundness and Completeness

In this section we show soundness and completeness of ω! with respect to ωe. In
Sect. 4.1 and Sect. 4.2 we introduce auxiliary concepts required for our theorems
given in Sect. 4.3.

4.1 State Inclusion

State inclusion is a partial-order relation on ωe states that differ only in their
goal stores, modulo ≡e.

Definition 15 (State inclusion, ⊑). State inclusion is the smallest partial-
order relation ⊑ ⊆ (Σe × Σe) such that for all states σe, σ

′
e, 〈G; B; V〉 ∈ Σe and

all multisets of user-defined constraints G
′,

1. σe ≡e σ′
e ⇒ σe ⊑ σ′

e

2. 〈G; B; V〉 ⊑ 〈G ⊎ G
′; B; V〉

The following lemmata give a criterion for deciding the state inclusion ⊑ and
define its relationship with ≡e and e.

Lemma 1 (Criterion for State Inclusion). For ωe states σe = 〈G; B; V〉,
σ′

e = 〈G′; B′; V〉 such that their respective local variables ȳ, ȳ′ are disjoint,

σ ⊑ σ′ ⇔ CT |= ∀(B′ → ∃ȳ.((G ⊆ G
′) ∧ B)) ∧ ∀(B → ∃ȳ′.((G ⊆ G

′) ∧ B
′))

Proof.

’⇒’: We can easily show that both criteria given in Def. 15 comply with the
criterion.

Def. 15.1 : By Thm. 1, we have that from σe ≡e σ′
e follows

CT |= ∀(B′ → ∃ȳ.((G = G
′) ∧ B)) ∧ ∀(B → ∃ȳ′.((G = G

′) ∧ B
′))

which in turn implies

CT |= ∀(B′ → ∃ȳ.((G ⊆ G
′) ∧ B)) ∧ ∀(B → ∃ȳ′.((G ⊆ G

′) ∧ B
′))

Def. 15.2 : Let σe = 〈G; B; V〉, σ′
e = 〈G⊎G

′; B; V〉 be states with local variables
ȳ, ȳ′. As G ⊆ G⊎G

′ is trivially true, the criterion is reduced to a tautology:

CT |= ∀(B → ∃ȳ.((G ⊆ G ⊎ G
′) ∧ B)) ∧ ∀(B → ∃ȳ′.((G ⊆ G ⊎ G

′) ∧ B))

A Complete and Terminating Execution Model for CHR 11

’⇐’: Let σe = 〈G; B; V〉, σ′
e = 〈G′; B′; V〉 ∈ Σe s.t. their respective local variables

ȳ, ȳ′ are disjoint and

CT |= ∀(B′ → ∃ȳ.((G ⊆ G
′) ∧ B)) ∧ ∀(B → ∃ȳ′.((G ⊆ G

′) ∧ B
′))

Since CT |= ∀(B′ → ∃ȳ.((G ⊆ G
′) ∧ B)), we apply Def. 3.2 to get

σ′
e ≡e 〈G′; B′ ∧ (G ⊆ G

′) ∧ B); V〉

By Def. 3.1, we get that for some multiset of user-defined constraints G
′′, we

have

σ′
e ≡e 〈G ⊎ G

′′; B′ ∧ (G ⊆ G
′) ∧ B); V〉

As CT |= ∀(B → ∃ȳ′.((G ⊆ G
′) ∧ B

′)), we can apply Def. 3.2 to show

σe ≡e 〈G; B ∧ (G ⊆ G
′) ∧ B

′; V〉

Finally, we apply Def. 15.2 to obtain

σe ≡e 〈G; B ∧ (G ⊆ G
′) ∧ B

′; V〉 ⊑ 〈G ⊎ G
′′; B′ ∧ (G ⊆ G

′) ∧ B); V〉 ≡e σ′
e

⊓⊔

Lemma 2 (State Inclusion and Equivalence). For σe, σ
′
e ∈ Σe,

σe ≡e σ′
e iff σe ⊑ σ′

e and σ′
e ⊑ σe

Proof. As the ≡! relation is symmetric, the ’⇒’ direction follows directly from
Def. 15. As for the ’⇐’ direction, assume that σe = 〈G; B; V〉 and σe = 〈G′; B′; V〉.
From the mutual inclusions σe ⊑ σ′

e and σ′
e ⊑ σe follows by Lemma 1 that

CT |= ∀(B′ → ∃ȳ.((G = G
′) ∧ B)) ∧ ∀(B → ∃ȳ′.((G = G

′) ∧ B
′))

According to Thm. 1, this implies σe = σ′
e. ⊓⊔

Lemma 3 (State Inclusion and Derivation). For states σe, σ
′
e, τe ∈ Σe such

that σe e τe and σe ⊑ σ′
e, there exists some τ ′

e such that σ′
e

r
e τ ′

e and τe ⊑ τ ′
e

Proof. Let r be of the form r @ H1 \H2 ⇔ G | Bc⊎Bb. The derivation σe
r
e τe

implies that σe ≡e 〈H1⊎H2⊎G;G⊎B; V〉 and τe ≡e 〈H2⊎Bc⊎G;G⊎Bb⊎B; V〉
for some G, B, V. As σe ⊑ σ′

e, there exists some G
′ such that σe ≡e 〈H1 ⊎ H2 ⊎

G ⊎ G
′;G ⊎ B; V〉. We choose τ ′

e = 〈H2 ⊎ Bc ⊎ G ⊎ G
′;G ⊎ Bb ⊎ B; V〉. Applying

Def. 15 shows that τe ⊑ τ ′
e and σ′

e e τ ′
e. ⊓⊔

4.2 State Projection

We use the state projection function defined below to relate ω! states and ωe

states in the soundness and completeness theorems.

12 Hariolf Betz, Frank Raiser, and Thom Frühwirth

Definition 16 (State Projection). proj is a function mapping from N × Σ!

to Σe such that proj(N, 〈L; P; B; V〉) = 〈L⊎N · P; B; V〉. We call proj(N,σ) the
N’th projection of σ.

Lemma 4 (Preservation of Equivalence Upon Projection). For states
σ, σ′ ∈ Σ!,

σ ≡! σ′ ⇒ ∀n ∈ N.∃N ∈ N.proj(n, σ) ⊑ proj(N,σ′)

Proof. Let σ = 〈L; P; B; V〉, σ′ = 〈L′; P′; B′; V′〉, it follows that

CT |=∀(B → ∃ȳ′.((L = L
′) ∧ (P ⊲⊳ P

′) ∧ B
′))∧

∀(B′ → ∃ȳ.((L = L
′) ∧ (P ⊲⊳ P

′) ∧ B))

Due to Prop. 1, this implies

CT |= ∀n ∈ N.∃N ∈ N.∀(B → ∃ȳ′.((L = L
′) ∧ (n · P ⊆ N · P′) ∧ B

′))∧

∀(B′ → ∃ȳ.((L = L
′) ∧ (n · P ⊆ N · P′) ∧ B))

Therefore,

CT |= ∀n ∈ N.∃N ∈ N. ∀(B → ∃ȳ′.((L ⊎ n · P ⊆ L
′ ⊎ N · P

′) ∧ B
′))∧

∀(B′ → ∃ȳ.((L ⊎ n · P ⊆ L
′ ⊎ N · P

′) ∧ B))

By Lemma 1, this finally proves

∀n ∈ N.∃N ∈ N.proj(n, σ) ⊑ proj(N,σ′)

⊓⊔

Lemma 5 (Analogy between ≡e and ≡! under Projection). For τ ′
! ∈

Σ!, τe ∈ Σe, n ∈ N,

proj(n, τ ′
!) ≡e τe ⇒ ∃τ! ∈ Σ!.τ

′
! ≡! τ! ∧ proj(n, τ!) = τe

Proof (sketch). For every axiom α in Def. 3, there exists a corresponding axiom
α′ in Def. 12, such that if proj(n, σ!) ≡e proj(n, τ!) by axiom α then σ! ≡! τ! by
axiom α′ for any σ!, τ! ∈ Σ!. As ≡e is the smallest reflexive-transitive relation
satisfying its axioms, this proves our lemma. ⊓⊔

4.3 Soundness and Completeness

The following lemma defines soundness of single-step derivations and directly
leads to the soundness theorem given below.

Lemma 6 (Single-Step Soundness). Let σ!, τ! ∈ Σ! and n ∈ N. If σ!
r
! τ!

then there exists some N ∈ N and some τe ∈ Σe such that proj(N,σ!)
∗
e τe

and proj(n, τ!) ⊑ τe.

Proof. σ!
r
! τ! implies a singular application of either ApplyLinear or Ap-

plyPersistent. We distinguish two cases:

A Complete and Terminating Execution Model for CHR 13

ApplyLinear: We assume the existence of states

σ′
! = 〈H l

1 ⊎ H l
2 ⊎ L;Hp

1 ⊎ Hp
2 ⊎ P;G ∧ B; V〉

τ ′
! = 〈H l

1 ⊎ Bc ⊎ L;Hp
1 ⊎ Hp

2 ⊎ P;G ∧ B ∧ Bb; V〉

and a fresh variant of a rule r @ (H l
1 ⊎ Hp

1)\(H l
2 ⊎ Hp

2) ⇔ G | Bc, Bb such that
σ! ≡! σ′

! and τ! ≡! τ ′
! .

By Lemma 4, we have that τ! ≡! τ ′
! implies the existence of some k ∈ N such

that proj(n, τ!) ⊑ proj(k, τ ′
!). We observe that

proj(k+1, σ′
!) = 〈H l

1⊎H l
2⊎L⊎((k+1)·Hp

1)⊎((k+1)·Hp
2)⊎((k+1)·P);G∧B; V〉

and proj(k, τ ′
!) = 〈H l

1 ⊎ Bc ⊎ L ⊎ (m · Hp
1) ⊎ (k · Hp

2) ⊎ (k · P));G ∧ B ∧ Bb; V〉.

According to the definition of ωe, we have proj(k + 1, σ′
!) e τ ′

e for

τ ′
e = 〈H l

1 ⊎ Bc ⊎ L ⊎ ((k + 1) · Hp
1) ⊎ (k · Hp

2) ⊎ ((k + 1) · P));G ∧ B ∧ Bb; V〉.

We observe that proj(k, τ ′
!) ⊑ τ ′

e.
Lemma 4 furthermore implies that for some N ∈ N, proj(k + 1, σ′

!) ⊑
proj(N,σ!). According to Lemma 3, a τe ∈ Σe exists such that proj(N,σ!) e τe

with τ ′
e ⊑ τe. Transitivity of the ⊑ relation finally proves proj(n, τ!) ⊑ τe.

ApplyPersistent: We assume the existence of states

σ′
! = 〈H l

1 ⊎ L;Hp
1 ⊎ Hp

2 ⊎ P;G ∧ B; V〉
τ ′
! = 〈H l

1 ⊎ L;Hp
1 ⊎ Hp

2 ⊎ Bc ⊎ P;G ∧ B ∧ Bb; V〉

and a fresh variant of a rule r @ (H l
1 ⊎Hp

1)\Hp
2 ⇔ G | Bc, Bb such that σ! ≡! σ′

!

and τ! ≡! τ ′
! .

According to Lemma 4, for some k ∈ N we have proj(n, τ!) ⊑ proj(k, τ ′
!). We

observe that

proj(2k, σ′
!) = 〈H l

1 ⊎ L ⊎ (2k · Hp
1) ⊎ (2k · Hp

2) ⊎ (2k · P);G ∧ B; V〉 and
proj(k, τ ′

!) = 〈H l
1 ⊎ L ⊎ (k · Hp

1) ⊎ (k · Hp
2) ⊎ (k · Bc) ⊎ (k · P));G ∧ B ∧ Bb; V〉.

For every i ∈ N, let τ i
e = 〈H l

1 ⊎ L ⊎ (2k · Hp
1) ⊎ ((2k − i) · Hp

2) ⊎ (i · Bc) ⊎ (2k ·
P);G∧B; V〉. According to the definition of ωe, we have proj(2k, σ′

!) e τ1
e e

. . . e τk
e .

We observe that τk
e = 〈H l

1⊎L⊎(2k ·Hp
1)⊎(k ·Hp

2)⊎(k ·Bc)⊎(2k ·P);G∧B; V〉,
and therefore proj(k, τ ′

!) ⊑ τk
e . By Lemma 4 and Lemma 3, we have that for some

N ∈ N and some τe ∈ Σe, we have proj(2k, σ′
!) ⊑ proj(N,σ!) and proj(N,σ!) e

τe such that τk
e ⊑ τe. Transitivity of ⊑ proves the hypothesis. ⊓⊔

Theorem 3 (Soundness). Let σ! = 〈G; ∅; B; V〉, τ! ∈ Σ! be ω! states. If σ!
∗
!

τ!, then for every N ∈ N there exists a τe such that proj(0, σ!)
∗
e τe and

proj(N, τ!) ⊑ τe.

14 Hariolf Betz, Frank Raiser, and Thom Frühwirth

Proof. Transitive application of Lemma 6 proves that there exists some n ∈ N

such that proj(n, σ!)
∗
e τe and proj(N, τ!) ⊑ τe. We furthermore observe that

the empty persistent store of σ! implies for any n ∈ N, we have proj(n, σ!) =
proj(0, σ!). ⊓⊔

Similar to the soundness case, we first give a lemma stating completeness of
single-step derivations that immediately entails our completeness theorem given
below.

Lemma 7 (Single-Step Completeness). Let σ! ∈ Σ!, σe, τe ∈ Σe such that
σe

r
e τe.

1. If σe ≡e proj(1, σ!), there exists some state τ! ∈ Σ! such that σ!
r
! τ! or

σ! ≡! τ! and τe ⊑ proj(1, τ!).
2. If σe ≡e proj(0, σ!), there exists some state τ! ∈ Σ! such that σ!

r
! τ! or

σ! ≡! τ! and proj(0, τ!) ⊑ τe.
3. If proj(0, σ!) ⊑ σe ⊑ proj(1, σ!), then there exists some state τ! ∈ Σ! such

that σ!
r
! τ! or σ! ≡! τ! and proj(0, τ!) ⊑ τe ⊑ proj(1, τ!).

Proof. By Def. 4, σe
r
e τe implies that r is of the form r @ H1 \H2 ⇔ G | Bc⊎

Bb, such that σe ≡e 〈H1⊎H2⊎G;G∧B; V〉 and τe ≡e 〈H1⊎Bc⊎G;G∧Bb∧B; V〉.

1. By Lemma 5, we have that σ! ≡! σ′
! for some σ′

! ∈ Σ! such that

proj(1, σ′
!) = 〈H1 ⊎ H2 ⊎ G;G ∧ B; V〉.

According to Def. 16, σ′
! is thus of the form

σ′
! = 〈H l

1 ⊎ H l
2 ⊎ L;Hp

1 ⊎ Hp
2 ⊎ P;G ∧ B; V〉

where H l
1 ⊎ Hp

1 = H1 and H l
2 ⊎ Hp

2 = H2 and L ⊎ P = G. If Hp
2 6= ∅, we

choose
τ! = 〈H l

1 ⊎ Bc ⊎ L;Hp
1 ⊎ Hp

2 ⊎ P;G ∧ B ∧ Bb; V〉,

otherwise we choose

τ! = 〈H l
1 ⊎ L;Hp

1 ⊎ Hp
2 ⊎ Bc ⊎ P;G ∧ B ∧ Bb; V〉.

In both cases, we have proj(1, τ!) = 〈H1 ⊎ Hp
2 ⊎ Bc ⊎ G;G ∧ Bb ∧ B; V〉 and

therefore τe ⊑ proj(1, τ!). By Def. 14 either σ′
!

r
! τ! or σ′

! ≡! τ!.
2. By Lemma 5, we have that σ! ≡! σ′

! for some σ′
! ∈ Σ! such that

proj(0, σ′
!) = 〈H1 ⊎ H2 ⊎ G;G ∧ B; V〉.

According to Def. 16, σ′
! is thus of the form

σ′
! = 〈H1 ⊎ H2 ⊎ G; P;G ∧ B; V〉

for some P. If H2 6= ∅, we choose

τ! = 〈H1 ⊎ Bc ⊎ G; P;G ∧ B ∧ Bb; V〉,

A Complete and Terminating Execution Model for CHR 15

otherwise we choose

τ! = 〈H1 ⊎ G;Bc ⊎ P;G ∧ B ∧ Bb; V〉.

In both cases, we have proj(0, τ!) ⊑ τe. By Def. 14 either σ′
!

r
! τ! or σ′

! ≡! τ!.
3. This follows from Lemma 7.1 and Lemma 7.2 in combination with Lemma 3.

⊓⊔

Theorem 4 (Completeness). Let 〈G; B; V〉, 〈G′; B′; V〉 ∈ Σe. If 〈G; B; V〉
∗
e

〈G′; B′; V〉, then there exists some state σ! ∈ Σ! such that 〈G; ∅; B; V〉
∗
! σ! and

proj(0, σ!) ⊑ 〈G′; B′; V〉 ⊑ proj(1, σ!).

Proof. We observe that proj(0, 〈G; ∅; B; V〉) = 〈G; B; V〉 = proj(1, 〈G; ∅; B; V〉)
and therefore proj(0, 〈G; ∅; B; V〉) ⊑ 〈G; B; V〉 ⊑ proj(1, 〈G; ∅; B; V〉). Thus the
theorem is a consequence of Lemma 7.3. ⊓⊔

5 Expressivity

In this section we compare expressivity of the operational semantics ωe, ωt, ωp,
and ω!. As all these are Turing-complete [19], expressivity is compared in the
literature via the concept acceptable encoding. This concept originates from
Shapiro [20] and was first applied to CHR in [21]. It relies on the notion of
answer defined below.

In order to distinguish linear and persistent constraints when considering
goals, we introduce for each CHR constraint symbol c/n, denoting a linear con-
straint, a corresponding fresh symbol !c/n, denoting a persistent constraint. For
a multiset M = {c1(t̄1), . . . , cn(t̄n)} let !M = {!c1(t̄1), . . . , !cn(t̄n)}.

In the literature answers are usually defined as logical formulas, expressing
the declarative reading of a final state. We found it more suitable to define them
as ωe states for two reasons: Firstly, unlike logical formulas, ωe states are aware
of multiplicities of constraints. Secondly, ωe states enable us to exploit ≡e when
comparing answers.

Definition 17 (Answers). Let G ∧ B be a goal with CHR constraints G and
built-in constraints B. Then the set of equivalence classes of ωe states AP(G∧B)
for a program P is called the (set of) answers and is defined as follows:

– for ωe: A
e
P(G ∧ B) = {τ | 〈G;B; vars(G ∧ B)〉

∗
e τ 6e}/≡e

– for ωt: A
t
P(G ∧B) = {〈chr(G); B; vars(G ∧B)〉 | 〈G,B; ∅;⊤; ∅〉

vars(G∧B)
0

∗
t

〈∅; G; B;T 〉
vars(G∧B)
n 6t}/≡e

– for ωp: A
p is defined analogously to At.

– for ω!: A
!
P(G∧B) = {〈L∧ !P; B; vars(G∧B)〉 | G = L⊎!P, 〈L;P ;B; vars(G∧

B)〉
∗
! 〈L; P; B; vars(G ∧ B)〉 6!}/≡e

The following definition is based on Gabbrielli’s definition of acceptable en-
coding [21] for CHR operational semantics.

16 Hariolf Betz, Frank Raiser, and Thom Frühwirth

Definition 18 (Acceptable Encoding).
Let ω1, ω2 be two operational semantics, Pi the set of all ωi programs, and

Gi the set of all ωi goals for i = 1, 2. An acceptable encoding of ω1 into ω2 is a
pair of mappings J K : P1 → P2 and J Kg : G1 → G2 which satisfy the following
conditions:

– P1 and P2 share the same constraint theory CT ;
– for any goal (A ∧ B) ∈ G1, JA ∧ BKg = JAKg ∧ JBKg. We also assume that

the built-ins present in the goal are left unchanged;
– Answers are preserved, that is, for all G ∈ G1 and P ∈ P1, A2

JPK(JGKg) =

JA1
P(G)Kg holds.

Figure 1 orders the different operational semantics by expressivity. As shown
in [21], there exists an acceptable encoding to embed ωt into ωp, but not vice
versa. Thus, ωp is strictly more expressive than ωt, denoted by the corresponding
arrow in Fig. 1. In this work we furthermore show that ωp is strictly more
expressive than ω! and that ωe is strictly less expressive than both ωt and ω!.

ωp

ωt

66

ω!

hh

oo_ _ _ _ _ _ _

ωe

XX FF

Fig. 1. Acceptable encodings between different operational semantics

Concerning the embedding of ωe into ω!, we assume range-restricted programs
only. Concerning the acceptable encodings of ω! into ωt and ωp, we require
that the respective programs do not contain pathological rules, according to the
following definition.

Definition 19 (Pathological Rules). A CHR rule

r @ H1\H2 ⇔ G | Bc, Bb

is called pathological if and only if

∃B.〈H2; B ∧ G; ∅〉 ≡e 〈Bc;Bb; ∅〉

It is called trivially pathological iff B = ⊤. A CHR program P is called patho-
logical if it contains at least one pathological rule.

The range-restriction requirement on ωe programs is due to the fact that
Definition 14 for ω! is only defined on range-restricted programs. The restriction

A Complete and Terminating Execution Model for CHR 17

to non-pathological programs for embeddings of ω! into ωt and ωp ensures Ap-
plyLinear transitions never fail due to irreflexivity, according to the following
Lemma.

Concerning the relationship of ωt and ω!, we found that no acceptable en-
coding of ωt into ω! exists. We did find an acceptable encoding of ω! into ωt.
However, a thus encoded program might exhibit a different termination behavior
from the original ω! program (cf. Example 2), as visualized by the dashed arrow
in Fig. 1. We currently do not know whether an acceptable encoding without
that limitation exists.

The definition of pathological rules is chosen such as to coincide with those
rules that cause redundant rule applications – modulo state equivalence – in ωe.

Lemma 8. Let P be a non-pathological CHR program. Then for all ωe states
σ, τ ∈ Σe where σ e τ , we have σ 6≡e τ .

Proof. We first show a property of Def. 19: Let 〈H2; B ∧ G; ∅〉 ≡e 〈Bc;Bb; ∅〉,
w.l.o.g. let the respective local variables ȳ, ȳ′ be renamed apart. Then by Thm. 1:

CT |= ∀(B ∧ G → ∃ȳ′.((H2 = Bc) ∧ Bb)) and
CT |= ∀(Bb → ∃ȳ.((H2 = Bc) ∧ B ∧ G)

This is logically equivalent to

CT |= ∀(B ∧ G → ∃ȳ′.((H2 = Bc) ∧ Bb ∧ B ∧ G)) and
CT |= ∀(Bb ∧ B ∧ G → ∃ȳ.((H2 = Bc) ∧ B ∧ G))

Therefore, again by Thm. 1, we have that

〈H2;G ∧ B; ∅〉 ≡e 〈Bc;Bb; ∅〉 ≡e 〈Bc;Bb ∧ G ∧ B; ∅〉

Now let r be a rule r @ H1 \ H2 ⇔ G | Bc, Bb such that σ
r
e τ . It follows

that σ ≡e 〈H1 ⊎ H2 ⊎ C;G ∧ B; V〉 and τ ≡e 〈Bc ⊎ H1 ⊎ C;Bb ∧ G ∧ B; V〉.
Assume that σ ≡e τ . As H1 and C occur in both states, the corresponding

states with those multisets removed are also equivalent. Similarly, the same states
with ∅ instead of V for global variables are equivalent. Therefore,

〈H2;G ∧ B; ∅〉 ≡e 〈Bc;Bb ∧ G ∧ B; ∅〉

This implies that there exists a B according to Def. 19, which is a contradiction
to the program being non-pathological. Hence, σ 6≡e τ . ⊓⊔

Lemma 9 (ωt → ωp). There exists an acceptable encoding of ωt into ωp.

Proof (Sketch). All rules have priority 1. ⊓⊔

Lemma 10 (ωp 6→ ωt). There exists no acceptable encoding of ωp into ωt.

Proof. Follows directly from [21]. ⊓⊔

Lemma 11 (ωe → ωt). There exists an acceptable encoding of ωe into ωt.

18 Hariolf Betz, Frank Raiser, and Thom Frühwirth

Proof (Sketch). Replace propagation rules with simplification rules that contain
a copy of the head in their bodies. ⊓⊔

Lemma 12 (ωt 6→ ωe). There exists no acceptable encoding of ωt into ωe.

Proof. For any program P ′ if (G′ ∧ B′) ∈ Am
P′(G), no rule in P ′ is applicable

to 〈G′;B′; var(G)〉. As global variables do not affect rule application, we have
Am

P′(G′∧B′) ∋ (G′∧B′). Consider the ωt program P = (a ⇒ b). Since At
P(a) =

{a ∧ b} and At
P(a ∧ b) = {a ∧ b ∧ b}, an acceptable encoding has to satisfy

Am
JPK(JaKg) = {Ja∧bKg} and Am

JPK(Ja∧bKg) = {Ja∧b∧bKg} = {JaKg∧JbKg∧JbKg} 6=

{JaKg ∧ JbKg} = {Ja ∧ bKg} which contradicts our earlier observation. ⊓⊔

Lemma 13 (ωt 6→ ω!). There exists no acceptable encoding of ωt into ω!.

Proof. For any program P ′ if (L′∧G′∧B′) ∈ A!
P′(G), no rule in P ′ is applicable

to 〈L′;G′;B′; var(G)〉. As global variables do not affect rule application, we also
have A!

P′(L′ ∧G′ ∧B′) ∋ (L′ ∧G′ ∧B′). Consider the ωt program P = (a ⇒ b).
Since At

P(a) = {a ∧ b} and At
P(a ∧ b) = {a ∧ b ∧ b}, an acceptable encoding

has to satisfy A!
JPK(JaKg) = {Ja ∧ bKg} and A!

JPK(Ja ∧ bKg) = {Ja ∧ b ∧ bKg} =

{JaKg ∧ JbKg ∧ JbKg} 6= {JaKg ∧ JbKg} = {Ja ∧ bKg} which contradicts our earlier
observation. ⊓⊔

Lemma 14 (ω! → ωt). There exists an acceptable encoding of ω! into ωt.

Proof. We show how to encode any ω! program P in ωt. For every n-ary con-
straint c/n in P, there exists an (n + 1)-ary constraint c/n + 1 in the encod-
ing. In the following, for a multiset M = {c1(t̄1),. . .,cn(t̄n)} of user-defined
ω!-constraints let

l(M) = {c1(l, t̄1), . . . , cn(l, t̄n)} and p(M) = {c1(p, t̄1), . . . , cn(p, t̄n)}.

The encoded program JPK is constructed as follows:

1. For every rule r @ H1 \H2 ⇔ G | B in P, and all multisets H l
1,H

p
1 ,H l

2,H
p
2

s.t. H l
1 ⊎ Hp

1 = H1 and H l
2 ⊎ Hp

2 = H2 and H l
2 6= ∅, the following rule is in

JPK:
l(H l

1) ⊎ p(Hp
1) ⊎ p(Hp

2) \ l(H l
2) ⇔ G | l(Bc), Bb

2. For every rule r @ H1 \H2 ⇔ G | Bc, Bb in P, and all multisets H l
1,H

p
1 s.t.

H l
1 ⊎ Hp

1 = H1, the following rule is in JPK:

l(H l
1) ⊎ p(Hp

1) ⊎ p(H2) ⇒ G | p(Bc), Bb

3. For every rule {c(p, t̄), c(p, t̄′)} ⊎ H1 \ H2 ⇔ G | B in JPK, add also the
following rule:

{c(p, t̄)} ⊎ H1 \ H2 ⇔ t̄ = t̄′ ∧ G | B

4. For every user-defined constraint declaration cn in P, there is a rule

c(p, t̄) \ c(p, t̄) ⇔ ⊤

A Complete and Terminating Execution Model for CHR 19

The translation of goals is defined as:

JL∧!PKg ::= l(L) ∧ p(P)

Soundness: Let S! be a function mapping from ωt states to Σ! such that for:
σt = 〈l(L) ⊎ p(P) ⊎ B

′; C; B; T〉V

k where chr(C) = l(L′) ⊎ p(P′) for some L
′, P′,

S!(σt) ::= 〈L ⊎ L
′; P ⊎ P

′; B ∧ B
′; V〉

In the following, we will show that for all σt, τt ∈ Σt, σt
∗
t τt implies S!(σt)

∗
!

S!(τt).
It is clear from the definition that both the Introduce and Solve transitions

of ωt are invariant to the S! function. Concerning Apply, we proceed stepwise
w.r.t. the application of the four types of rules present in the encoding JPK.

1. The rules introduced in construction step 1 represent ApplyLinear tran-
sitions in P.

Let r be a variant of a rule l(H l
1)⊎p(Hp

1)⊎p(Hp
2)\ l(H l

2) ⇔ G | l(Bc)⊎Bb in
JPK with fresh variables ȳ. By definition of the encoding, r has a corresponding
rule r′ @ H l

1 ⊎ Hp
1 \ H l

2 ⊎ Hp
2 ⇔ G | Bc ⊎ Bb in P. We assume w.l.o.g. that the

goal store of σt is empty. Hence let σt = 〈∅; l(L) ⊎ p(P); B; T〉V

k and assume that
σt

r
t τt. From Def. 7 follows that CT |= ∀(B → ∃ȳ.(l(H l

1) ⊎ l(H l
2) ⊎ l(L′) =

l(L)∧ p(Hp
1)⊎ p(Hp

2)⊎ p(P′) = P∧G)) for some L
′, P′. Hence we can show that

S!(σt) ≡! 〈H
l
1 ⊎ H l

2 ⊎ L
′;Hp

1 ⊎ Hp
2 ⊎ P

′; (H l
1 ⊎ H l

2 ⊎ L
′ = L) ∧ (Hp

1 ⊎ Hp
2 ⊎ P

′ =

P)∧G∧B; V〉. Using Def. 7 and Def. 14, we can now show that S!(σt)
r′

! S!(τt)
or S!(σt) ≡! S!(τt).

2. The rules introduced in step 2 represent ApplyPersistent transitions.
Analogously to step 1, we show that σt

r
t τt implies S!(σt)

r′

! S!(τt) for some
rule r′ ∈ P or S!(σt) ≡! S!(τt).

3. Step 3 introduces further rules for both ApplyLinear and ApplyPersis-

tent transitions where a single persistent constraint in the store matches with
several head constraints.

For example, the state 〈∅; c(0);⊤; ∅〉 applies to the rule c(X), c(Y) ⇔ d(X,Y)
in ω!, since 〈∅; c(0);⊤; ∅〉 ≡! 〈∅; c(0), c(0);⊤; ∅〉. Step 2 of the embedding intro-
duces the rule c(p,X), c(p, Y) ⇔ d(p,X, Y) and step 3 furthermore introduces
c(p,X) ⇔ X = Y |d(p,X, Y) which matches with the ωt state 〈∅; c(p, 0);⊤; ∅〉V

k .
Note that the strengthening of the guard might result in a redundant rule: For
the rule c(X), c(Y) ⇔ X > Y | d(X,Y), the rule c(p,X) ⇔ ⊥|d(p,X, Y) is
introduced which cannot be fired by definition.

To proof soundness, let σ = 〈L; {c(p, t̄), c(p, t̄′)} ⊎ P; B; V〉 and let σ′ =
〈L; {c(p, t̄)} ⊎ P; B; V〉 such that σ

r
! τ for some τ . If CT |= ∀(B → t̄ = t̄′), we

have σ ≡! σ′ and hence σ′

r
! τ . The soundness of the rules introduced in step 3

is thus reduced to the soundness of those from step 1 and step 2.
4. The rules introduced in step 4 enforce a minimal representation of the

persistent store. As S!(〈G; {c(t̄), c(t̄)} ⊎ P; B; T〉V

k) ≡! S!(〈G; {c(t̄)} ⊎ P; B; T〉V

k),
they are invariant to soundness.

From 1-4 follows that σt
∗
t τt implies S!(σt)

∗
! S!(τt).

20 Hariolf Betz, Frank Raiser, and Thom Frühwirth

Now assume that τt is a fixed point w.r.t. JPK. This implies that for every
possible match (if any) between sequences of constraints H1,H2 in τt and a rule
r in JPK, there is a token (r, id(H1) + id(H2)) in the propagation history Tτ

inhibiting the firing of r. It follows that r is of the form r @ l(H l
1) ⊎ p(Hp) ⇒

G | p(Bc)⊎Bb and that p(Bc) and Bb are already contained in τt from an earlier
firing of r. Hence, for every possible match (if any) between constraints in S!(τt)
and a rule r′ in P, the firing of r′ is inhibited by the irreflexivity condition. Thus,
S!(τt) is a fixed point w.r.t. P.

So finally, if from σt = 〈l(L) ⊎ p(P) ⊎ B; ∅;⊤; ∅〉V
0 we can derive a fixed

point τt = 〈∅; C; B′; T〉V
n where chr(C) = l(L′) ⊎ p(P′), then from the ω! state

〈L; P;B; V〉 we can derive a fixed point 〈L′; P′; B′; V〉. It follows by Def. 17 that
for any goal G ∧ B, we have At

JPK(G ∧ B) ⊆ A!
P(G ∧ B).

Completeness: The Introduce and Solve rules of ωt guarantee that for every
σt ∈ Σt there exists T, k such that

S!(σt) = 〈L; P; B; V〉 ⇒ σt
∗
t 〈∅; C; B; T〉V

k s.t. chr(C) = l(L) ⊎ p(P) (1)

With respect to ApplyLinear, assume σt = 〈∅; C; B; T〉V

k , σ! = 〈L; P; B; V〉,
τ! such that chr(C) = l(L)⊎p(P), and a rule r @ H l

1⊎Hp
1 \H l

2⊎Hp
2 ⇔ G | Bc, Bb

such that σ!
r
! τ!.

From σ!
r
! τ! follows that σ! ≡! σ′

! = 〈H l
1 ⊎H l

2 ⊎L
′;Hp

1 ⊎Hp
2 ⊎P

′;G∧B
′; V〉

and τ! ≡! τ ′
! = 〈H l

1 ⊎ Bc ⊎ L
′;Hp

1 ⊎ Hp
2 ⊎ P

′;G ∧ B
′ ∧ Bb; V〉, where H l

2 6= ∅ and
ȳ, ȳ′ are the local variables of σ!, σ

′
!. We assume w.l.o.g. that ȳ, ȳ′ are disjoint.

Hence, Thm. 2 implies:

CT |= ∀(B → ∃ȳ′.((L = H l
1 ⊎ H l

2 ⊎ L
′) ∧ (P ⊲⊳ Hp

1 ⊎ Hp
2 ⊎ P

′) ∧ B
′ ∧ G))) (2)

CT |= ∀((B′ ∧ G) → ∃ȳ.((L = H l
1 ⊎ H l

2 ⊎ L
′) ∧ (P ⊲⊳ Hp

1 ⊎ Hp
2 ⊎ P

′) ∧ B))) (3)

By step 1 of our encoding, JPK contains a rule

r′ @ l(H l
1) ⊎ p(Hp

1) ⊎ p(Hp
2) \ l(H l

2) ⇔ G | l(Bc), Bb

We aptly decompose L into three components L = H l
1
′
⊎ H l

2
′
⊎ L

′′ such that:

L = H l
1 ⊎ H l

2 ⊎ L
′ ⇒ (H l

1

′
= H l

1) ∧ (H l
2

′
= H l

2) ∧ (L′′ = L
′) (4)

It is not guaranteed that P ⊲⊳ Hp
1 ⊎Hp

2 ⊎ P
′ ⇒ (Hp

1 ⊎Hp
2) ⊆ P. However, we can

decompose P into two components P = Hp′ ⊎ P
′′ such that

P ⊲⊳ Hp
1 ⊎ Hp

2 ⊎ P
′ ⇒ (Hp′ ⊲⊳ Hp

1 ⊎ Hp
2) ∧ (Hp′ ⊆ Hp

1 ⊎ Hp
2) (5)

Step 3 then guarantees that JPK contains a rule

r′′ @ l(H l
1) ⊎ p(Hp) \ l(H l

2) ⇔ G′ ∧ G | l(Bc), Bb

such that
CT |= G′ ↔ Hp ⊲⊳ Hp

1 ⊎ Hp
2 (6)

A Complete and Terminating Execution Model for CHR 21

and
P ⊲⊳ Hp

1 ⊎ Hp
2 ⊎ P

′ ⇒ Hp′ = Hp (7)

Applying (7),(5), and (6) gives us

CT |= (P ⊲⊳ Hp
1 ⊎ Hp

2 ⊎ P
′) ⇒ G′ (8)

Hence, from (2), we get

CT |= ∀(B → ∃ȳ′.((L = H l
1⊎H l

2⊎L
′)∧ (P ⊲⊳ Hp

1 ⊎Hp
2 ⊎P

′)∧G′∧B
′∧G))) (9)

By Def. 7, we can thus derive σt
r′′

t τt for

τt = 〈l(Bc) ⊎ Bb; C
′; B ∧ (B̃ ∧ G′ ∧ B

′ ∧ G; T′〉V

k

for some T
′ and where chr(C′) = l(H l

1
′
⊎ L

′′) ⊎ p(Hp′ ⊎ P
′′) and B̃ = (L =

H l
1 ⊎ H l

2 ⊎ L
′) ∧ (P ⊲⊳ Hp

1 ⊎ Hp
2 ⊎ P

′). Consequently,

S!(τt) = 〈H l
1

′
⊎ L

′′ ⊎ Bc;H
p′ ⊎ P

′′; B ∧ B̃ ∧ G′ ∧ B
′ ∧ G ∧ Bb; V〉

Applying (4) and Def. 12.1 gives us:

S!(τt) ≡ 〈H l
1 ⊎ L

′ ⊎ Bc;H
p′ ⊎ P

′′; B ∧ B̃ ∧ G′ ∧ B
′ ∧ G ∧ Bb; V〉

Since P = Hp′ ⊎ P
′′, we can apply the matching (P ⊲⊳ Hp

1 ⊎ Hp
2 ⊎ P

′) we find in
the guard to get

S!(τt) ≡ 〈H l
1 ⊎ L

′ ⊎ Bc;H
p
1 ⊎ Hp

2 ⊎ P
′; B ∧ B̃ ∧ G′ ∧ B

′ ∧ G ∧ Bb; V〉

As the variables in ȳ, ȳ′ are disjoint, we apply (3), (8), and Def. 12.2 to receive:

S!(τt) ≡ 〈H l
1 ⊎ L

′ ⊎ Bc;H
p
1 ⊎ Hp

2 ⊎ P
′; B′ ∧ G ∧ Bb; V〉 = τ!

We proceed similarly for ApplyPersistent. Hence, for any σt ∈ Σt, τ! ∈ Σ!

such that S!(σt)
r
! τ!, there exists a τt ∈ Σt s.t. σt t τt and S!(τt) ≡! τ!.

Fixed points: Assume that σ! = 〈L; P; B; V〉 is a fixed point in ω!. According to
Def. 14, one of the following applies: (1) There is no rule r @ H l

1⊎Hp
1 \H

l
2⊎Hp

2 ⇔
G | Bc, Bb in P such that σ! ≡! 〈H

l
1 ⊎Hp

1 ⊎L
′;Hp

1 ⊎Hp
2 ⊎P

′;G∧B
′; V〉. (2) Such

a rule exists but its application violates the non-reflexivity condition, i.e. for the
hypothetical follow-up state τ!, we have σ! ≡! τ!.

Now consider a state σt s.t. S!(σt) = σ!. Hence, it is of the form σt =
〈∅; C; B; T〉Vk s.t. chr(C) = l(L) ⊎ p(P). In case (1), no rules in JPK are applica-
ble to σt = 〈∅; l(L) ⊎ p(P); B; T〉Vk , except for those of the form c(t̄) \ c(t̄) ⇔ ⊤.
The program will quiesce in a state σ′

t s.t. S!(σ
′
t) ≡! σ! after finitely many appli-

cations of such rules. In case (2) – assuming a non-pathological CHR program –
all possible applications are of the type ApplyPersistent (cf. Lemma 8) . Con-
sequently, all rules applicable to σt in JPK are of the form r′ @ l(H l

1)⊎ p(Ĥp) ⇒
G | p(Bc) ⊎ Bb or c(t̄) \ c(t̄) ⇔ ⊤.

22 Hariolf Betz, Frank Raiser, and Thom Frühwirth

For each such rule r′ @ l(H l
1)⊎p(Ĥp) ⇒ G | p(Bc)⊎Bb, we can tell by σ! ≡! τ!

that p(Bc) is contained in p(P) and Bb is contained in B. Hence, we can apply r′

to σt, followed by finitely many applications of rules of the form c(t̄) \ c(t̄) ⇔ ⊤
to finitely derive a state τt = 〈∅; C; B′; T′〉Vk′ such that S!(σt) ≡! S!(τt) and r′

is not applicable to τt. We repeat this for every applicable rule r′. After finitely
many such sequences of derivation steps, no such rule remains applicable. Thus,
we can finally derive a fixed point τt

′ such that S!(σt) ≡! S!(τt
′).

It follows by Def. 17 that for any goal G∧B, we have A!
P(G∧B) ⊆ At

JPK(G∧

B).
⊓⊔

Example 2 (Termination Correspondence). The termination behavior of ω! pro-
grams encoded in ωt, via the encoding used to prove Lemma 14, changes. Con-
sider a program P consisting only of the rule a =⇒ a that is clearly terminating
in ω!. It’s corresponding encoded program JPK is given below.

r1 @ a(l) =⇒ a(p)
r2 @ a(p) =⇒ a(p)
r3 @ a(p)\a(p) ⇔ ⊤

It is an acceptable encoding according to Definition 18, and hence, answers
are preserved. Nevertheless, there exists the following infinite computation.

σ = 〈a(l); ∅;⊤; ∅〉∅0
t 〈∅; a(l)#0;⊤; ∅〉∅1

r1

t 〈a(p); a(l)#0;⊤; {(r1, 0)}〉∅1
t 〈∅; a(l)#0, a(p)#1;⊤; {(r1, 0)}〉∅2

r2

t 〈a(p); a(l)#0, a(p)#1;⊤; {(r1, 0), (r2, 1)}〉∅2
t 〈∅; a(l)#0, a(p)#1, a(p)#2;⊤; {(r1, 0), (r2, 1)}〉∅3

r2

t 〈a(p); a(l)#0, a(p)#1, a(p)#2;⊤; {(r1, 0), (r2, 1), (r2, 2)}〉∅3
t . . .

The reason for this difference is found in rules r2 and r3: they enforce set se-
mantics on the constraints, supposedly corresponding to irreflexivity in ω!. How-
ever, the non-determinism of ωt seems to hinder proper enforcing of irreflexivity
via rules.

Lemma 15 (ωp 6→ ω!). There exists no acceptable encoding of ωp into ω!.

Proof. Follows from [21]. Note that [21] considers only data sufficient answers,
however, as there exists no acceptable encoding of the program given in their
proof, the negative result carries over to the generic case of answers. ⊓⊔

Lemma 16 (ω! → ωp). There exists an acceptable encoding of ω! into ωp.

Proof. We show how to encode any ω! program P in ωp. For every n-ary con-
straint c/n in P, there exists a constraint c/(n + 1) in JPK. In the follow-
ing, for a multiset of user-defined ω!-constraints M = {c1(t̄1), . . . , cn(t̄n)} let

A Complete and Terminating Execution Model for CHR 23

l(M) = {c1(l, t̄1), . . . , cn(l, t̄n)}, p(M) = {c1(p, t̄1), . . . , cn(p, t̄n)}, and c(M) =
{c1(c, t̄1), . . . , cn(c, t̄n)}. The encoded program JPK is constructed as follows:

Apply rules 1-3 from the proof of Lemma 14, but in rule 2 replace p(Bc) with
c(Bc). Assign to each of these rules the constant priority 3. Additionally, add the
following rules to JPK for each constraint c/n where t̄ is a sequence of n different
variables:

1 :: c(p, t̄)\c(c, t̄) ⇔ ⊤
2 :: c(c, t̄) ⇔ c(p, t̄)

The translation of goals is defined as JL∧!PKg ::= l(L) ∧ p(P).
Soundness: Let S! : Σp → Σ!, σp = 〈l(L) ⊎ p(P) ⊎ c(Pc) ⊎ B

′; C; B; T〉V

k 7→ 〈L ⊎
L
′; P⊎P

′⊎Pc⊎P
′
c; B∧B

′; V〉 where chr(C) = l(L′)⊎p(P′)⊎c(P′
c). In the following,

we will show that for all σp, τp ∈ Σp, σp
∗
p τp implies S!(σp)

∗
! S!(τp).

The proof is analogous to Lemma 14 for the rules of priority 3. As c(t̄) ⊲⊳
c(t̄) ⊎ c(t̄) rules of priority 1 and 2 are invariant to S!.

Now assume τp is a fixed point w.r.t. JPK. Analogously to Lemma 14, S!(τp)
is a fixed point w.r.t. P. The only difference being c(Bc) in the body instead of
p(Bc), but rules of priority 1 and 2 would then be applicable to convert c(Bc) into
p(Bc) modulo set semantics. Therefore, it follows that Ap

JPK(JGKg) ⊆ JA!
P(G)Kg.

Completeness: Analogously to Lemma 14 we have that for any σp ∈ Σp, τ! ∈
Σ! such that S!(σp)

r
! τ!, there exists a τp ∈ Σp such that σp

∗
p τp and

S!(τp) ≡! τ!. The only change to the proof is that after applying a rule of the
encoded program we also apply all possible Introduce and Solve transitions,
as well as all rule applications with priorities 1 and 2 (all these operations are
invariant to S!). Hence, the resulting state τp contains only identified constraints
whose first argument is either l or p. All constraints with argument c are either
replaced by the corresponding one with argument p by the rule of priority 2, or
they are removed, because a corresponding constraint already exists.

Now assume σ! = 〈L; P; B; V〉 is a fixed point of P, then there exists σp ∈ Σp

with S!(σp) = σ!. There are two possible cases:

1. σ! is not equivalent to a state applicable to any rule r in P
2. all rule applications would violate irreflexivity

In case 1, σp clearly is a fixed point as well (otherwise the above soundness result
violates the assumption).

Therefore, consider case 2. We assume non-pathological programs, so that,
according to Lemma 8, ApplyLinear never violates irreflexivity. Hence, there
exists a rule in JPK:

3 :: r′ @ l(H l) ⊎ p(Hp) =⇒ G | c(Bc), Bb

In the following, for a set M of constraints let #M denote the corresponding
set of identified constraints. Assume σp is no fixed point, then σp = 〈∅;#l(Ĥ l)∪

#p(Ĥp) ∪ C; B; T〉V

k and CT |= ∀(B → (A ∧ G)) with σp
r′

p τp = 〈c(Bc) ⊎

Bb;#l(Ĥ l) ∪ #p(Ĥp) ∪ C; B ∧ A; T′〉V

k , where A ::= chr(#l(Ĥ l)) = l(H l) ∧

chr(#p(Ĥp)) = p(Hp). Applying Introduce and Solve we get τp
∗
p 〈∅;#l(Ĥ l)

∪ #p(Ĥp) ∪ C ∪ #c(Bc); B ∧ Bb ∧ A; T′〉V
m.

24 Hariolf Betz, Frank Raiser, and Thom Frühwirth

The rule r′ corresponds to a rule r in P and σ! is applicable to r, except
for irreflexivity (this follows from soundness). The irreflexivity and Theorem 2
imply CT |= B → ∃x̄.(Hp ⊲⊳ Hp ⊎Bc)∧B∧Bb. Therefore, CT |= (B∧Bb ∧A) →
(Ĥp ⊲⊳ Ĥp⊎Bc). It follows that CT |= (B∧Bb∧A) → ∀c(c, t̄) ∈ c(Bc).∃c(p, t̄′) ∈
p(Ĥp).t̄ = t̄′.

Therefore, for each c(c, t̄) ∈ c(Bc) we can apply the corresponding rule of
priority 1 :: c(p, t̂)\c(c, t̂) ⇔ ⊤, as CT |= ∀(B ∧ Bb ∧ A → ∃x̄.(chr(c(p, t̄′)) =
c(p, t̂)∧ chr(c(c, t̄)) = c(c, t̂))). Therefore, each constraint in c(Bc) is removed by
rules of priority 1 and we get σp

∗
p 〈∅;#l(Ĥ l) ∪ #p(Ĥp) ∪ C; B; T′〉V

m = τ ′
p,

such that the above rule application is prohibited by T
′.

Hence, we can w.l.o.g. choose τ ′
p as σp above and repeat the argument. There-

fore, we get a state in which the token store prohibits firing any more propagation
rules. As no other rules are applicable either, this state is a fixed point corre-
sponding to σ! as well. ⊓⊔

Lemma 17 (ω! 6→ ωe). There exists no acceptable encoding of ω! into ωe.

Proof. Consider the ω! program P = (a ⇒ b). Since A!
P = {a∧!b}, an accept-

able encoding has to satisfy Am
JPK(JaKg) = {Ja∧!bKg} = {JaKg ∧ JbKg}. Therefore,

〈JaKg;⊤; ∅〉
+
e 〈JaKg ∧ J!bKg;B; ∅〉 where the result state has to be a non-failed

final state, which is a contradiction to the monotonicity of ωe. ⊓⊔

Lemma 18 (ωe → ω!). There exists an acceptable encoding of ωe into ω!.

Proof (Sketch). Replace propagation rules with simplification rules that contain
a copy of the head in their bodies. ⊓⊔

6 Discussion

In this section, we discuss our insights on the behavior of ω! in comparison with
existing operational semantics.

6.1 Termination Behavior

Our proposed operational semantics ω! exhibits a termination behavior different
from ωt, ωp, and ωe. Compared to ωe, we have solved the problem of trivial non-
termination of propagation rules, whereas any program terminating in ωe also
terminates in ω!. With respect to ωt and ωp, we found programs that terminate
in ω! but not in ωt and ωp, and vice versa.

Example 3. Consider the following program for computing the transitive hull of
a graph.

r @ e(X,Y), e(Y,Z) =⇒ e(X,Z)

Due to the presence of propagation rules, this program is non-terminating
under ωe. Under ωt and ωp, termination depends on the initial goal: It is shown in

A Complete and Terminating Execution Model for CHR 25

[22] that this program terminates for acyclic graphs. However, goals containing
cyclic graphs, such as 〈(e(1, 2), e(2, 1)); ∅;⊤; ∅〉∅0, entail non-terminating behavior:

〈e(1, 2), e(2, 1); ∅;⊤; ∅〉V
0

∗
t 〈∅; e(1, 2)#0, e(2, 1)#1;⊤; ∅〉V

2

r
t 〈e(1, 1); e(1, 2)#0, e(2, 1)#1;⊤; {(t, 0, 1)}〉V

2

t 〈∅; e(1, 2)#0, e(2, 1)#1, e(1, 1)#2;⊤; {(t, 0, 1)}〉V
3

r
t 〈e(1, 2); e(1, 2)#0, e(2, 1)#1, e(1, 1)#2;⊤; {(t, 0, 1), (t, 2, 0)}〉V

3

t . . .

Under ω!, the previous goal terminates after computing the transitive hull.

〈{e(1, 2), e(2, 1)}; ∅;⊤; ∅〉

t
! 〈{e(1, 2), e(2, 1)}; {e(1, 1)};⊤; ∅〉

∗
! 〈{e(1, 2), e(2, 1)}; {e(1, 1), e(1, 2), e(2, 1), e(2, 2)};⊤; ∅〉 6!

This is in fact true for all possible inputs:

Proposition 1. Under ω!, the transitive hull program terminates for every pos-
sible input.

Proof. The only rule r propagates constraints of type e/2, which are necessarily
persistent. The propagated constraints contain only the arguments X,Z, received
as arguments in the rule head. No new arguments are introduced. Any given
initial state contains a finite number of arguments. From these, only finitely
many different e constraints can be built. As rule application is irreflexive, the
computation therefore has to stop after a finite number of transition steps. ⊓⊔

Nevertheless, program termination in ω! is not strictly stronger than that in
ωt or ωp, as the following counterexample shows:

Example 4. Consider the following exemplary CHR program.

r1 @ a =⇒ b
r2 @ c(X), b ⇔ c(X+1)

The program terminates in ωt (and ωp): As there can only be a finite number
of a-constraints in the initial goal, rule r1 will create but a finite number of
b-constraints. These will be consumed by rule r2 in finite time, followed by
quiescence:

〈(a, c(X)); ∅;⊤; ∅〉
{X}
0

∗
t 〈∅; {a#0, b#1, c(X)#2};⊤; {(r1, 0)}〉

{X}
3

r2
t 〈c(X+1); {a#0};⊤; {(r1, 0)}〉

{X}
3

t 〈∅; {a#0, c(X+1)#3;⊤; {(r1, 0)}〉
{X}
4 6t

26 Hariolf Betz, Frank Raiser, and Thom Frühwirth

In contrast, the same program exhibits non-terminating behavior in ω!, as
the following infinite derivation shows:

〈{a, c(X)}; ∅;⊤; {X}〉

r1
! 〈{a, c(X)}; {b};⊤; {X}〉

r2
! 〈{a, c(X+1)}; {b};⊤; {X}〉

r2
! 〈{a, c(X+2)}; {b};⊤; {X}〉

r2
! . . .

6.2 Limitations of the current approach

As specified in Sect. 3, our approach requires range-restricted programs. In the
following we explain why a naive extension to the full segment of CHR by drop-
ping the restriction to range-restricted programs would violate both soundness
and completeness.

We recall that a persistent constraint is a finite representation of an ar-
bitrary number of identical constraints, such as a propagation rule from the
range-restricted segment may generate under ωe once it is applicable. Under the
same conditions, however, a propagation rule with local variables would generate
an arbitrary number of nearly but not quite identical constraints, as the local
variables would be renamed apart between any two of those nearly identical
constraints. Consider the following example:

r1 @ a =⇒ b(X)
r2 @ b(X), b(X) ⇔ c

When executed with the initial goal a, this program causes the following infinite
derivation under ωe.

〈a;⊤; ∅〉

r1

e 〈a, b(X ′);⊤; ∅〉

r1

e 〈a, b(X ′), b(X ′′);⊤; ∅〉
r1

e . . .

The variables X ′,X ′′, . . . are distinct from each other and from the variable X
which occurs in the rule body. Thus, it is impossible to derive the constraint c
from goal a under ωe.

Under the current approach, we cannot finitely represent an arbitrary number
of such nearly identical constraints. A naive extension of ω! to the full segment
of CHR as specified above would discard the distinction between the two types
of generated constraints altogether.

With respect to our example, the following derivation would be possible:

〈{a}; ∅;⊤; ∅〉

r1

! 〈{a}; {b(X ′)};⊤; ∅〉 ≡! 〈{a}; {b(X
′), b(X ′)};⊤; ∅〉

r2

! 〈{a}; {b(X ′), b(X ′), c};⊤; ∅〉

We assume that a non-naive extension to the full segment of CHR preserving
soundness and completeness is possible, though it is beyond the scope of this
paper.

A Complete and Terminating Execution Model for CHR 27

6.3 Related Work

In [23] the set-based semantics ωset has been introduced. Its development was,
among other considerations, driven by the intention to eliminate the propa-
gation history. Besides addressing the problem of trivial non-termination in a
novel manner, it reduces non-determinism similarly to the refined operational
semantics ωr [13]. In ωset, a propagation rule cannot be fired infinitely often for
a possible matching. However, multiple firings are possible, the exact number
depending on the built-in store.

The authors of [23] justify their set-based approach by the following state-
ment:

“When working with a multi-set-based constraint store, it appears
that propagation history is essential to provide a reasonable semantics.”

Our approach can be understood as a compromise since we avoid a propagation
history by imposing an implicit set semantics on persistent constraints. The dis-
tinction between linear and persistent constraints, however, allows us to restrict
the set behavior to those constraints, whereas the multiset semantics is preserved
for linear constraints.

Linear logical algorithms [15] (LLA) is a programming language based on
bottom-up reasoning in linear logic, inspired by logical algorithms [24]. The first
implementation of logical algorithms was realized in CHR with rule priorities
[25].

Our proposed operational semantics ω! is related to LLA [15], but displays
significant differences: Firstly, the notion of a constraint theory with built-in
constraints is absent in LLA. Secondly, LLA rules are restricted such that per-
sistent propositions cannot be derived multiple times, whereas ω! makes no such
restriction and solves this problem via the irreflexive transition system. Thirdly,
LLA requires a strict separation of propositions into linear and persistent ones.
In ω! a CHR constraint can occur in the linear store, in the persistent store, or
both.

On the other hand, the separation of propositions in LLA allows the corre-
sponding rules to freely mix linear and persistent propositions in bodies. This is
not directly possible with our approach, as CHR constraints in a body are either
added as linear or persistent constraints.

7 Conclusion and Future Work

The main motivation of this work is the observation that CHR research spans
a spectrum ranging from an analytical to a pragmatic end: on the analytical
side of the spectrum, emphasis is put on the formal aspects and properties of
the language while on the pragmatic side, it is put on implementation and ef-
ficiency. A variety of operational semantics has been brought forth in the past,
each aligning with one side of the spectrum. In this work we propose the novel
operational semantics ω!, heeding both analytical and pragmatic aspects. Unlike

28 Hariolf Betz, Frank Raiser, and Thom Frühwirth

other operational semantics with a strong analytical foundation, ω! thus provides
a terminating execution model and may be implemented as is.

Our operational semantics ω! is based on the concept of persistent constraints.
These are finite representations of an arbitrarily large number of syntactically
equivalent constraints. They enable us to subsume trivially non-terminating com-
putations in a single derivation step.

We proved soundness and completeness of our operational semantics ω! with
respect to ωe. The latter stands exemplarily for analytical formalizations of the
operational semantics, thus providing a strong analytical foundation for ω!. This
facilitates program analysis and formal proofs of program properties.

Applying Shapiro’s concept of acceptable encodings [20], we compared the
expressivity of ω! with respect to the operational semantics ωe, ωt, and ωp. One
significant result is a faithful encoding of ω! into ωp, which may effectively serve
as an implementation of ω!.

In its current formulation, ω! is only applicable to range-restricted CHR
programs – a limitation we plan to address in the future. Furthermore, similar
to ωt being the basis for numerous extensions to CHR [17], we plan to investigate
the effect of building these extensions on ω!.

In a concurrent environment, some kind of conflict resolution is required for
the case that multiple rules try to remove the same constraint. For example,
in [10] a transaction-based approach is used, leading to a rollback, if the first
evaluated rule application removed the constraint. The formulation of the Ap-
plyPersistent transition reveals that for persistent constraints, no such conflicts
have to be taken into account. A closer investigation of potential benefits of the
persistent constraint approach in concurrent settings remains to be conducted.

References

1. Frühwirth, T.: Constraint Handling Rules. Cambridge University Press (2009)

2. Frühwirth, T., Hanschke, P.: Terminological reasoning with Constraint Handling
Rules. In: Principles and Practice of Constraint Programming, MIT Press (1995)

3. Frühwirth, T.: Theory and practice of constraint handling rules. Journal of Logic
Programming, Special Issue on Constraint Logic Programming 37(1-3) (October
1998) 95–138

4. Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer-
Verlag (2003)

5. Abdennadher, S., Frühwirth, T.: Operational equivalence of CHR programs and
constraints. In Jaffar, J., ed.: Principles and Practice of Constraint Programming,
CP 1999. Volume 1713 of Lecture Notes in Computer Science., Springer-Verlag
(1999) 43–57

6. Abdennadher, S., Frühwirth, T., Meuss, H.: Confluence and semantics of constraint
simplification rules. Constraints 4(2) (1999) 133–165

7. Betz, H., Frühwirth, T.: A linear-logic semantics for constraint handling rules.
In van Beek, P., ed.: Principles and Practice of Constraint Programming, 11th
International Conference, CP 2005. Volume 3709 of Lecture Notes in Computer
Science., Sitges, Spain, Springer-Verlag (October 2005) 137–151

A Complete and Terminating Execution Model for CHR 29

8. Frühwirth, T.: Parallelizing union-find in constraint handling rules using con-
fluence analysis. In: Principles and Practice of Constraint Programming, 11th
International Conference, CP 2005, Sitges, Spain (October 2005)

9. Sulzmann, M., Lam, E.S.L.: A concurrent constraint handling rules semantics and
its implementation with software transactional memory. In: Declarative Aspects
of Multicore Programming, ACM SIGPLAN Workshop. (2007)

10. Sulzmann, M., Lam, E.S.L.: Parallel execution of multi-set constraint rewrite
rules. In Antoy, S., Albert, E., eds.: Proceedings of the 10th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP), Valencia, Spain, ACM (July 2008) 20–31

11. Raiser, F., Betz, H., Frühwirth, T.: Equivalence of CHR states revisited. In
Raiser, F., Sneyers, J., eds.: 6th International Workshop on Constraint Handling
Rules (CHR). (2009) 34–48

12. Abdennadher, S.: Operational semantics and confluence of constraint propagation
rules. In: Principles and Practice of Constraint Programming. (1997) 252–266

13. Duck, G.J., Stuckey, P.J., Garćıa de la Banda, M., Holzbaur, C.: The refined
operational semantics of Constraint Handling Rules. In Demoen, B., Lifschitz,
V., eds.: Logic Programming, 20th International Conference, ICLP 2004. Volume
3132 of Lecture Notes in Computer Science., Saint-Malo, France, Springer-Verlag
(September 2004) 90–104

14. De Koninck, L., Schrijvers, T., Demoen, B.: User-definable rule priorities for CHR.
In: PPDP ’07: Proceedings of the 9th ACM SIGPLAN international conference on
Principles and practice of declarative programming, New York, NY, USA, ACM
(2007) 25–36

15. Simmons, R.J., Pfenning, F.: Linear logical algorithms. In Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I., eds.:
Automata, Languages and Programming, 35th International Colloquium, ICALP
2008. Volume 5126 of Lecture Notes in Computer Science., Springer-Verlag (2008)
336–347

16. Betz, H., Raiser, F., Frühwirth, T.: Persistent constraint in constraint handling
rules. In: Proceedings of 23rd Workshop on (Constraint) Logic Programming, WLP
2009. (2009) to appear.

17. Sneyers, J., Van Weert, P., Schrijvers, T., De Koninck, L.: As time goes by: Con-
straint Handling Rules – A survey of CHR research between 1998 and 2007. Ac-
cepted by Journal of Theory and Practice of Logic Programming (2010)

18. De Koninck, L., Stuckey, P.J., Duck, G.J.: Optimizing compilation of CHR with
rule priorities. In Garrigue, J., Hermenegildo, M.V., eds.: Functional and Logic
Programming, 9th International Symposium (FLOPS). Volume 4989 of Lecture
Notes in Computer Science., Springer-Verlag (2008) 32–47

19. Sneyers, J., Schrijvers, T., Demoen, B.: The computational power and complexity
of constraint handling rules. ACM Trans. Program. Lang. Syst. 31(2) (2009) 1–42

20. Shapiro, E.: The family of concurrent logic programming languages. ACM Comput.
Surv. 21(3) (1989) 413–510

21. Gabbrielli, M., Mauro, J., Meo, M.C.: On the expressive power of priorities in CHR.
In Porto, A., López-Fraguas, F.J., eds.: Proceedings of the 11th International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming,
Coimbra, Portugal, ACM (2009) 267–276

22. Pilozzi, P., Schreye, D.D.: Proving termination by invariance relations. In
Hill, P.M., Warren, D.S., eds.: 25th International Conference Logic Programming,
ICLP. Volume 5649 of Lecture Notes in Computer Science., Pasadena, CA, USA,
Springer-Verlag (July 2009) 499–503

30 Hariolf Betz, Frank Raiser, and Thom Frühwirth

23. Sarna-Starosta, B., Ramakrishnan, C.: Compiling Constraint Handling Rules for
efficient tabled evaluation. In Hanus, M., ed.: 9th Intl. Symp. Practical Aspects
of Declarative Languages, PADL. Volume 4354 of Lecture Notes in Computer Sci-
ence., Nice, France, Springer-Verlag (jan 2007) 170–184

24. Ganzinger, H., McAllester, D.A.: Logical algorithms. In Stuckey, P.J., ed.: Logic
Programming, 18th International Conference, ICLP 2002. Volume 2401 of Lecture
Notes in Computer Science., Springer-Verlag (2002) 209–223

25. De Koninck, L.: Logical Algorithms meets CHR: A meta-complexity result for
Constraint Handling Rules with rule priorities. Theory and Practice of Logic
Programming 9(2) (March 2009) 165–212

Liste der bisher erschienenen Ulmer Informatik-Berichte
Einige davon sind per FTP von ftp.informatik.uni-ulm.de erhältlich

Die mit * markierten Berichte sind vergriffen

List of technical reports published by the University of Ulm
Some of them are available by FTP from ftp.informatik.uni-ulm.de

Reports marked with * are out of print

91-01 Ker-I Ko, P. Orponen, U. Schöning, O. Watanabe

Instance Complexity

91-02* K. Gladitz, H. Fassbender, H. Vogler
Compiler-Based Implementation of Syntax-Directed Functional Programming

91-03* Alfons Geser
Relative Termination

91-04* J. Köbler, U. Schöning, J. Toran
Graph Isomorphism is low for PP

91-05 Johannes Köbler, Thomas Thierauf
Complexity Restricted Advice Functions

91-06* Uwe Schöning
Recent Highlights in Structural Complexity Theory

91-07* F. Green, J. Köbler, J. Toran
The Power of Middle Bit

91-08* V.Arvind, Y. Han, L. Hamachandra, J. Köbler, A. Lozano, M. Mundhenk, A. Ogiwara,
U. Schöning, R. Silvestri, T. Thierauf
Reductions for Sets of Low Information Content

92-01* Vikraman Arvind, Johannes Köbler, Martin Mundhenk
On Bounded Truth-Table and Conjunctive Reductions to Sparse and Tally Sets

92-02* Thomas Noll, Heiko Vogler
Top-down Parsing with Simulataneous Evaluation of Noncircular Attribute Grammars

92-03 Fakultät für Informatik
17. Workshop über Komplexitätstheorie, effiziente Algorithmen und Datenstrukturen

92-04* V. Arvind, J. Köbler, M. Mundhenk
Lowness and the Complexity of Sparse and Tally Descriptions

92-05* Johannes Köbler
Locating P/poly Optimally in the Extended Low Hierarchy

92-06* Armin Kühnemann, Heiko Vogler
Synthesized and inherited functions -a new computational model for syntax-directed
semantics

92-07* Heinz Fassbender, Heiko Vogler
A Universal Unification Algorithm Based on Unification-Driven Leftmost Outermost
Narrowing

92-08* Uwe Schöning
On Random Reductions from Sparse Sets to Tally Sets

92-09* Hermann von Hasseln, Laura Martignon
Consistency in Stochastic Network

92-10 Michael Schmitt
A Slightly Improved Upper Bound on the Size of Weights Sufficient to Represent Any
Linearly Separable Boolean Function

92-11 Johannes Köbler, Seinosuke Toda
On the Power of Generalized MOD-Classes

92-12 V. Arvind, J. Köbler, M. Mundhenk
Reliable Reductions, High Sets and Low Sets

92-13 Alfons Geser
On a monotonic semantic path ordering

92-14* Joost Engelfriet, Heiko Vogler
The Translation Power of Top-Down Tree-To-Graph Transducers

93-01 Alfred Lupper, Konrad Froitzheim
AppleTalk Link Access Protocol basierend auf dem Abstract Personal
Communications Manager

93-02 M.H. Scholl, C. Laasch, C. Rich, H.-J. Schek, M. Tresch
The COCOON Object Model

93-03 Thomas Thierauf, Seinosuke Toda, Osamu Watanabe
On Sets Bounded Truth-Table Reducible to P-selective Sets

93-04 Jin-Yi Cai, Frederic Green, Thomas Thierauf
On the Correlation of Symmetric Functions

93-05 K.Kuhn, M.Reichert, M. Nathe, T. Beuter, C. Heinlein, P. Dadam
A Conceptual Approach to an Open Hospital Information System

93-06 Klaus Gaßner
Rechnerunterstützung für die konzeptuelle Modellierung

93-07 Ullrich Keßler, Peter Dadam
Towards Customizable, Flexible Storage Structures for Complex Objects

94-01 Michael Schmitt
On the Complexity of Consistency Problems for Neurons with Binary Weights

94-02 Armin Kühnemann, Heiko Vogler
A Pumping Lemma for Output Languages of Attributed Tree Transducers

94-03 Harry Buhrman, Jim Kadin, Thomas Thierauf
On Functions Computable with Nonadaptive Queries to NP

94-04 Heinz Faßbender, Heiko Vogler, Andrea Wedel
Implementation of a Deterministic Partial E-Unification Algorithm for Macro Tree
Transducers

94-05 V. Arvind, J. Köbler, R. Schuler
On Helping and Interactive Proof Systems

94-06 Christian Kalus, Peter Dadam
Incorporating record subtyping into a relational data model

94-07 Markus Tresch, Marc H. Scholl
A Classification of Multi-Database Languages

94-08 Friedrich von Henke, Harald Rueß
Arbeitstreffen Typtheorie: Zusammenfassung der Beiträge

94-09 F.W. von Henke, A. Dold, H. Rueß, D. Schwier, M. Strecker
Construction and Deduction Methods for the Formal Development of Software

94-10 Axel Dold
Formalisierung schematischer Algorithmen

94-11 Johannes Köbler, Osamu Watanabe
New Collapse Consequences of NP Having Small Circuits

94-12 Rainer Schuler
On Average Polynomial Time

94-13 Rainer Schuler, Osamu Watanabe
Towards Average-Case Complexity Analysis of NP Optimization Problems

94-14 Wolfram Schulte, Ton Vullinghs
Linking Reactive Software to the X-Window System

94-15 Alfred Lupper
Namensverwaltung und Adressierung in Distributed Shared Memory-Systemen

94-16 Robert Regn
Verteilte Unix-Betriebssysteme

94-17 Helmuth Partsch
Again on Recognition and Parsing of Context-Free Grammars:
Two Exercises in Transformational Programming

94-18 Helmuth Partsch
Transformational Development of Data-Parallel Algorithms: an Example

95-01 Oleg Verbitsky
On the Largest Common Subgraph Problem

95-02 Uwe Schöning
Complexity of Presburger Arithmetic with Fixed Quantifier Dimension

95-03 Harry Buhrman,Thomas Thierauf
The Complexity of Generating and Checking Proofs of Membership

95-04 Rainer Schuler, Tomoyuki Yamakami
Structural Average Case Complexity

95-05 Klaus Achatz, Wolfram Schulte
Architecture Indepentent Massive Parallelization of Divide-And-Conquer Algorithms

95-06 Christoph Karg, Rainer Schuler
Structure in Average Case Complexity

95-07 P. Dadam, K. Kuhn, M. Reichert, T. Beuter, M. Nathe
ADEPT: Ein integrierender Ansatz zur Entwicklung flexibler, zuverlässiger
kooperierender Assistenzsysteme in klinischen Anwendungsumgebungen

95-08 Jürgen Kehrer, Peter Schulthess
Aufbereitung von gescannten Röntgenbildern zur filmlosen Diagnostik

95-09 Hans-Jörg Burtschick, Wolfgang Lindner
On Sets Turing Reducible to P-Selective Sets

95-10 Boris Hartmann
Berücksichtigung lokaler Randbedingung bei globaler Zieloptimierung mit neuronalen
Netzen am Beispiel Truck Backer-Upper

95-12 Klaus Achatz, Wolfram Schulte
Massive Parallelization of Divide-and-Conquer Algorithms over Powerlists

95-13 Andrea Mößle, Heiko Vogler
Efficient Call-by-value Evaluation Strategy of Primitive Recursive Program Schemes

95-14 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
A Generic Specification for Verifying Peephole Optimizations

96-01 Ercüment Canver, Jan-Tecker Gayen, Adam Moik
Formale Entwicklung der Steuerungssoftware für eine elektrisch ortsbediente Weiche
mit VSE

96-02 Bernhard Nebel
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of
Using the ORD-Horn Class

96-03 Ton Vullinghs, Wolfram Schulte, Thilo Schwinn
An Introduction to TkGofer

96-04 Thomas Beuter, Peter Dadam
Anwendungsspezifische Anforderungen an Workflow-Mangement-Systeme am
Beispiel der Domäne Concurrent-Engineering

96-05 Gerhard Schellhorn, Wolfgang Ahrendt
Verification of a Prolog Compiler - First Steps with KIV

96-06 Manindra Agrawal, Thomas Thierauf
Satisfiability Problems

96-07 Vikraman Arvind, Jacobo Torán
A nonadaptive NC Checker for Permutation Group Intersection

96-08 David Cyrluk, Oliver Möller, Harald Rueß
An Efficient Decision Procedure for a Theory of Fix-Sized Bitvectors with
Composition and Extraction

96-09 Bernd Biechele, Dietmar Ernst, Frank Houdek, Joachim Schmid, Wolfram Schulte
Erfahrungen bei der Modellierung eingebetteter Systeme mit verschiedenen SA/RT–
Ansätzen

96-10 Falk Bartels, Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Formalizing Fixed-Point Theory in PVS

96-11 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Mechanized Semantics of Simple Imperative Programming Constructs

96-12 Axel Dold, Friedrich W. von Henke, Holger Pfeifer, Harald Rueß
Generic Compilation Schemes for Simple Programming Constructs

96-13 Klaus Achatz, Helmuth Partsch
From Descriptive Specifications to Operational ones: A Powerful Transformation
Rule, its Applications and Variants

97-01 Jochen Messner
Pattern Matching in Trace Monoids

97-02 Wolfgang Lindner, Rainer Schuler
A Small Span Theorem within P

97-03 Thomas Bauer, Peter Dadam
A Distributed Execution Environment for Large-Scale Workflow Management
Systems with Subnets and Server Migration

97-04 Christian Heinlein, Peter Dadam
Interaction Expressions - A Powerful Formalism for Describing Inter-Workflow
Dependencies

97-05 Vikraman Arvind, Johannes Köbler
On Pseudorandomness and Resource-Bounded Measure

97-06 Gerhard Partsch
Punkt-zu-Punkt- und Mehrpunkt-basierende LAN-Integrationsstrategien für den
digitalen Mobilfunkstandard DECT

97-07 Manfred Reichert, Peter Dadam
ADEPTflex - Supporting Dynamic Changes of Workflows Without Loosing Control

97-08 Hans Braxmeier, Dietmar Ernst, Andrea Mößle, Heiko Vogler
The Project NoName - A functional programming language with its development
environment

97-09 Christian Heinlein
Grundlagen von Interaktionsausdrücken

97-10 Christian Heinlein
Graphische Repräsentation von Interaktionsausdrücken

97-11 Christian Heinlein
Sprachtheoretische Semantik von Interaktionsausdrücken

97-12 Gerhard Schellhorn, Wolfgang Reif
Proving Properties of Finite Enumerations: A Problem Set for Automated Theorem
Provers

97-13 Dietmar Ernst, Frank Houdek, Wolfram Schulte, Thilo Schwinn
Experimenteller Vergleich statischer und dynamischer Softwareprüfung für
eingebettete Systeme

97-14 Wolfgang Reif, Gerhard Schellhorn
Theorem Proving in Large Theories

97-15 Thomas Wennekers
Asymptotik rekurrenter neuronaler Netze mit zufälligen Kopplungen

97-16 Peter Dadam, Klaus Kuhn, Manfred Reichert
Clinical Workflows - The Killer Application for Process-oriented Information
Systems?

97-17 Mohammad Ali Livani, Jörg Kaiser
EDF Consensus on CAN Bus Access in Dynamic Real-Time Applications

97-18 Johannes Köbler,Rainer Schuler
Using Efficient Average-Case Algorithms to Collapse Worst-Case Complexity
Classes

98-01 Daniela Damm, Lutz Claes, Friedrich W. von Henke, Alexander Seitz, Adelinde
Uhrmacher, Steffen Wolf
Ein fallbasiertes System für die Interpretation von Literatur zur Knochenheilung

98-02 Thomas Bauer, Peter Dadam
Architekturen für skalierbare Workflow-Management-Systeme - Klassifikation und
Analyse

98-03 Marko Luther, Martin Strecker
A guided tour through Typelab

98-04 Heiko Neumann, Luiz Pessoa
Visual Filling-in and Surface Property Reconstruction

98-05 Ercüment Canver
Formal Verification of a Coordinated Atomic Action Based Design

98-06 Andreas Küchler
On the Correspondence between Neural Folding Architectures and Tree Automata

98-07 Heiko Neumann, Thorsten Hansen, Luiz Pessoa
Interaction of ON and OFF Pathways for Visual Contrast Measurement

98-08 Thomas Wennekers
Synfire Graphs: From Spike Patterns to Automata of Spiking Neurons

98-09 Thomas Bauer, Peter Dadam
Variable Migration von Workflows in ADEPT

98-10 Heiko Neumann, Wolfgang Sepp
Recurrent V1 – V2 Interaction in Early Visual Boundary Processing

98-11 Frank Houdek, Dietmar Ernst, Thilo Schwinn
Prüfen von C–Code und Statmate/Matlab–Spezifikationen: Ein Experiment

98-12 Gerhard Schellhorn

Proving Properties of Directed Graphs: A Problem Set for Automated Theorem
Provers

98-13 Gerhard Schellhorn, Wolfgang Reif
Theorems from Compiler Verification: A Problem Set for Automated Theorem
Provers

98-14 Mohammad Ali Livani
SHARE: A Transparent Mechanism for Reliable Broadcast Delivery in CAN

98-15 Mohammad Ali Livani, Jörg Kaiser
Predictable Atomic Multicast in the Controller Area Network (CAN)

99-01 Susanne Boll, Wolfgang Klas, Utz Westermann
A Comparison of Multimedia Document Models Concerning Advanced Requirements

99-02 Thomas Bauer, Peter Dadam
Verteilungsmodelle für Workflow-Management-Systeme - Klassifikation und
Simulation

99-03 Uwe Schöning
On the Complexity of Constraint Satisfaction

99-04 Ercument Canver
Model-Checking zur Analyse von Message Sequence Charts über Statecharts

99-05 Johannes Köbler, Wolfgang Lindner, Rainer Schuler
Derandomizing RP if Boolean Circuits are not Learnable

99-06 Utz Westermann, Wolfgang Klas
Architecture of a DataBlade Module for the Integrated Management of Multimedia
Assets

99-07 Peter Dadam, Manfred Reichert
Enterprise-wide and Cross-enterprise Workflow Management: Concepts, Systems,
Applications. Paderborn, Germany, October 6, 1999, GI–Workshop Proceedings,
Informatik ’99

99-08 Vikraman Arvind, Johannes Köbler
Graph Isomorphism is Low for ZPPNP and other Lowness results

99-09 Thomas Bauer, Peter Dadam
Efficient Distributed Workflow Management Based on Variable Server Assignments

2000-02 Thomas Bauer, Peter Dadam
Variable Serverzuordnungen und komplexe Bearbeiterzuordnungen im Workflow-
Management-System ADEPT

2000-03 Gregory Baratoff, Christian Toepfer, Heiko Neumann
Combined space-variant maps for optical flow based navigation

2000-04 Wolfgang Gehring
Ein Rahmenwerk zur Einführung von Leistungspunktsystemen

2000-05 Susanne Boll, Christian Heinlein, Wolfgang Klas, Jochen Wandel
Intelligent Prefetching and Buffering for Interactive Streaming of MPEG Videos

2000-06 Wolfgang Reif, Gerhard Schellhorn, Andreas Thums
Fehlersuche in Formalen Spezifikationen

2000-07 Gerhard Schellhorn, Wolfgang Reif (eds.)
FM-Tools 2000: The 4th Workshop on Tools for System Design and Verification

2000-08 Thomas Bauer, Manfred Reichert, Peter Dadam
Effiziente Durchführung von Prozessmigrationen in verteilten Workflow-
Management-Systemen

2000-09 Thomas Bauer, Peter Dadam
Vermeidung von Überlastsituationen durch Replikation von Workflow-Servern in
ADEPT

2000-10 Thomas Bauer, Manfred Reichert, Peter Dadam
Adaptives und verteiltes Workflow-Management

2000-11 Christian Heinlein
Workflow and Process Synchronization with Interaction Expressions and Graphs

2001-01 Hubert Hug, Rainer Schuler
DNA-based parallel computation of simple arithmetic

2001-02 Friedhelm Schwenker, Hans A. Kestler, Günther Palm
3-D Visual Object Classification with Hierarchical Radial Basis Function Networks

2001-03 Hans A. Kestler, Friedhelm Schwenker, Günther Palm
RBF network classification of ECGs as a potential marker for sudden cardiac death

2001-04 Christian Dietrich, Friedhelm Schwenker, Klaus Riede, Günther Palm
Classification of Bioacoustic Time Series Utilizing Pulse Detection, Time and
Frequency Features and Data Fusion

2002-01 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Effiziente Verträglichkeitsprüfung und automatische Migration von Workflow-
Instanzen bei der Evolution von Workflow-Schemata

2002-02 Walter Guttmann
Deriving an Applicative Heapsort Algorithm

2002-03 Axel Dold, Friedrich W. von Henke, Vincent Vialard, Wolfgang Goerigk
A Mechanically Verified Compiling Specification for a Realistic Compiler

2003-01 Manfred Reichert, Stefanie Rinderle, Peter Dadam
A Formal Framework for Workflow Type and Instance Changes Under Correctness
Checks

2003-02 Stefanie Rinderle, Manfred Reichert, Peter Dadam
Supporting Workflow Schema Evolution By Efficient Compliance Checks

2003-03 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values

2003-04 Stefanie Rinderle, Manfred Reichert, Peter Dadam
On Dealing With Semantically Conflicting Business Process Changes.

2003-05 Christian Heinlein

Dynamic Class Methods in Java

2003-06 Christian Heinlein
Vertical, Horizontal, and Behavioural Extensibility of Software Systems

2003-07 Christian Heinlein
Safely Extending Procedure Types to Allow Nested Procedures as Values
(Corrected Version)

2003-08 Changling Liu, Jörg Kaiser
Survey of Mobile Ad Hoc Network Routing Protocols)

2004-01 Thom Frühwirth, Marc Meister (eds.)
First Workshop on Constraint Handling Rules

2004-02 Christian Heinlein
Concept and Implementation of C+++, an Extension of C++ to Support User-Defined
Operator Symbols and Control Structures

2004-03 Susanne Biundo, Thom Frühwirth, Günther Palm(eds.)
Poster Proceedings of the 27th Annual German Conference on Artificial Intelligence

2005-01 Armin Wolf, Thom Frühwirth, Marc Meister (eds.)
19th Workshop on (Constraint) Logic Programming

2005-02 Wolfgang Lindner (Hg.), Universität Ulm , Christopher Wolf (Hg.) KU Leuven
2. Krypto-Tag – Workshop über Kryptographie, Universität Ulm

2005-03 Walter Guttmann, Markus Maucher
Constrained Ordering

2006-01 Stefan Sarstedt
Model-Driven Development with ACTIVECHARTS, Tutorial

2006-02 Alexander Raschke, Ramin Tavakoli Kolagari
Ein experimenteller Vergleich zwischen einer plan-getriebenen und einer
leichtgewichtigen Entwicklungsmethode zur Spezifikation von eingebetteten
Systemen

2006-03 Jens Kohlmeyer, Alexander Raschke, Ramin Tavakoli Kolagari
Eine qualitative Untersuchung zur Produktlinien-Integration über
Organisationsgrenzen hinweg

2006-04 Thorsten Liebig
Reasoning with OWL - System Support and Insights –

2008-01 H.A. Kestler, J. Messner, A. Müller, R. Schuler
On the complexity of intersecting multiple circles for graphical display

2008-02 Manfred Reichert, Peter Dadam, Martin Jurisch, Ulrich Kreher, Kevin Göser,
 Markus Lauer

 Architectural Design of Flexible Process Management Technology

2008-03 Frank Raiser
 Semi-Automatic Generation of CHR Solvers from Global Constraint Automata

2008-04 Ramin Tavakoli Kolagari, Alexander Raschke, Matthias Schneiderhan, Ian Alexander
Entscheidungsdokumentation bei der Entwicklung innovativer Systeme für
produktlinien-basierte Entwicklungsprozesse

2008-05 Markus Kalb, Claudia Dittrich, Peter Dadam

 Support of Relationships Among Moving Objects on Networks

2008-06 Matthias Frank, Frank Kargl, Burkhard Stiller (Hg.)
 WMAN 2008 – KuVS Fachgespräch über Mobile Ad-hoc Netzwerke

2008-07 M. Maucher, U. Schöning, H.A. Kestler
An empirical assessment of local and population based search methods with different
degrees of pseudorandomness

2008-08 Henning Wunderlich
Covers have structure

2008-09 Karl-Heinz Niggl, Henning Wunderlich
Implicit characterization of FPTIME and NC revisited

2008-10 Henning Wunderlich
On span-Pсс and related classes in structural communication complexity

2008-11 M. Maucher, U. Schöning, H.A. Kestler
On the different notions of pseudorandomness

2008-12 Henning Wunderlich
On Toda’s Theorem in structural communication complexity

2008-13 Manfred Reichert, Peter Dadam
Realizing Adaptive Process-aware Information Systems with ADEPT2

2009-01 Peter Dadam, Manfred Reichert
The ADEPT Project: A Decade of Research and Development for Robust and Fexible
Process Support
Challenges and Achievements

2009-02 Peter Dadam, Manfred Reichert, Stefanie Rinderle-Ma, Kevin Göser, Ulrich Kreher,
Martin Jurisch
Von ADEPT zur AristaFlow® BPM Suite – Eine Vision wird Realität “Correctness by
Construction” und flexible, robuste Ausführung von Unternehmensprozessen

2009-03 Alena Hallerbach, Thomas Bauer, Manfred Reichert
Correct Configuration of Process Variants in Provop

2009-04 Martin Bader

On Reversal and Transposition Medians

2009-05 Barbara Weber, Andreas Lanz, Manfred Reichert
Time Patterns for Process-aware Information Systems: A Pattern-based Analysis

2009-06 Stefanie Rinderle-Ma, Manfred Reichert
Adjustment Strategies for Non-Compliant Process Instances

2009-07 H.A. Kestler, B. Lausen, H. Binder H.-P. Klenk. F. Leisch, M. Schmid

Statistical Computing 2009 – Abstracts der 41. Arbeitstagung

2009-08 Ulrich Kreher, Manfred Reichert, Stefanie Rinderle-Ma, Peter Dadam
Effiziente Repräsentation von Vorlagen- und Instanzdaten in Prozess-Management-
Systemen

2009-09 Dammertz, Holger, Alexander Keller, Hendrik P.A. Lensch
Progressive Point-Light-Based Global Illumination

2009-10 Dao Zhou, Christoph Müssel, Ludwig Lausser, Martin Hopfensitz, Michael Kühl,
Hans A. Kestler
Boolean networks for modeling and analysis of gene regulation

2009-11 J. Hanika, H.P.A. Lensch, A. Keller
Two-Level Ray Tracing with Recordering for Highly Complex Scenes

2009-12 Stephan Buchwald, Thomas Bauer, Manfred Reichert
Durchgängige Modellierung von Geschäftsprozessen durch Einführung eines
Abbildungsmodells: Ansätze, Konzepte, Notationen

2010-01 Hariolf Betz, Frank Raiser, Thom Frühwirth
A Complete and Terminating Execution Model for Constraint Handling Rules

Ulmer InformatikBerichte

ISSN 09395091

Herausgeber:

Universität Ulm

Fakultät für Ingenieurwissenschaften und Informatik

89069 Ulm

