Warmup

Exercise 1 (Cardinality Constraints).
Extend boole.pl (from assignment #4) to handle cardinality constraints card/4 with semantics given in the lecture.

a) Implement the rules together with the required auxiliary predicates.
b) Introduce a constraint labeling together with appropriate rule(s) to label variables.
c) Cardinality constraints can be combined with the existing Boolean constraints, e.g.

 card2and @ card(0,1,[X,Y],2) <=> and(X,Y,0).
 card2neg @ card(1,1,[X,Y],2) <=> neg(X,Y).

Find similar rules for (at least) xor and nand.

Constraint-system Rational Tree

Exercise 2. Implement the CHR-constraint X eq Y that succeeds iff CET | X≈ Y.
Clark’s equality theory CET should be coded “naturally”, i.e., implement the axioms as propagation rules (whenever possible).

Hints:
• f(X1,...,XN)=...[f|X1,...,XN]
• Rules leading to immediate contradiction should go first in the program text.
• For termination reasons pay attention not to have multiple copies of a constraint in the store.

Queries: Unification examples from assignment #1.
Extend your implementation, s.t. queries like X eq f(Y), Y eq f(X) can be treated (occurrence-check). A simple solution introduces one (or several) rule(s) for variable-substitution.

Exercise 3. The constraint theory CT should define the (purely) syntactic inequality \(\neq \) between two terms along the lines of CET:

\[
\text{irreflexivity} \quad \forall (x \neq x \rightarrow \bot)
\]
\[
\text{symmetry} \quad \forall (x \neq y \rightarrow y \neq x)
\]
\[
\text{compatibility} \quad \forall (x_1 \neq y_1 \land \ldots \land x_n \neq y_n \rightarrow f(x_1, \ldots, x_n) \neq f(y_1, \ldots, y_n))
\]
\[
\text{decomposition} \quad \forall (f(x_1, \ldots, x_n) \neq f(y_1, \ldots, y_n) \rightarrow x_1 \neq y_1 \lor \ldots \lor x_n \neq y_n)
\]
\[
\text{distinctness} \quad \forall (\top \rightarrow f(x_1, \ldots, x_n) \neq g(y_1, \ldots, y_m)) \text{ iff } g \neq f \text{ or } n \neq m
\]
\[
\text{cylicity} \quad \forall (\top \rightarrow x \neq t) \text{ if } t \text{ is not a variable and } x \text{ appears in } t
\]

The to be implemented CHR-constraint X neq Y should succeed iff \(CT \models X \neq Y \).
Use the RT-solver implementation from the lecture as blueprint for your implementation. Disjunction, needed for compatibility and decomposition, should be implemented by a CHR\(^\lor\) constraint one_neq/2 as negated same_args/ constraint. The two arguments of one_neq/2 are lists of same length and the CHR\(^\lor\) should succeed iff at least on pair of list-elements is unequal.

Note: Using disjunction in CHR\(^\lor\)-bodies requires a (mandatory) guard in SICStus Prolog:
rule @ Head <=> true | (Goal1 ; Goal2).

Queries:
1) ?- X neq f(X)
2) ?- f(a,X) neq f(X,Y)
3) ?- f(g(X),a) neq f(Y,X)