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Abstract. Constraint Handling Rules (CHR) is a declarative rule-
based concurrent committed-choice programming language. Petri nets
are a well-known formalism for modeling and analysis of concurrent
processes. We aim to develop a framework to exploit Petri nets as a
tool for the modeling and analysis of CHR programs. In this paper, we
show that place/transition nets can easily be embedded into CHR and
we develop a translation of a significant segment of CHR into coloured
Petri nets (CPN).

1 Introduction

Constraint Handling Rules (CHR)[4–7] is a concurrent committed-choice
rule-based programming language developed in the 1990s by Frühwirth
as a portable language extension for the implementation of constraint
solvers. Over the last decade it has matured into a stand-alone general
purpose declarative programming language.
One of the main features of CHR is its inherent concurrency. Though
well-known, the feature has scarcely been exploited for parallel execution
until the recent past: Frühwirth [8] has proposed a parallel execution
model for CHR in 2005 and recent works by Meister [11, 12] document
an enormous potential for speedup by parallelization of CHR programs.
Petri nets [13] are a well-known formalism for the modeling and analysis
of concurrent processes that has been in use for more than four decades.
They are both mathematically and graphically founded and there exists
a wide variety of algorithms for their design and analysis.
Therefore, having a general framework for the application of these algo-
rithms for the analysis and design of CHR programs would certainly be
beneficial. Due to the concurrent nature of Petri nets, we are confident
that such a framework would especially be helpful in the analysis of cun-
currency properties of CHR programs and thus in their parallelization.
This paper presents first results in this promising direction.
Contributions and Overview. As a first step, we design a translation of
place/transition nets (P/T nets) – a basic variant of Petri nets into CHR.
We show that this standard variant of Petri nets translates to a consid-
erably small subsegment of CHR. This result backs the assumption, that
we have to choose a higher-level variant of Petri nets in order to represent
a significant subset of CHR.



Our main contribution is the definition of and interesting and signifi-
cant, yet easy-to-handle subsegment of CHR and a sound and complete
translation from this segment of CHR to coloured Petri nets.

– We recall the basics of Constraint Handling Rules (CHR) in Sect. 2.

– We recall the basics of Petri Nets, especially P/T-nets [] and
Coloured Petri Nets (CPN) [] in Sect. 3.

– We apply CHR as a simulator for P/T nets in Sect. 4.

– In Sect. 5 we present a translation of a significant segment of CHR
into CPN, along with theorems concerning its soundness and com-
pleteness as well as an example.

2 Constraint Handling Rules

In this section, we will introduce the syntax and semantics of CHR as
a self-contained language. An introductory example program is followed
by the formal definition of its syntax and semantics, and we discuss why
we chose to consider the abstract semantics of CHR in this paper.

2.1 CHR by Example

The following classic CHR program implements a constraint handler for
the partial-order relation leq (for less-or-equal). The constraints

.
= and

> are so-called built-in constraints which we assume to be handled by a
predefined constraint handler.

.
= is syntactic equality and > is truth.

reflexivity@ A leq B ⇔ A
.
= B | >

antisymmetry@ A leq B, B leq A ⇔ A
.
= B

transitivity@ A leq B, B leq C ⇒ A leq C

Rule reflexivity states, that a less-or-equal relation between two
equal variables, i.e. a relation of the form A≤ A is redundant. Rule
antisymmetry states that if both A≤B and B≤A hold, then A and B
must be equal. Rule transitivity states that if A≤B and B≤C hold, we
may conclude that A≤C also holds.

A sample execution of the handler with an initial state 〈A≤B, B≤C, C≤
A;>〉 could look as follows:

〈A≤B, B≤C, C≤A;>〉
7→Propagate(transitivity) 〈A≤B, B≤C, C≤A, A≤C;>〉
7→Simplify(antisymmetry) 〈A≤B, B≤C, A

.
=C;>〉

7→Solve 〈A≤B, B≤A; A
.
=C〉

7→Simplify(antisymmetry) 〈A
.
=B; A

.
=C〉

7→Solve 〈>; A
.
=B ∧A

.
=C〉

Note that the antisymmetry rule operationally acts as a substitution,
whereas application of the transitivity rule results in the addition of a
constraint to the state, without removing anything.



2.2 The Syntax of CHR

Constraint handling rules have originally been designed to extend an
existing programming language with a user-defined constraint handler.
Although CHR can extend other that constraint programming languages
and even run as a stand-alone programming language, its run-time envi-
ronment has to provide at least basic constraint handling capabilities.
We therefore distinguish two disjoint sets of constraint symbols: User-
defined constraints are those constraints that are handled by the user-
defined handler, i.e. by the CHR program. By contrast, handling of the
built-in constraints has to be done by a predefined constraint handler.
The actual set of built-in constraints depends on the implementation.
However, it contains at least the constraints >, ⊥ and

.
=, where the

latter stands for syntactic equailty. A goal is multiset conjunction of
bulit-in and user-defined constraints.
Programs in CHR consist of two sorts of guarded rules: Simplification
rules express the conditional substitution of the rule head with the body
in the current state. Propagation rules express the conditional addition
of the body to the current state (without removing the head). The syntax
of the simplification rule is (E ⇔ C|G) and that of the propagation rule
is (E ⇒ C|G). The rule head E is a user-defined constraint, the guard C
is a built-in constraint and the body G is a goal. If the guard equals >,
it can be omitted.
The syntax of the rules is mnemonic in that it reflects the declarative
meaning of the rules. That is, one would apply a simplification rule if the
rule body is logically equivalent to the rule head and one would apply
a propagation rule is the body is merely implied by (but not equivalent
to) the head.
At each given point in time, there is exactly one CHR state at each
moment of its execution. A CHR state is of the form 〈G; C〉, where G is
a goal and C is a built-in constraint. G is called goal store and C is called
constraint store. Of the two, only the goal store is directly accessible by a
CHR program. The constraint store is handled by a predefined constraint
handler according to a consistent first-order constraint theory CT . A
state of the form 〈G;>〉 is called an initial state.
The complete syntax of CHR is summarized in the following table:

Built-in constraint: C,D ::= > | ⊥ | c (t̄) | C ∧D
User-defined constraint: E,F ::= e (t̄) | E ∧ F
Goal: G,H ::= C | E | G ∧H
Simplification rule: R ::= (E ⇔ C | G)
Propagation rule: R ::= (E ⇒ C | G)
CHR program: P ::= R1, . . . , Rn n ≥ 0
CHR state: S ::= 〈G; C〉
Initial state: S0 ::= 〈G;>〉

2.3 The Operational Semantics of CHR

There are actually several variants of the operational semantics for CHR.
The original operational semantics for CHR was published in [4] and is



known as the abstract semantics of CHR. It is the original and most
general operational semantics in that every derivation possible in any of
the other semantics is also true in the abstract semantics.

In [1], Abdennadher extended the abstract semantics with a token store
for propagation rules in order to avoid trivial non-termination. This was
extended to the so-called refined semantics of CHR [3], which is closest
to the execution strategy used in most current implementations of CHR.
Examples for other relevant operational semantics include especially the
semantics of Probabilistic CHR [6], in which each applicable rule has a
(weighted) chance of firing.

We chose to consider the abstract abstract semantics for two reasons:
Secondly, it is the most general operational semantics for CHR, i.e. ev-
ery derivation that is possible in the abstract operational semantics.
Secondly, the refined semantics of CHR is inherently deterministic and
non-concurrent, whereas Petri nets are in general non-deterministic and
concurrent. The transition rules that constitute the abstract operational
semantics of CHR are given in Fig. 1.

The Simplify transition performs a conditional substitution of a user-
defined constraint in the goal store with a different one.

A CHR rule (F ⇔ D | H) is applicable if the rule head F matches a
user-defined constraint E in the goal store1. Furthermore, the constraint
store C of the current program state must imply the rule guard D under
the constraint theory CT.

If Simplify is applied, the constraint E in goal store is substituted by
F, and the variable matching (E

.
= F ) as well as the guard D are added

to the constraint store.

Propagation differs from simplification in that the matched user-defined
constraints E are kept in the constraint store rather than being removed.
In practical terms, this raises the question of how to avoid trivial non-
termination, which has been addressed in [1] and [3]. Under the abstract
semantics, however, a propagation rule F ⇒ D | H can be faithfully
reduced to a simplification rule F ⇔ D | F ∧ H. Hence, we will only
consider simplification rules in the rest of this paper.

The Solve transition moves a built-in constraint from the goal store to
the constraint store. We will, however, be able to ignore this transition
in the segment of CHR we are using.

We denote by 7→∗ the reflexive transitive closure of the 7→ relation.

3 Petri Nets

Petri nets [13] are a well-known formalism for the modeling and analy-
sis of concurrent processes. Of the many existing variants, this section
shall introduce place/transition nets (P/T nets) and coloured Petri nets
(CPNs) [10]. For the two variants, we will present both the graphical
representation and the mathematical foundation.

1 Note that CHR does not use unification like Prolog but one-sided matching, i.e. the
variables in the rule head have to be matched with those in the store, not vice versa.



Simplify
If (F ⇔ D|H) is a fresh variant of a rule in P with variables x̄
and CT |= ∀(C → ∃x̄(F

.
= E ∧D))

then 〈E ∧G; C〉 7→ 〈H ∧G; (F
.
= E) ∧D ∧ C〉

Propagate
If (F ⇒ D|H) is a fresh variant of a rule in P with variables x̄
and CT |= ∀(C → ∃x̄(F

.
= E ∧D))

then 〈E ∧G; C〉 7→ 〈E ∧H ∧G; (F
.
= E) ∧D ∧ C〉

Solve
If CT |= (C ∧D1) ↔ D2

then 〈C ∧G; D1〉 7→ 〈G; D2〉

Fig. 1. CHR∨ transition rules

3.1 Petri Nets by Example

Among the most important features of Petri nets is the fact that they
are both mathematically and graphically founded. In this section we
will introduce by example the graphical representation of two important
variants of Petri nets: Place/transition nets (P/T nets) and coloured
Petri nets (CPN).
We will model variants of the dining philosophers problem, which is a
classic example for a computing problem in concurrency. The problem
consists of five (or an arbitrary number of) philosophers sitting at a round
table and doing two different things – eating and thinking. Between each
philosopher a fork is placed such that each philosopher has a fork to his
left and one two his right. In order to eat, a philosopher needs two forks,
i.e. the one to his left and the one to his right. At arbitrary points in
time, a thinking philosopher will change his state from thinking to eating
– provided the forks to his immediate left and right are available. After
a while, an eating philosopher will change his state back to thinking,
thereby releasing the forks to his left and right and thus making them
available to his immediate neighbors again.
In the following, we will assume that the philosophers and the forks are
numbered: Philosopher #1 needs fork #1 and fork #2 to eat, philosopher
#2 needs fork #2 and #3, and so on.

Example 1. In Fig. 2 we have modeled the dining philosophers problem
for three philosophers as a Petri net. Obviously, the net is a bipartite,
directed graph with two types of nodes: places which we draw as circles
and transitions which we draw as rectangles. There is a token in six of the
nine places. (Only places can carry tokens.) Both places and transitions
are annotated with their names.
The places t1, . . . , t3 respectively represent the fact that philosopher #1,
#2, #3 is eating. When a place carries a token, we assume that the
respective fact is true. The places e1, . . . , e3 represent the facts that the
philosophers are eating. As they do not carry tokens, these facts do not
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Fig. 2. The dining philosophers problem modeled as a Petri net

hold at the moment. (Obviously, if our model is correct, it should never
be possible for a philosopher to eat and think at the same time.) The
places f1, . . . , f3 each represent the fact that the respective fork is not
in use and therefore available. The distribution of tokens in a net at one
point in time is called a marking of the net.
The transitions allow for changes in the net: I there is at least one token
at every arc leading into a transition, we call the transition active. An
activated transition can fire. In this case, one token will be removed from
every place from which an arc leads into the transition, and one token
will be added to every place into which an arc leads from the transition.
As for example, the transition te1 represents the event in which philoso-
pher #1 stops thinking and takes up eating. In the figure, the transition
is currently active and could be fired. On firing the transition, tokens
would be removed from places t1, f1, f2 and one would be added to place
e1. Thus, the facts that philosopher #1 is thinking and that fork #1 and
#2 are available would become untrue, whereas the fact that philosopher
#1 is eating would become true.

As a slight modification of a net of the type presented in Example 1, we
could annotate each arc with a weight n ∈ N. On firing a transition, we
would not necessarily remove or add exactly one token from the adjoining
places, but a number of tokens equal to the weight of the connecting arc.
Jantzen and Valk have introduced the notion place/transition net (P/T
net)[9] for this type of Petri net.

Example 2. In this example, we will model the dining philosophers prob-
lem with three philosophers as a so-called coloured Petri net. The net



is given in Fig. 3. Note that we have changed the numbering of the
philosophers to counting from zero.
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Fig. 3. The dining philosophers problem with three philosophers as a CPN

Obviously, the net is much less complex than the one in Example 1,
consisting only of three places t, f, e and two transitions et, te. At the
same time, the tokens are no longer anonymous – i.e. black dots. Instead
they are inscribed with natural numbers 0, 1, 2. We say that the tokens
are coloured and the numbers 0, 1, 2 are the colors. Places are not only
inscribed with their names – t, f, e – but also with their colour domains,
i.e. the set of colours that tokens in the respective places may have.
In our model, a token of color 1 in place t represents that philosopher
#1 is thinking, a token of color 2 in place f represents that fork #2 is
available, a token of color 0 in place e represents that philosopher #0 is
eating, and so on.
Transitions are inscribed with formulae and arcs are inscribed with bags
(multisets) of parametrized terms. More precisely, the inscriptions are
mappings from variable bindings to bags over the colour domain of the
associated place. The formulae that transitions are inscribed with can be
understood as a mapping from variable bindings to a truth value.
A transition is active for a specific variable binding if (1) the inscription
of each incoming arc maps the variable binding to a bag of tokens that is
contained in the bag of tokens that the associated place currently holds
and (2) if the formula inscribed in the transition evaluates to true for
that binding. If a transition is fired with a specific variable binding, the
respective bags of tokens are removed from the places associated with
the incoming arcs and tokens are added to the places associated with the



outgoing arcs according to the insciptions on those arcs. The set of all
variable bindings for which a transition could possibly fire is called the
colour domain of the transition.
In our example, firing transition te with the variable binding
[x = 0, y = 1] would remove the bag {0} from place t, remove the bag
{0, 1} from place f and add the bag {0} to place e.

3.2 Formal Definitions

In this section we present the formal definitions of place/transition nets
and coloured Petri nets.

Definition 1 (Place/Transition Net). A place/transition net (P/T
net) is a tuple N = 〈Pl, Tr,Pre,Post〉 where
– Pl is the finite set of places
– Tr is the finite set of transitions
– Pre ∈ N|Pl|×|Tr| is the backward incidence matrix
– Post ∈ N|Pl|×|Tr| is the forward incidence matrix

C = Post − Pre is called the incidence matrix of N . For a transition
tr ∈ Tr, the expressions Pre [•, tr] and Post [•, tr] denote the column
vectors in Pre and Post associated with tr.

In the graphical representation of N , there is a an incoming arc from a
place pl ∈ Pl to a transition tr ∈ Tr iff Pre [pl, tr] > 0 where the weight
of the arc is n = Pre [pl, tr]. There is a an outgoing arc from a transition
tr ∈ Tr to a place pl ∈ Pl iff Post [pl, tr] > 0 where the weight of the
arc is n = Post [pl, tr].

Definition 2 (Marking of a P/T Net). A marking of a P/T net
N = 〈Pl, Tr,Pre,Post〉 is a vector m ∈ N|Pl|. A transition tr ∈ Tr is
enabled in a marking m if m ≥ Pre [•, tr], where ≥ denotes component-
wise comparison.

Definition 3 (Successor-Marking Relation on P/T Nets). For
an enabled transition tr ∈ Tr, the successor-marking relation between

two markings m,m′ is defined as m
tr−→ m′ ⇔ m ≥ Pre [•, tr] ∧m′ =

m + C [•, tr].
For a possibly empty sequence of transitions ω ∈ Tr∗ m

ωtr−→ m′ ⇔
∃m′′.m

ω−→ m′′ ∧m′′ tr−→ m′. If ω is the empty word, m
ω−→ m holds.

Example 3. The Petri net in Example 1 can be described formally as
N = 〈Pl, Tr,Pre,Post〉 where
– Pl = {t1, t2, t3, f1, f2, f3, e1, e2, e3}
– Tr = {te1, te2, te3, et1, et2, et3}

– Pre =

(t1)
(t2)
(t3)
(f1)
(f2)
(f3)
(e1)
(e2)
(e3)

0
BBBBBBBBBBBB@

1 . . . . .
. 1 . . . .
. . 1 . . .
1 . 1 . . .
1 1 . . . .
. 1 1 . . .
. . . 1 . .
. . . . 1 .
. . . . . 1

1
CCCCCCCCCCCCA

Post =

(t1)
(t2)
(t3)
(f1)
(f2)
(f3)
(e1)
(e2)
(e3)

0
BBBBBBBBBBBB@

. . . 1 . .

. . . . 1 .

. . . . . 1

. . . 1 . 1

. . . 1 1 .

. . . . 1 1
1 . . . . .
. 1 . . . .
. . 1 . . .

1
CCCCCCCCCCCCA



For clarity, we have replaced zeroes with dots in the above ma-
trices. The initial marking of the state is denoted as m0 =
[t1 = 1, t2 = 1, t3 = 1, f1 = 1, f2 = 1, f3 = 1, e1 = 0, e2 = 0, e3 = 0].

In order to define coloured Petri nets, we need to the notion of bags
(multisets).

Definition 4 (Bag). A bag bg over a non-empty set A is a function
bg : A → N. If there is no ambiguity, we may omit the curly brackets.
Assuming that bg1, bg2 are bags, partial order, sum and difference are
defined as follows:
– bg1 ≤ bg2 ⇔ ∀a ∈ A.(bg1(a) ≤ bg2(a)′a)
– bg1 + bg2 =

P
a∈A(bg1(a) + bg2(a)′a)

– bg1 − bg2 =
P

a∈A(bg1(a)− bg2(a)′a) if bg2 ≤ bg1

For a non-empty set A, Bag(A) denotes the set of all bags over A.

Definition 5 (Coloured Petri Net). A coloured Petri net (P/T net)
is a tuple N = 〈Pl, Tr,Pre,Post, C, cd〉 where
– Pl is the finite set of places
– Tr is the finite set of transitions
– C is the set of colour classes
– cd : Pl ∪ Tr → C is the colour domain mapping
– Pre ∈ B|Pl|×|Tr| is the backward incidence matrix
– Post ∈ B|Pl|×|Tr| is the forward incidence matrix

In the above definition, B is the set of mappings of the form f : cd(t) →
Bag(cd(p)). C = Post − Pre is called the incidence matrix of N .
Pre [•, tr] and Post [•, tr] again denote the column vectors in Pre and
Post associated with a transition tr ∈ Tr.

Note that each matrix entry Pre [pl, tr] and Post [pl, tr] is a mapping
from cd(tr) to Bag(cd(pl)).

Definition 6 (Marking of a CPN). A marking of a CPN N =
〈Pl, Tr,Pre,Post, C, cd〉 is a vector m such that m [pl] ∈ Bag(cd(pl))
for each pl ∈ Pl. A transition tr ∈ Tr is enabled for a binding β in a
marking m if m ≥ Pre [•, tr] (β).

Definition 7 (Successor-Marking Relation on CPN). For an en-
abled transition tr ∈ Tr and a variable binding β, the successor re-

lation between two markings m,m′ is defined as m
tr,β−→ m′ ⇔ m ≥

Pre [•, tr] (β) ∧m′ = m + C [•, tr] (β). If the concrete binding β is not

important, we write m
tr−→ m′ instead of m

tr,β−→ m′.

For a possibly empty sequence of transitions ω ∈ Tr∗ m
ωtr−→ m′ ⇔

∃m′′.m
ω−→ m′′ ∧m′′ tr−→ m′. If ω is the empty word, m

ω−→ m holds.

Example 4. The Petri net in Example 2 can be described formally as
N = 〈Pl, Tr,Pre,Post, C, cd〉 where
– Pl = {t, f, e}
– Tr = {te, et}
– cd(t) = cd(f) = cd(e) = {0, 1, 2}
– cd(te) =

�
(x, y) ∈ {1, 2, 3}2 | y = (x + 1) mod 3

	
– cd(et) = {1, 2, 3}

– Pre =
(t)
(f)
(e)

0
@ {x} ∅
{x, y} ∅
∅ {x}

1
A Post =

(t)
(f)
(e)

0
@ ∅ {x}

∅ {x, y}
{x} ∅

1
A



4 Embedding P/T Nets in CHR

In this section we discuss a translation from P/T nets to CHR. This
translation allows us to simulate P/T nets with any CHR implementation
that features a fair selection strategy. On the other hand, it allows us to
use CHR as a notation for Petri nets.

Definition 8 (mm). Consider a marking m in a P/T net N =
(Pl, Tr,Pre,Post). The mapping mm : m 7→ S which maps m to a
CHR state is defined by:

S = 〈
n̂

i=1

pl
m[pli]
i ;>〉

Note that as a marking is defined as an element of N|Pl|. Consequently,
mm is also defined on column vectors in Pre and Post, which we will
apply in the following definition.

Definition 9 (mN). Let N = (Pl, Tr,Pre,Post) be a P/N net, where
we assume that Pl = {pl1, . . . , pln} and Tr = {tr1, . . . , trk}. The map-
ping mN : N 7→ P which maps the net to a CHR program is defined
by:

P = R1R2 . . . Rk

Rj = trj@mm (Pre [•, trj ]) ⇔ mm (Post [•, trj ])

Example 5. Consider again the Petri net system representation of the
dining philosophers problem in Example 1. The net translates to the
following CHR program:

te1@ t1, f1, f2 ⇔ e1.
te2@ t2, f2, f3 ⇔ e2.
te3@ t3, f3, f1 ⇔ e3.

et1@ e1 ⇔ t1, f1, f2.
et2@ e2 ⇔ t2, f2, f3.
et3@ e3 ⇔ t3, f3, f1.

The initial marking m0 translates to the CHR state S0 = 〈m1 ∧ m2 ∧
m3 ∧ f1 ∧ f2 ∧ f3;>〉.

Theorem 1 (Soundness and Completeness). Consider a P/T net
N = (Pl, Tr,Pre,Post) and a CHR program P such that P = mN (N ).
Let m0,mn be markings in N and let S0, Sn be CHR states in P such
that S0 = mm(m0) and Sn = mm(mn). Then we have

S0 7→∗ Sn iff ∃ω ∈ Tr∗.m0
ω−→ mn (1)



Proof of Theorem 1 As P contains only 0-ary user-defined constraints
and no built-in constraints, P is in a segment of CHR where we reduce
the Simplify transition to the following form:

If (F ⇔ H) is a rule in P
then 〈F ∧G;>〉 7→ 〈H ∧G;>〉

Consider a marking m1 of N such that ∃tr ∈
Tr.m0

tr−→ m1. This is equivalent to ∃tr ∈
Tr, m̃. (m0 = Pre [•, tr] + m̃ ∧ m1 = Post [•, tr] + m̃).
As tr ∈ Tr, there must be a rule R ∈ P with R = (tr@ F ⇔ H)
where F = mm(Pre [•, tr]) and H = mm(Post [•, tr]). From m0 =
Pre [•, tr] + m̃ and m1 = Post [•, tr] + m̃ follows that S0 = F ∧mm(m̃)
and S1 = H ∧mm(m̃). Hence, we can apply the Simplify transition to
yield S0 7→ S1.

Analogously, we can show that S0 7→ S1 implies ∃tr ∈ Tr.m0
tr−→ m1.

Therefore, we have

S0 7→ S1 iff ∃tr ∈ Tr.m0
tr−→ m1

Theorem 1 follows by induction.�
Besides the fact that we can use CHR for the simulation and for a simpler
textual notation of P/T nets, our result shows, that P/T nets correspond
to a rather insignificant segment of CHR, i.e. the segment of 0-ary user-
defined constraints. This insight backs our approach of using a higher-
level variant of Petri nets for the representation of CHR programs in the
following section.

5 Translation of CHR Programs into Coloured
Petri Nets

In this section we will present a faithful translation of CHR programs in
the positive range-restricted ground segment of CHR into coloured Petri
nets. A constraint handling rule is called range-restricted if grounding
all the variables in the head results in all the variables in the guard and
body being ground as well. A constraint handling rule is called positive
if there are no built-in constraints in the body except >.
In positive range-restricted ground CHR, all rules are positive and range-
restricted and all queries are ground. The range-restricted ground seg-
ment is a quite common segment of CHR, it was e.g. recently investigated
in [2].
Additionally, we require that programs consist only of simplification
rules. However, as we consider only the abstract operational semantics,
a propagation rule of the form N@F ⇒ D | H is equivalent to a simpli-
fication rule N@F ⇔ D | F ∧H.
Note that in the positive segment of CHR, derivations cannot fail as a
built-in constraint in the guard will never cause the constraint store to



evaluate to ⊥. A non-positive CHR rule of the form N@F ⇔ D1 | D2∧H
can be emulated in positive CHR by the two rules given below, where
we assume that false is a 0-ary user-defined constraint that does not
appear in the head of any CHR rule:

N1@ F ⇔ D1 ∧D2 | H
N2@ F ⇔ D1 ∧ ¬D2 | false ∧H

Lemma 1 states an important property of the positive range-restricted
ground segment of CHR.

Lemma 1. In the positive range-restricted ground segment of CHR, ev-
ery state 〈E; C〉 has an operationally equivalent normal form 〈E′;>〉
where the built-in store equals >.

Proof of Lemma 1 We assume that every state S in our segment of
CHR is of the form S = 〈E; X

.
= T ∧C′〉, where E is a goal, X

.
= T is a

(possibly empty) conjunction of syntactic equality constraints that bind
all the variables in S to ground terms and C′ is the (possibly empty)
conjunction of all other built-in constraints.
As our segment is range-restricted and ground, all variables in C′ are
bound to ground terms by X

.
= T . As CT is complete, C′ must therefore

evaluate to either > or ⊥ under this binding. In the positive segment,
the constraint store cannot evaluate to ⊥, therefore we have:

CT |= (X
.
= T ) → C′

Consequently, the state 〈E; X
.
= T ∧ C′〉 is operationally equivalent to

〈E; X
.
= T 〉. This in turn can be transformed to another state in which

all variables in E are substituted by the ground terms to which they are
bound by X

.
= T . We denote this as 〈E [X

.
= T ] ;>〉.

In the range-restricted ground segment, this state is again operationally
equivalent to S. We will call this the normal form of S. �

In the following, we will assume that CHR states in the positive range-
restricted ground segment are always in normal form. We can therefore
reduce the Simplify transition for this segment to the following:

If (F ⇔ D|H) is a fresh variant of a rule in P with variables x̄
and CT |= ∃x̄(F

.
= E ∧D)

then 〈E ∧G;>〉 7→ 〈H [F
.
= E] ∧G;>〉

Informal construction of a CPN from a CHR program: Informally,
we construct the mapping mP from a program P to a coloured Petri net
N as follows:
For each constraint name ei appearing in P there is a place ei in N and
for each rule named nj in P there is a transition nj in N . There is an
arc from a place ei to a transition nj iff ei appears in the head of the
rule named nj . Similarly, there is an arc from a transition nj to a place
ei iff ei appears in the body of rule nj .



Inscriptions are constructed as follows: An incoming arc from a place ei

to a transition nj is inscripted with the argument terms of all occurrences
of ei in the head of nj . Similarly, an outgoing arc from a transition nj to
a place ei is inscripted with the argument terms of all occurrences of ei

in the body of nj . Finally, each transition nj is inscribed with the guard
of the rule named nj .
CHR states translate to markings in that the ground argument term of
each occurrence of a user-defined constraint ei is added as a token to the
place ei.

Example 6. Consider the following CHR program implementing the din-
ing philosophers problem with three philosophers.

te@ t(X), f(X), f(Y ) ⇔ Y = (X + 1) mod 3 | e(X).
et@ e(X) ⇔ Y = (X + 1) mod 3 | t(X), f(X), f(Y ).

This program maps exactly to the coloured Petri net representation of
the dining philosophers problem in Example 2.

Definition 10 (mE). The mapping mE : E 7→ m from user-defined
constraints to markings is defined by:

mE (E ∧ F ) = mE(E) + mE(F )

mE

�
e′(t̄)

�
[e] =

�
{t̄} if e = e′

∅ if e 6= e′
for any user-defined constraint symbol e

Definition 11 (mS). Consider a positive range-restricted ground CHR
state 〈E;>〉. The mapping mS : 〈E;>〉 7→ m is defined by mS(〈E;>〉) =
mE(E).

Definition 12 (mP ). Consider a range-restricted ground CHR program
consisting of l simplification rules of the form nj@Fj ⇔ Dj | Hj, using
the user-defined constraint names e1, . . . , ek. We assume w.l.o.g. that
constraint names are not overloaded, i.e. each ei has exactly one arity
ar(ei).
We define the mapping mP : P 7→ N from CHR programs to coloured
Petri nets by P 7→ 〈Pl, Tr,Pre,Post, C, cd〉 where
– Pl = {e1, . . . , ek}
– Tr = {n1, . . . , nl}
– cd(ei) = T a where a = ar(ei)
– cd(nj) = {β | (CT |= Djβ)}
– Pre [•, nj ] = mE(Fj)
– Post [•, nj ] = mE(Hj)

In the above definition, let T be the set of terms.

Theorem 2 (Soundness and Completeness). Consider a positive
range-restricted ground CHR program P and a coloured Petri net N =
(Pl, Tr,Pre,Post, C, cd) such that N = mP (P ). Let S0, Sn be CHR
states in P and let m0,mn be markings in N such that m0 = mS(S0)
and mn = mS(Sn). Then we have

∃ω ∈ Tr∗.m0
ω−→ mn iff S0 7→∗ Sn (2)



Proof of Theorem 2 Consider a state S1 such that S0 7→ S1. We assume
that S0, S1 are in normal form. From S0 7→ S1 we deduce that the must
be a rule n@ F ⇔ D | H in P and the states S0, S1 must be of the form
S0 = 〈E ∧ G〉 and S1 = 〈H [F

.
= E] ∧ G〉, respectively. Consequently,

there must be a transition n ∈ Tr such that Pre [•, n] = mE(F ) and
Post [•, n] = mE(H).
Let β be the variable binding [F

.
= E]. Obviously, F [F

.
= E] = E from

which follows that Pre [•, n] (β) = mE(E) and thus m0 = mE(E) +
mE(G) ≥ Pre [•, n] (β). From the precondition CT |= ∃x̄(F

.
= E ∧ D)

we deduce that CT |= Dβ. We conclude that for the variable binding β,
transition n is active. Hence we have:

m0
tr,β−→ m0 −Pre [•, n] (β) + Post [•, n] (β) = m1

Similarly, we can show that ∃tr ∈ Tr.m0
tr−→ m1 implies S0 7→ S1.

Therefore, we have

∃tr ∈ Tr.m0
tr−→ m1 iff S0 7→ S1

Theorem 1 follows by induction.�

6 Conclusion

In this paper, we have presented a first result towards the development
of a general framework for the application of algorithms for the analysis
and design of Petri nets to CHR programs.
Our first contribution is a sound and complete translation of the full
segment of P/T nets to a small segment of CHR. This result backs the
assumption that we will have to work with higher-level Petri nets in order
to achieve useful results for a significant segment of CHR.
Secondly, we defined an interesting and significant subsegment of CHR
in which we can represent CHR states in an especially clear normal
form. For this segment, we defined a sound and complete translation
into coloured Petri nets.

Future Work We are confident that we can use our translation to
provide useful contributions to the analysis and design of CHR programs.
As an immediately follow-up work, we therefore plan to use it in order
to apply standard analysis methods from Petri nets to CHR.
Furthermore, we will investigate how to extend our result to a larger
segment of CHR. Two approaches seem feasible: On the one hand, using
a more powerful variant of Petri nets could allow the direct translation
of CHR programs into the respective net variant. On the other hand,
it might be possible to develop non-injective mappings from CHR pro-
grams to less powerful Petri net variants that would nevertheless preserve
certain properties.
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