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Abstract. We motivate and develop a linear logic declarative seman-
tics for CHR∨, an extension of the CHR programming language that
integrates concurrent committed choice with backtrack search and a
predefined underlying constraint handler. We show that our semantics
maps each of these aspects of the language to a distinct aspect of
linear logic. We show how we can use this semantics to reason about
derivations in CHR∨ and we present strong theorems concerning its
soundness and completeness.

1 Introduction

A declarative semantics is a highly desirable property for a program-
ming language. It allows to prove various program properties – foremost
correctness –, guarantees platform independence and eliminates various
sources of error. Furthermore, declarative programs tend to be shorter
and clearer as they contain – in the ideal case – only information about
the modeled problem and none about control.
Constraint Handling Rules With Disjunction (CHR∨)[2] is an extension
of Constraint Handling Rules (CHR)[11–14]. CHR∨ is a multi-paradigm
logical programming language that seamlessly integrates a predefined
underlying constraint solver with the forward reasoning – as inherited
from pure CHR – and backtrack search functionality, which allows for
a seamless enbedding of Prolog into CHR∨. As Abdennadher suggested
[3], it is therefore as much interesting as a language to reason about
declarative paradigms as it is in its own right as a programming language.
The following simple example program expresses in the first line that a
bird might either be an albatross or a penguin. In the second line, an
integrity constraint is given, stating that a penguin cannot fly. Obviously,
for an input bird ∧ flies, the result must be albatross ∧ flies.

bird ⇔ albatross ∨ penguin.

penguin, flies ⇔ false.

Owing to its predecessors in logic and constraint logic programming,
both CHR and CHR∨ feature a declarative semantics in classical logic.
However, we have shown in previous work [6] that the classical declar-
ative semantics of CHR reflects the functionality of the program poorly



for certain classes of programs, namely programs featuring destructive
update and/or purposeful non-confluence.
In this paper, we extend this linear logic semantics to CHR∨. Our first
example program would then map to the following logical formula.

! (bird ( albatross⊕ penguin) ⊗ ! (penguin⊗ flies ( 0)

This interpretation is indeed faithful to the operational semantics of
CHR∨ as it logically implies the following formula:

bird ⊗ flies ( albatross ⊗ flies

A conjunction of bird and flies can be mapped to a conjunction of
albatross and flies.
The declarative semantics that we propose preserves the clear distinc-
tion between don’t-care and don’t-know nondeterminism in CHR∨ by
mapping it to the dualism of internal and external choice in linear logic.
While forward reasoning formalisms have seen semantics in linear logic
before – such as the π-calculus [19] and the CC/LCC class of program-
ming languages [10] –, none of those formalisms features a dichotomy
between don’t-care and don’t-know nondeterminism. Therefore, our ap-
proach is unique in mapping this dichotomy into the framework of linear
logic.
This paper is structured as follows: The following section will provide
introductions to to the intuitionistic segment of linear logic as well as to
the CHR∨ programming language. In Sect. 3, we recapitulate at first our
linear logic semantics for the segment of pure CHR. Then we develop and
define the extension of our semantics to CHR∨. In Sect. 4 we present two
theorems concerning the soundness and completeness of our semantics
w.r.t. the abstract operational semantics of CHR∨. In Sect. 5 we will give
an example for the application of our semantics. In Sect. 6 we compare
our approach to related works and discuss our conclusions.

2 Preliminaries

In this section we will provide a short introduction to the concepts of
both intuitionistic linear logic and the CHR∨ programming language as
far as relevant to this paper.

2.1 Intuitionistic Linear Logic

Linear logic, introduced by Girard in 1987 [15], features a fine distinc-
tion between internal and external choice and a faithful embedding of
classical logic into linear logic. In this paper, we will limit our focus to a
commonly used segment of linear logic, called intuitionistic linear logic
(ILL). The syntax of intuitionistic linear logic is as follows:

L ::= p(t̄) | L ( L | L ⊗ L | L&L | L⊕ L | !L | ∃x.L | ∀x.L | > | 1 | 0



The tokens of (intuitionistic) linear logic are generally considered to rep-
resent resources rather than propositions. This terminology reflects the
fact that these tokens may be consumed during the process of reasoning
in linear logic, as well as its awareness of multiplicities. Concretely, the
atomic formula (A) is not equivalent to the formula (A ⊗ A), pronounced
“A times A” (or “both A and A” in Wadler’s terminology [20]). Rather,
the former represents one instance, the latter two instances of a certain
resource A.
The ⊗ (“times”) conjunction (multiplicative conjunction) is neverthe-
less close to the intuitive notion that we have of classical conjunction: For
any two resources A and B, the conjunction A ⊗ B denotes the resource
that is available iff both A and B are available.
Linear implication ( (“lollipop”) is set apart from classical implication
by the fact that the preconditions of a linear implication are consumed
during the process of reasoning. A formula of the form A ( B (Wadler:
“consume A yielding B”), expresses the fact that we can substitute one
instance of a resource A (that we dispose of) for one instance of a resource
B. Note that the formula (A ( B) is a resource itself, and as such is
also used up when applied.
The ! (“bang”) modality marks stable facts or unlimited resources. Ar-
guably, the most important property of a banged resource is that it is not
consumed in the process of reasoning. Thus, the formula A ⊗ !(A ( B)
implies e.g. B ⊗ !(A ( B). Furthermore, multiple instances of banged
resources are idempotent and we can apply weakening to them.
The constant 1 represents the empty resource and it is consequently the
neutral element with respect to the “ ⊗ ” connective.
In our context, we will use the turnstile symbol ` as an abbreviation for
`ILL, which denotes deducability w.r.t. the sequent calculus of intuition-
istic linear logic as defined in [15].

Example 1. We model the fact that one cup of coffee is two euros as
!(E ⊗ E ( C). A “bottomless cup” is an offer where an unlimited num-
ber of refills is included. If we assume that the exact number of refills
is completely arbitrary and it also includes the possibility of not getting
coffee at all, we can model it as !(E ⊗ E ( !C). Finally, we can model
the fact that sugar is free as !(1 ( S).
Together, the latter two formulae imply e.g. that it is possible to get two
cups of coffee with sugar for two euros:

!(E ⊗ E ( !C), !(1 ( S) ` (E ⊗ E ( C ⊗ C ⊗ S ⊗ S)

Another important aspect of linear logic is its distinction between inter-
nal and external choice, i.e. between decisions that can be made during
the process of reasoning and decisions of undetermined result (e.g. those
enforced by the environment).
In classical logic, this distinction is associated with the duality of classical
conjunction and disjunction. Linear logic offers two dedicated connectives
that explicitly express modes of choice:
The & (“with”) conjunction (additive conjunction) expresses internal
choice. E.g. the formula A&B (Wadler: “either A or B”) does imply A
or B, both conclusions are correct. However, it does not imply A ⊗ B.



The ⊕ disjunction expresses external choice, i.e. a formula of the form
A ⊕ B in itself neither implies A alone or B alone. In this respect, it is
analogous to classical disjunction.
The constant > (“top”) is the resource that all other resources can be
mapped to, i.e. for every A, (A ( >) is a tautology. This property makes
> the neutral element with respect to the & conjunction:
The constant 0 is reasonably close to falsity in classical logic: It represents
failure and it is the resource which yields every other resource. It is the
neutral element with respect to ⊕.

Example 2. On any given day, it could be either sunny or raining. As we
have no influence on the weather, we model this as an external choice:
(S ⊕ R). On a rainy day, our local café has only seats on the inside:
!(R ( I). On a sunny day, we have the (internal) choice, to sit either
on the inside or on the outside: !(S ( I&O). This implies that on any
given day, it is at least possible to sit on the inside of the café:

!(R ( I), !(S ( I&O) ` (S ⊕R) ( I

We can extend intuitionistic linear logic into a first-order system with
the quantifiers ∃ and ∀. The resulting first-order system allows for a
faithful embedding of intuitionistic logic. This is widely considered one
of the most important features of linear logic. Figure 1 presents Girard’s
Translation[15] of intuitionistic logic into intuitionistic linear logic.

p(t̄)G ::= p(t̄)
(A ∧B)G ::= AG&BG

(A→ B)G ::= (!AG) ( BG

(A ∨B)G ::= (!AG)⊕ (!BG)
(>)G ::= >
(⊥)G ::= 0

(¬A)G ::= !AG ( 0
(∀x.A)G ::= ∀x.(AG)
(∃x.A)G ::= ∃x.!(AG)

Fig. 1. Translation from intuitionistic logic into linear logic

The operator �G represents translation from intuitionistic into linear
logic. p(t̄) stands for an atomic proposition. Girard has proven in [15] that
an intuitionistic sequent (Γ `LJ α) is provable iff

�
!Γ G ` αG

�
is provable

in linear logic (where `LJ stands for deducibility w.r.t. Gentzen’s system
LJ for intuitionistic logic).

2.2 Constraint Handling Rules With Disjunction

Constraint Handling Rules (CHR)[11–14] is a concurrent programming
language developed in the 1990s by Frühwirth and originally intended



as a portable language extension for the implementation of constraint
solvers, which has also come into use as a stand-alone general purpose
concurrent programming language. In 1999, Abdennadher proposed CHR
with Disjunction (CHR∨)[2], which extends CHR with the possibility
to include disjunctions in the rule bodies. This allows for backtracking
search and reasoning techniques like abduction in CHR programs. In the
following, we will introduce CHR∨ as a self-contained language.

The Syntax of CHR∨ We distinguish two disjoint sets of atomic con-
straints, which we call built-in constraints and CHR constraints. While
the behavior of CHR constraints is determined by a CHR∨ program,
we assume that reasoning over the built-in constraints is performed by
a predefined (classic) constraint handler. The set of built-in constraints
contains at least the constraints true, false and

.
= for syntactic equality.

A built-in constraint is either an atomic formula of intuitionistic logic
or a disjunction thereof. A CHR constraint is a non-empty multiset of
atomic formulae. This distinction in the treatment of CHR and built-in
constraints emphasizes that a set semantics applies to built-in constraints
whereas a multiset semantics applies to CHR constraints.
A goal is a multiset, the elements of which are either built-in constraints
or atomic CHR constraints or disjunctions of goals.
Programs in CHR∨ consist of two sorts of guarded rules. Simplification
rules express the conditional substitution of a CHR constraint with a
certain goal. propagation rules express the addition of a goal under cer-
tain conditions without removing anything. The syntax of simplification
and propagation rules is (E ⇔ C|G) and (E ⇒ C|G), respectively. The
rule head E is a CHR constraint, the guard C is a built-in constraint and
the body G is a goal. If the guard equals true, it can be omitted.
The syntax of CHR∨ is given in Fig. 2.

Built-in constraint: C,D ::= {>} | {⊥} | c (t̄) | C ∧D
CHR constraint: E,F ::= {e (t̄)} | E ∪ F
Goal: G,H ::= {C} | E | G ∪H | {G ∨H}
Simplification rule: R ::= (E ⇔ C | G)
Propagation rule: R ::= (E ⇒ C | G)
CHR program: P ::= R1, . . . , Rn n ≥ 0

Fig. 2. The syntax of CHR∨

CHR states A CHR state is of the form 〈G; C〉, where G is a goal and
C is a built-in constraint. G is called goal store and C is called constraint
store. Of the two, only the goal store can be arbitrarily manipulated by a
CHR program. The constraint store is handled by a predefined constraint



handler according to a constraint theory CT. Information can only be
added to the constraint store but not removed.
In a pure CHR program, there is exactly one CHR state at each moment
of its execution. In CHR∨, this concept is extended to a disjunction of
CHR states. A configuration is a disjunction of CHR states of the form
S1 ∨ S2 ∨ · · · ∨ Sn, where S1, S2, . . . Sn are CHR states. Each CHR state
within a configuration represents an independent branch of a search tree.
On execution, a CHR∨ program is given a single state of the form 〈G;>〉,
i.e. with an empty constraint store. A state of this form is called an initial
state.
Our notation for CHR states is summarized in Fig. 3. Note that to sim-
plify notation, we allow a disjunction to be empty (ε). Such an empty
disjunction is semantically equivalent to a state 〈false; false〉.

CHR state: S ::= 〈G; C〉
Initial state: S0 ::= 〈G;>〉
Disjunction of states: S̄, T̄ ::= ε | S |

�
S ∨ S̄

�

Fig. 3. Notation for CHR∨ states

Operational Semantics Even for pure CHR, there are actually sev-
eral variants of the operational semantics. These variants carry over to
CHR∨, so we have to decide which operational semantics to consider.
The original operational semantics for CHR was published in [11] and
is known as the abstract semantics of CHR. It is the original and most
general operational semantics in that every derivation possible in any of
the other semantics is also true in the abstract semantics.
In [1], Abdennadher extended the abstract semantics with a token store
for propagation rules in order to avoid trivial non-termination. This was
extended to the so-called refined semantics of CHR [9], which is closest to
the execution strategy used in most implementations of CHR. Examples
for other relevant operational semantics include especially the semantics
of Probabilistic CHR [13], in which each applicable rule has a (weighted)
chance of firing.
As our operational semantics is meant as a framework to reason theoret-
ically over CHR∨ programs, it appears a matter of course that we chose
the abstract semantics as the most general of kind for our considerations.
The transition rules that constitute the operational semantics of CHR
are summarized in Fig. 4.
Arguably the most important transition rule, Simplify performs a con-
ditional substitution of a CHR constraint in the goal store with a different
one.
A CHR∨ rule (F ⇔ D | H) is applicable if the rule head F matches a
CHR constraint E in the goal store. CHR does not use unification (as



Prolog does) but one-sided matching, i.e. the variables in the rule head
have to be matched with those in the store, not vice versa. Furthermore,
the constraint store C of the current program state must imply the rule
guard D under the constraint theory CT.
If Simplify is applied, the constraint E in goal store is substituted by
F, and the variable matching (E

.
= F ) as well as the guard D are added

to the constraint store.
Propagation differs from simplification in that the matched CHR con-
straints E are kept in the constraint store rather than being removed.
In practical terms, this raises the question of how to avoid trivial non-
termination, which has been addressed in [1] and [9]. With respect to the
abstract semantics, however, propagation rules can be faithfully reduced
to simplification rules by adding a copy of the rule head into the rule
body in the source code. Hence, we will consider propagation a special
case of simplification in this paper.
The Solve transition moves a built-in constraint from the goal store to
the constraint store. Optionally, the built-in constraint solver can also
apply some simplification to the constraint store. However, this is irrel-
evant for the declarative semantics and shall be ignored in this paper.
If at least one goal in the goal store contains a disjunction, the Split rule
is applicable. On splitting, the current state is split into a disjunction of
two states, in each of which the goal with the disjunction is substituted
with one of its disjoint subgoals.

Simplify
If (F ⇔ D|H) is a fresh variant of a rule in P with variables x̄
and CT |= ∀(C → ∃x̄(F

.
= E ∧D))

then S̄ ∨ 〈E ∪G; C〉 ∨ T̄ 7→ S̄ ∨ 〈H ∪G; (F
.
= E) ∧D ∧ C〉 ∨ T̄

Propagate
If (F ⇒ D|H) is a fresh variant of a rule in P with variables x̄
and CT |= ∀(C → ∃x̄(F

.
= E ∧D))

then S̄ ∨ 〈E ∪G; C〉 ∨ T̄ 7→ S̄ ∨ 〈E ∪H ∪G; (F
.
= E) ∧D ∧ C〉 ∨ T̄

Solve
If CT |= (C ∧D1)↔ D2

then S̄ ∨ 〈{C} ∪G; D1〉 ∨ T̄ 7→ S̄ ∨ 〈G; D2〉 ∨ T̄
Split

S̄ ∨ 〈G ∪ {G1 ∨G2}, C〉 ∨ T̄ 7→ S̄ ∨ 〈G ∪G1, C〉 ∨ 〈G ∪G2, C〉 ∨ T̄

Fig. 4. CHR∨ transition rules

3 A Linear Logic Semantics for CHR∨

In this section, we will at first recapitulate the previously published linear
logic semantics for the segment of pure CHR[6] and then discuss how to
extend this result to the full segment of CHR∨.



3.1 The Linear Logic Semantics for pure CHR

Our semantics is based on the observation that the Simplify transition
of CHR behaves similarly to the modus ponens of linear logic. Both
mechanisms can be characterized as the rewriting of one or several logical
predicates in a context that behaves as a multiset. Hence, we translate
simplifiaction rules to linear implications and, consequently, CHR states
to multiplicative conjunctions of linear predicates.
In the general case – and unlike linear implication – simplifiaction rules
are guarded. We can straightforwardly translate the guard into another
precondition of the corresponding linear implication. We must make sure,
however, that the predicates that correspond with the built-in constraints
are not ”consumed” during the process. Therefore, we introduce the con-
vention that built-in constraints appear only banged throughout our se-
mantics. As a side-effect, this helps to distinguish built-in constraints
from CHR constraints.
The built-in constants true and false represent the empty constraint
and failure, which is why we map them to the linear constants 1 and 0,
respectively.
A couple of adaptations have to be made to the underlying constraint
theory CT according to which the built-in constraints are handled. As
Girard showed in [15], it is possible to faithfully translate intuitionistic
logic into intuitionistic linear logic (ILL). If we require that the theory
CT be a theory of intuitionistic logic, we can thus translate it to ILL.
Secondly, we have to make sure that the equality constraint is handled
correctly. For this purpose, we add a number of formulae to the constraint
theory. Concretely, for every n-ary CHR constraint E, we add the the
following conjunction of formulae to the constraint theory:

nO
j=1

!∀.
�
E(t1, ..., tj , ..., tn) ⊗ !(tj

.
= t′j) ( E(t1, ..., t

′
j , ..., tn)

�

E.g. for a CHR constraint edge/2, we would add the following formula
to the constraint theory:

!∀.
�
edge(t1, t2) ⊗ !(t1

.
= t′1) ( edge(t′1, t2)

�
⊗

!∀.
�
edge(t1, t2) ⊗ !(t2

.
= t′2) ( edge(t1, t

′
2)
�

This translated version of the constraint theory CT, including the for-
mulae for equality, will be called linear constraint theory LCT. For every
intuitionistic formula CT `LJ ϕ, we have !LCT ` ϕG where �G rep-
resents translation from intuitionistic logic to linear logic according to
[15].

3.2 Extending the Semantics

In this section we will explain the basic idea of our proposed semantics.
We will first show how don’t-care nondeterminism is already represented
in the linear logic semantics of pure CHR. Then we will discuss how we
can extend this semantics for CHR∨.



In the linear logic semantics for pure CHR, the program is mapped to a
⊗ conjunction of formulae of the form !∀

�
!DL

i ( F L
i ( ∃x̄i.H

L
i

�
.

This translation logically implies internal choice whenever more than
one rule is applicable. We consider the following program P1:

F ⇔ D | H1

F ⇔ D | H2

The logical reading of this program is:

P L
1 = !∀

�
!DL ( F L ( ∃x̄1.H

L
1

�
⊗ !∀

�
!DL ( F L ( ∃x̄2.H

L
2

�

This is logically equivalent to:

!∀
�
!DL ⊗ F L ( (∃x̄1.H

L
1 )&(∃x̄2.H

L
2 )
�

Operationally, the case of several applicable rules is handled by com-
mitted choice, i.e. as don’t-care nondeterminism. Thus, the linear logic
semantics of CHR contains an implicit mapping of don’t-care nondeter-
minism to internal choice.
The syntax of CHR∨ differs from the syntax of pure CHR only in the
presence of disjunctions in goals. Operationally, disjunction is evaluated
as don’t-know nondeterminism, i.e. when one of several options is chosen,
the other options will not be discarded. Analogously to Prolog, don’t-
know nondeterminism is usually implemented as backtracking.
We will consider another example program P2, with disjunction:

H ⇔ D | F1 ∨ F2

We consider the derivation that results from the same program state that
we used in our previous example:

〈H; D〉 7→Simplify 〈F1 ∨ F2; D〉 7→Split 〈F1; D〉 ∨ 〈F2; D〉
We notice that there is no choice between 〈F1; D〉 and 〈F2; D〉 here.
Instead, there is a disjunction 〈F1; D〉 ∨ 〈F2; D〉 and there is no way to
remove any of the two. By contrast, in our previous example program
P1, a state 〈H; D〉 might be followed by either 〈F1; D〉 or 〈F2; D〉. This is
reflected in its logical reading: Both sequents P L

1 ` 〈H; D〉L ( 〈F1; D〉L
and P L

1 ` 〈H; D〉L ( 〈F2; D〉L are provable.
The logical reading of program P2 should reflect the fact that we can
remove neither 〈F1; D〉 nor 〈F2; D〉. However, it also has to reflect the
fact that 〈F1; D〉 and 〈F2; D〉 are processed independently from each
other.
Therefore, disjunctions of states and disjunctions in goals will be trans-
lated to ⊕ disjunctions. Under this semantics, example program P2 trans-
lates as follows:

P L
2 = !∀

�
!DL ⊗ HL ( (∃x̄1.F

L
1 )⊕ (∃x̄2.F

L
2 )
�

The translation of our disjunction of states will likewise be an ⊕ disjunc-
tion:

〈F1; D〉 ⊕ 〈F2; D〉



This translation satisfies all of our conditions and the sequent P L
2 `

〈H; D〉L ( 〈F1; D〉L ⊕ 〈F2; D〉L is provable.
Failed states, i.e. states of the form 〈G; false〉, translate to 0, which is
the neutral element w.r.t. ⊕. Thus we have also modelled the removal of
failed states from the current disjunction of states.

3.3 Definition of the Extended Semantics
Figure 5 presents our linear logic semantics for CHR∨. The operator �L

represents translation into linear logic.

Built-in constraints: >L ::= 1
⊥L ::= 0
c(t̄)L ::= !c(t̄)
(C ∧D)L ::= C ⊗D

CHR constraints: {e(t̄)}L ::= e(t̄)
(E ∪ F )L ::= EL ⊗ F L

Goals: {C}L ::= CL

(G ∪H)L ::= GL ⊗HL

(G ∨H)L ::= GL ⊕HL

Initial states: SL
0 = 〈G; true〉L ::= GL

Derived states: SL
a = 〈G; C〉L ::= ∃x̄a(GL ⊗ CL)

Parallel states: (S ∨ T )L ::= SL ⊕ T L

Simplification rules: (E ⇔ C | G)L ::= !∀
�
!CL ⊗ EL ( ∃ȳ.GL

�
Propagation rules: (E ⇒ C | G)L ::= !∀

�
!CL ⊗ EL ( EL ⊗ ∃ȳ.GL

�
Programs: (R1...Rm)L ::= RL

1 ⊗ ...⊗RL
m

Fig. 5. Linear-logic declarative semantics

Both types of constraints are mapped to ⊗ conjunctions of atomic con-
straints, atomic built-in constraints are banged. !CG. Goals containing
disjunctions and disjunctions of states are mapped to ⊕ disjunctions.
Initial states are translated as goals, whereas for a non-initial state Sa,
the local variables x̄a of Sa – i.e. the variables that do not appear in the
corresponding initial state S0 – are existentially quantified.
CHR∨ rules are mapped to linear implications with the translations of
head and guard on the condition side and that of the body as conse-
quence. The local variables ȳ of the rule body are existentially quanti-
fied. The bang before the translation of the guard is actually redundant
but kept for formal clarity. A CHR∨ program is translated into a ”⊗”
conjunction of the translation of its rules.

4 Soundness and Completeness

Concerning the soundness and completeness of our declarative semantics
w.r.t. the operational semantics, the following theorems hold.



Theorem 1 (Soundness). If S0 is an initial CHR state and S̄n is a
disjunction of states, which is derivable from S0 under a program P and
a linear constraint theory LCT. Then the following holds:

!LCT, P L ` ∀
�
SL

0 ( S̄L
n

�

Theorem 2 (Completeness). If S0 is an initial CHR state and S̄n is
a disjunction of states, such that

!LCT, P L ` ∀
�
SL

0 ( S̄L
n

�

then there is a disjunction of states S̄ν with a finite derivation S0 7→∗ S̄ν

such that
!LCT ` S̄L

ν ( S̄L
n

Theorem 2 states that if an initial CHR∨ state Si logically implies a
disjunction S̄n of CHR∨ states then it is operationally possible to reach
a disjunction of states S̄ν that implies S̄n under the constraint theory
CT.

Proof Sketch While Theorem 1 can be reduced to the proof of the
soundness theorem for the linear logic semantics for pure CHR, the proof
of Theorem 2 is more challenging. The first major point to show is that
the sequent !LCT, P L ` ∀

�
SL

0 ( S̄L
n

�
can be transformed to a logically

equivalent sequent which we call restricted. In that restricted sequent,
every logical reading (!ρ) of a CHR∨ rule is substituted by a finite number
of formulae of the form (1&ρ). This means that the number of CHR∨ rule
applications is not strictly determined, but limited. (Strict determination
is not always possible.) We prove this by defining a set of transformation
rules that transform a formal proof of our original sequent into a formal
proof of the restricted sequent.
We then show that we can apply CHR∨ transformations to the state S0,
which corresponds to SL

0 , such that the logical reading of the resulting
state also implies S̄L

n . This is easy to show for Solve and Split. For the
case that none of those are applicable, we show that either a formula
(1&ρ) in the transformed sequent corresponds to an applicable CHR∨

rule, or we have already found the state S̄ν . We do this by induction
over the sequents of a formal proof. The finite number of sub-formulae
of the form (1&ρ) implies that we can derive S̄ν with a finite derivation.

Significance of Theorem 2: The linear constraint theory LCT deter-
mines the handling of the built-in constraints only, it does not have an
effect on the actual CHR constraints. Consequently, for every CHR state
〈Eν ; Cν〉 in S̄ν , there is a CHR state 〈En; Cn〉 in S̄n such that Eν and
En differ only in the built-in constraints. Another notable point is that
the derivation S0 7→∗ S̄ν is explicitly finite.
Furthermore, our semantics implicitly defines an interesting segment
of intuitionistic linear logic, consisting of all sequents of the form
!LCT, P L ` ∀

�
SL

0 ( S̄L
n

�
. For any such sequent, it is a necessary condi-

tion for its provability that a finite number of modus ponens applications



– mimicking Simplify transitions – can simplify it to a sequent of the
form !LCT ` S̄L

ν ( S̄L
n where the proof of the latter sequent can be

reduced to a proof in classical intuitionistic logic. Furthermore, if the
modus ponens applications and a proof for !LCT ` S̄L

ν ( S̄L
n are known,

these can be used to construct a proof for !LCT, P L ` ∀
�
SL

0 ( S̄L
n

�
. We

suppose that these findings will enable us to make proof search in our
specific segment of linear logic significantly more efficient.

5 Example

This example will show how we can apply our linear logic semantics
to reason about CHR∨ programs that integrate several programming
paradigms. The following classic Prolog program implements a ternary
append predicate for lists, representing the fact that the third argument
is a concatenation of the first two.

append(X,Y,Z) ← X
.
=[], Y

.
=L, Z

.
=L.

append(X,Y,Z) ← X
.
=[H|L1], Y

.
=L2, Z

.
=[H|L3],append(L1,L2,L3).

We can embed this program faithfully into CHR∨ by explicitly stating
the don’t-know nondeterminism using the ∨ operator.

app1@ append(X,Y,Z) ⇔
( X

.
=[], Y

.
=L, Z

.
=L

∨ X
.
=[H|L1], Y

.
=L2, Z

.
=[H|L3], append(L1,L2,L3) ).

The linear logic reading of this program looks as follows:

!∀X, Y, Z. (append(X, Y, Z) ( ∃L, L1, L2, L3, H.
(!(X

.
= []) ⊗ !(Y

.
= L) ⊗ !(Z

.
= L))⊕

(!(X
.
= [H|L1]) ⊗ !(Y

.
= L2) ⊗ !(Z

.
= [H|L3]) ⊗ append(L1, L2, L3)))

Now we want to add a rule that should not change the overall semantics
of the program but increase efficiency by intercepting the worst case,
where the second argument is an empty list. Note that the introduction
of this rule adds don’t-care nondeterminism to the program. The rule
looks as follows:

app2@ append(X,Y,Z) ⇔ Y
.
=[] | X .

=Z.

The rule app2 corresponds to the following logical reading:

!∀X, Y, Z. (!(Y
.
= []) ⊗ append(X, Y, Z) ( X

.
= Z)

By induction over the length of the list X – i.e. the second argument of
append(X,Y,Z) – we can show that the logical reading of app2 is entailed
by the logical reading of app1. Hence, the program consisting of rule app1
only and the program consisting of both app1 and app2 are operationally
equivalent.



6 Discussion

6.1 Related Work

Common linear logic languages such as LO[4], Lygon[16] and Lolli[18]
rely on a backchaining operationalization of linear logic. Thus, they
are not directly comparably to our linear logic semantics of an exist-
ing forward-chaining programming language.
The most closely related approaches to this work are therefore Miller’s
linear logic semantics for the π-calculus [19] and the linear logic seman-
tics for the CC/LCC class of programming languages by Fages, Ruet and
Soliman [10]. In Miller’s approach, it is don’t-care – not don’t-know –
nondeterminism that is being mapped to linear additive disjunction ⊕.
Fages et al are closer to our approach in that they explicitly map don’t-
care nondeterminism to additive conjunction (which we do implicitly).
However, neither the π-calculus nor the CC/LCC class of languages fea-
ture the dichotomy between don’t-know and don’t-care nondeterminism
that CHRv does.
Djelloul, Meister and Robin have recently related transaction logic to
CHR in [8]. The main difference here is that their approach covers only
the so-called range-restricted ground segment of CHR whereas our ap-
proach covers the full segment of CHR∨.
If not directly related to our work, we find it worth to mention two ap-
proaches to a logical characterization of the dichotomy of forward and
backward chaining: In [17], Harland, Pym, and Winikoff incorporate for-
ward reasoning features directly into the sequent calculus of linear logic.
In [7], Chaudhuri, Pfenning, and Price improved the focusing inverse
method for linear logic such that it generalizes both forward-chaining
and backward-chaining proof search. These works are loosely related to
our work because the don’t-know nondeterminism of CHR∨ can be used
to embed SLD resolution, which is inherently a backward chaining ap-
proach.

6.2 Conclusion

We have presented a linear logic semantics for CHR∨. The core of our
result is the mapping of the dualism between don’t-care and don’t-know
nondeterminism in CHR∨ to the dualism of internal and external choice
in linear logic. Furthermore, we use Girard’s translation to embed the
constraint theory CT that is handled by the built-in constraint handlers.
This semantics provides us with a powerful formalism to reason about
CHR∨ programs.
As CHR∨ is considered to be a formalism to experiment with logical pro-
gramming paradigms, we expect to be able to apply our result to other
programming languages and paradigms that mix classical constraint han-
dling, forward chaining and backward chaining.
The applicability of our proposed semantics and its model checking ca-
pabilities offers a promising field for future research. Another aspect for
future work would would be the design of an algorithm to efficiently find
linear logic proofs in the segment of linear logic that is defined by our



declarative semantics. Obviously, this segment is much smaller than the
full segment of intuitionistic linear logic and therefore the efficiency of
proof search might be increased significantly. Furthermore, our complete-
ness theorem and its proof seem to suggest approaches on how to limit
the search space significantly.
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12. T. Frühwirth: Theory and Practice of Constraint Handling Rules,
Journal of Logic Programming, 37(1-3):95-138, 1998.
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