
Verification of Constraint Handling Rules
using Linear Logic Phase Semantics

Rémy Haemmerlé1 and Hariolf Betz2

1 CLIP Group, Facultad de Informatica, Universidad Politécnica de Madrid, Spain
remy@clip.dia.fi.upm.es

2 Faculty of Engineering and Computer Sciences, University of Ulm, Germany
hariolf.betz@uni-ulm.de

Abstract. Constraint Handling Rules (CHR) is a declarative concurrent
programming language. Like the class of Concurrent Constraint (CC)
languages, CHR features a declarative semantics based on Girard’s intu-
itionistic linear logic. The phase semantics of linear logic has been used in
the past to prove safety properties for the class of CC languages. In this
paper we show that we can adapt this result to prove safety properties
for CHR as well.

1 Introduction

Constraint Handling Rules (CHR) is a concurrent committed-choice rule-based
programming language introduced in the 1990s by Frühwirth [Frü98]. While it
has been originally designed for the design and implementation of constraint
solvers, it has come into use as a general-purpose concurrent programming lan-
guage. Owing to its origins in the tradition of logic and constraint logic pro-
gramming, CHR features a classical declarative semantics. Recently, Betz and
Frühwirth [BF05,Bet07] proposed an alternative declarative semantics based on
Girard’s Linear Logic (LL) [Gir87].

The class of Concurrent Constraint programming language (CC) was intro-
duced by Saraswat in 1987 [SR90] as an unifying framework for constraint logic
programming and concurrent logic programming with a synchronisation mecha-
nism bases on constraint entailment. From the logic programming tradition, the
operational aspects of CC programming have been early connected to a logical
semantics based on classical logic [SRP91], however Ruet [Rue96] has shown that
a precise logical interpretation of these languages requires linear logic (LL). The
class of Linear logic Concurrent Concurrent languages (LCC) is a general exten-
sion of CC languages where the constraints are based on linear logic instead of
classical logic. In addition to the classical constraint programming featured by
CC, the LCC class of languages provides state changes.

The phase semantics is the natural provability semantics of linear logic. In
the spirit of classical model theory, it associates formulas with values and can
thus be considered the most traditional semantics of linear logic. Despite having
been named “the less interesting semantics” by Girard himself [Gir95], Fages,

Ruet and Soliman [FRS01] have proposed an original application of the phase
semantics to prove safety properties of (L)CC using the links between LL and
(L)CC previously introduced by Ruet.

In this paper, we show how the phase semantics of linear logic can be applied
to Constraint Handling Rules in a similar way to Fages’, Ruet’s and Soliman’s
proposal for (L)CC paradigm. In practice, to prove a safety property of a CHR
program, we will exhibit a phase space and an interpretation of the program in
which that particular property does hold. This result illustrates the usefulness of
both the the phase semantics of linear logic and linear logic semantics of CHR.

The paper is structured as follow: First we recall the basics of Constraint
Handling Rules (CHR) in Sect. 2 and its LL semantics in Sect. 2.3. In Sect. 3
we present Girard’s phase semantics of LL and in Sect. 4 we explain how it can
be applied to prove safety properties for CHR Programs. Finally, we apply this
method in one introductory and one more advanced example in Sect. 5.

2 Constraint Handling Rules

In CHR, we distinguish two sets of atomic constraints: The set of built-in con-
straints is handled by a predefined constraint handler. It contains at least the
constraints true and false as well as equality =. The set of user-defined con-
straints is disjoint from the built-in constraints and is handled by a CHR pro-
gram.

2.1 Syntax

Definition 1 (CHR Program). A CHR program is a finite sequence of CHR
rules, where a CHR rule is either:

– a simplification rule of the form:
H <=> G | B

– or a propagation rule of the form:
H ==> G | B

where H (the head) is a non-empty multi-set of user-defined constraints, G (the
guard) a conjunction of built-in constraints, and B (the body) is a multiset of
built-in and user-defined constraints.

The empty guard true can be omitted together with the symbol |. The no-
tation name @ R gives a name to a CHR rule R. For the sake of simplicity, we
assume without loss of generality that a variable appears at most once in the
head of a rule. Furthermore, we do not allow nested disjunction in the body of
a rule.

Example 1. The following CHR rules [Frü98] define an ordering constraint solver.
Note that equality = is as usual a built-in constraint whereas we assume that
=< is a user-defined constraint here.

2

reflexivity @ X=<Y <=> X=Y | true.
antisymmetry @ W=<X, Y =<Z <=> W=Z,X=Y | W=X.
transitivity @ W=<X, Y =<Z ==> X=Y | W=<Z.

The first rule eliminates =< constraints where both arguments are equal, the
second replaces two symmetric inequality constraints by one equality constraint,
and the third adds constraints in such a way as to implement transitive closure.

2.2 Operational Semantics

We introduce the abstract operational semantics of CHR. In this most general
variant of the operational semantics, the language is inherently non-deterministic.
More restricted variants of the operational semantics guarantee deterministic ex-
ecution and avoidance of trivial non-determinsm but are less interesting from the
theoretical point of view and with respect to concurrency.

Definition 2 (CHR state). A CHR state is a tuple 〈F,C〉 where F is a mul-
tiset of built-in and CHR constraints called goal store and C a conjunction of
built-in constraints, called built-in store.

We assume without loss of generality that a constraint theory is a set of
implications called non-logical axioms of the form: ∀(C ⊃ D) where the C and
the D are conjunction of built-in constraints.

Definition 3 (Operational Semantics[FA03]). Given a CHR program D
and a constraint theory CT , the transition relation → over states of the op-
erational semantics, is defined inductively as the least relation satisfying the
following rules:

Solve 〈{C}] F,D〉 → 〈F,C ∧D〉
if C is a built-in constraint

Simplify 〈G] E,D〉 → 〈B] E,G=H ∧D〉
if (H <=> C | B) is in P renamed with fresh variables
and CT |= D → ∃(G=H ∧ C)

Propagate 〈G] E,D〉 → 〈B]G] E,G=H ∧D〉
if (H ==> C | B) is in P renamed with fresh variables
and CT |= D → (G=H ∧ C) then

Example 2. One possible execution of the program of the previous example 1 is:

〈{Z=<X, X=<Y, Y=<Z}, true〉
〈{X=<Z, Z=<X, X=<Y, Y=<Z}, true〉 (Propagate transitivity)
〈{X=Z, X=<Y, Y=<Z}, true〉 (Simplify antisymmetry)
〈{X=<Y ∧ Y=<Z}, X=Z〉 (Solve)
〈{X=Y}, X=Z〉 (Simplify antisymmetry)
〈∅, X=Y ∧ X=Z〉 (Solve)

3

2.3 Linear Logic Semantics

In this section we recall the result of [BF05]. The CHR rules and CHR states
are translated into ILL as presented in the table 2.3.

true true† = 1

non-logical axioms ∀(C ⊃ D) =!∀(C† (D†)

built-in constraints C† =!C

CHR constraint C† = C

empty multiset ∅† = 1

conjunction (C1 ∧ · · · ∧ Cn)† = C†
1 ⊗ · · · ⊗ C†

n

simplification rules (H <=> G|B)† = ∀(G† (∃ȳ.(G† ⊗ B†)

propagation rules (H ==> G|B)† = ∀(G† (H† (H† ⊗ ∃ȳ.(G† ⊗ B†)

programs {R1, . . . , Rn}† = {R†
1, . . . , R

†
n}

with ȳ = fv(G, B) \ fv(H)

Table 1. Translation of CHR into ILL

In the following, CT † is the translation of some constraint theory CT using
usual Girard’s translation of classical logic into linear logic.

Theorem 1 (Soundness [BF05]). If a CHR state T is derivable from another
CHR state S under a program D and a constraint theory CT then the following
holds:

CT †, P † ` ∀(S† (T †)

Theorem 2 (Completeness [BF05]). Let S and T be two CHR states. If two
states are such that :

CT †, P † ` ∀(S† (T †)

then there exists a state T ′ derivable from S such as :

CT † ` (S† (T †)

3 Phase Semantics

Phase semantics is the natural provability semantics of linear logic [Gir87]. It
has been successfully applied by Fages et al. in order to prove safety properties
of LCC programs through the logical semantics of LCC.

Definition 4 (Phase Space). A phase space P = (P, ·, 1,F) is a commutative
monoid (P, ·, 1) together with a set F of subsets of P , whose elements are called
fact, such that:

4

– F is closed under arbitrary intersection,
– for all A ⊂ P , for all F ∈ F , A (F = {x ∈ P : ∀a ∈ A, a ·x ∈ F} is a fact.

A parametrical fact A is a total function from V to F assigning to each variable
x a fact A(x). Any fact can be seen as a constant parametrical fact, and any
operation defined on fact: (A ? B)(x) = A(X) ? B(x).

Given A and B two parametrical facts, we define the following facts:

A&B = A ∩B
A⊗B =

⋂
{F ∈ F : A ·B ⊂ F}

A⊕B =
⋂
{F ∈ F : A ∪B ⊂ F}

∃x.A =
⋂ {

F ∈ F : (
⋃

x∈V A(x)) ⊂ F
}

∀x.A =
⋂ {

F ∈ F : (
⋂

x∈V A(x)) ⊂ F
}

Here are a few notable facts: the greatest fact > = P , the smallest fact 0 and
1 =

⋂
{F ∈ F : 1 ∈ F}.

Definition 5 (Enriched Phase Space). An enriched phase space is a phase
space (P, ·, 1,F) together with a subset O of F , whose elements are called open
facts, such that:

– O is closed under arbitrary ⊕,
– 1 is the greatest open fact,
– O is closed under finite ⊗,
– ⊗ is idempotent on O (if A ∈ O then A⊗A = A).

!A is defined as the greatest open fact contained in A.

Definition 6 (Valuation). Given an enriched phase space, a valuation is a
mapping η from atomic ILL formulas to facts such that η(>) = >, η(1) = 1 and
η(0) = 0.

Definition 7 (Interpretation). The interpretation η(A) of a formula A is
defined inductively a follows:

η(A⊗B) = η(A)⊗ η(B)
η(A (B) = η(A) (η(B)

η(A&B) = η(A)&η(B)
η(A⊕B) = η(A)⊕ η(B)

η(!A) = !η(A)
η(∃x.A) = ∃x.η(A)

η(A) = η(A)

We extend this interpretation to multi-sets of formulas in the obvious way by
considering the coma as ⊗, that is to say η(∅) = 1 and η(A1, . . . , An) = η(A1)⊗
· · · ⊗ η(An).

This takes us to defining a notion of validity:

5

Definition 8 (Validity).

P, η |= (Γ ` A) if and only if η(Γ) ⊂ η(A)

P |= (Γ ` A) if for every valuation η P, η |= (Γ ` A)

|= (Γ ` A) if for every phase space P P |= (Γ ` A)

Theorem 3 (Soundness [Gir87,Oka94]).

If there is a sequent calculus proof of Γ ` A then |= (Γ ` A).

Theorem 4 (Completeness [Gir87,Oka94]).

If |= (Γ ` A) then there exists a sequent calculus proof of Γ ` A.

4 Proving Safety Properties

As Fages et al. [FRS01] have done for the (L)CC paradigm, we can use the phase
semantics presented above to prove safety properties for CHR. Indeed, by con-
sidering CHR under the abstract operational semantics presented in Definition
3 CHR can be viewed as a subset of a Linear CC language.

Due to the soundness theorem 3 with respect to ILL, we know that:

If ∀CT †,D† ` ∀(ST (T †) then η(CT †,D†) ⊂ η(∀(ST (T †)).

By contrapositive we get that there exists a phase space P and a valuation
η such that

If η(CT †,D†) 6⊂ η(∀(ST (T †)) then ∀CT †,D† 6` ∀(ST (T †).

Finally, by using the contrapositive of the soundness theorem 1 we have

If ∀CT †,D† 6` ∀(ST (T †) then S 6→ T.

We have hence the following proposition which allows us to reduce a problem
of non-existence of a derivation between two CHR states – i.e. a safety property –
to a problem of existence of a phase space and an interpretation of the program
in which a simple inclusion is not possible. As explained in [FRS01], only the
completeness of the logical semantics is used in to prove the property. Nonethe-
less, the soundness theorem gives us the certitude that a such semantical proof
of a true property exists.

Proposition 1. Let CT be a constraint theory and D a CHR program. To prove
a safety property of the form S 6→ T , it is enough to prove there exists a phase
space P, a valuation η a substitution σ and a element a ∈ η(Sσ†) such that:

1. For any non-logical axiom: ∀(C1 ∧ · · · ∧Cm) ⊃ (D1 . . . Dn) of CT , the inclu-
sion (η(!C1)⊗ · · · ⊗ η(!Cm)) ⊂ (η(!D1)⊗ · · · ⊗ η(!Dn)) holds;

6

2. For any CHR rule H1, . . . ,Hl <=> G1 ∧ · · · ∧ Gm | B1, . . . , Bn of D the
inclusion (η(H1)⊗· · ·⊗η(Hl)⊗η(!G1)⊗· · ·⊗η(!Gm)) ⊂ (η(B†

1)⊗· · ·⊗η(B†
n)))

holds;
3. a /∈ η((Tσ)†).

Proof. First notice that conditions 1 and 2 imply that P, η |= CT †,D† and then
1 ∈ η(CT †,D†). Now let us suppose that that a ∈ η((Sσ)†) and a /∈ η((Tσ)†).
Hence we infer that 1 /∈ η((Sσ)†) (η((Tσ)†). Therefore 1 /∈ η(∀((S)†) (
η((T)†)) and then η(CT †,D†) 6⊂ ∀η((S)†) (η((T)†). Using the soundness the-
orem 3 we infer that (CT †,D†) 6` ∀η((S)†) (η((T)†). Using the soundness
theorem 1, we conclude that S 6→ T . �

5 Examples

5.1 The Three Dining Philosophers Problem

In this example, we formulate a CHR program that implements the Dining
Philosophers Problem for three philosophers. Subsequently, we use the phase
semantics of linear logic to prove that from the canonic initial state, our program
will never reach a state in which both philosopher #1 and philosopher #2 are
eating at the same time.

i) The Program.

Let D be the following program defined under the trivial constraint theory
CT :

fork(1), fork(2) <=> eat(1)
fork(2), fork(3) <=> eat(2)
fork(3), fork(1) <=> eat(3)
eat(1) <=> fork(1), fork(2)
eat(2) <=> fork(2), fork(3)
eat(3) <=> fork(3), fork(4)

ii) Formulate the Property.
Our goal here is to prove, using Proposition 1, the following safety property:

〈true, fork(1), fork(2), fork(3)〉 6→ 〈C, eat(1), eat(2),H〉

where H is an arbitrary multiset of constraints.

iii) The Phase Space.
Consider the following structure P:

– the monoid is {N, ·, 1}
– F = D(N) (the set of parts of N)
– O = {∅, {1}}

7

For such phase space, any valuation η respects the two conditions: η(1) = {1}
and η(>) = N.

iv) The Valuation.
We define η as follows :

– η(fork(1)) = {2}
– η(fork(2)) = {3}
– η(fork(3)) = {5}
– η(eat(1)) = {6}
– η(eat(2)) = {15}
– η(eat(3)) = {10}

– η(X = Y) =

{
{1} if X = Y

∅ otherwise

v) Verify the Validity of the Constraint System (condition 1).

We need to prove now that the constraint system is valid with respect the
phase space P and the valuation η. In this basic example, we can suppose without
loss of generality that the constraint system is the trivial one, i.e. in only contains
the basic non-logical axioms for equality:

– (reflexivity) ∀X.(true ⊃ X < X + 1)
– (symmetry) ∀XY.(X = Y ⊃ Y = X)
– (transitivity) ∀XY Z.((X = Y ∧ Y = Z) ⊃ X = Y)

Firstly, note than since η(X = Y) is an open fact, η(!X = Y) = η(X = Y).
For (reflexivity) note that η(1) = η(X = X) = {1}, for (symmetry) note that
obviously η(X = Y) = η(Y = X). For (transitivity), either X, Y and Z are
equal, in which case η(X = Y) ⊗ η(Y = Z) = η(X = Z) = {1}, or at least one
of them is different from the others, in which case η(X = Y)⊗ η(Y = Z) equals
the empty set and is therefore trivially included in η(X = Z).

vi) Verify the Validity of the Program (condition 2).

In order to prove the validity of the program we only have to notice that:

– η(eat(1)) = η(fork(1)⊗ fork(2)) = {6}
– η(eat(2)) = η(fork(2)⊗ fork(3)) = {15}
– η(eat(3)) = η(fork(3)⊗ fork(1)) = {10}

vii) Counter-example (condition 3).

It can now be easily verified that:
η(〈true, fork(1), fork(2), fork(3)〉†) = η(fork(1)⊗ fork(2)⊗ fork(3)) = {30}
η(〈C, eat(1), eat(2),H〉†) ⊂ η(eat(1)⊗ eat(2)⊗>) = 90 · N

We deduce hence that 30 ∈ η(〈true, fork(1), fork(2), fork(3)〉†) and 30 /∈
η(〈C, eat(1), eat(2),H〉†). Therefore we infer that the intended safety property
(〈true, fork(1), fork(2), fork(3)〉 6→ 〈C, eat(1), eat(2),H〉) holds.

8

5.2 The n Dining Philosophers Problem

In this example, we implement the Dining Philosophers Problem for an arbitrary
number of philosphers and we show using the phase semantics that the program
can never reach a state in which any two philosophers directly neighboring each
other are eating at the same time.

i) The Program and the Constraint Systems.

For the sake of simplicity, we add to each CHR constraint an extra argu-
ment N for the total number of philosophers. We suppose that CT includes the
constraint theory for natural numbers.

eat0 @ fork(M, s(M)), fork(0, s(M)) <=> eat(0, s(M)).
think0 @ eat(0, s(M)) <=> fork(M, s(M)), fork(0, s(M)).
eats(X) @ fork(I, N), fork(s(I), N) <=> eat(s(I), N).
thinks(X) @ eat(s(I), N) <=> fork(I,N), fork(s(I), N).
base case @ put fork(0, N) <=> true
rec @ put fork(s(I), N) <=> fork(I,N), put fork(I, N).

ii) Reformulate the Property.

We want to prove that two philosophers (among N philosophers) which are
seated side by side cannot be eating at the same time. This can be formalized
by the two following safety properties (we naturally assume there are at least
two philosophers):

– case of the philosophers 0 and N :

∀M.(〈true, put fork(s(s(M)), s(s(M)))〉 6→ 〈C, eat(s(M), s(s(M))), eat(0, s(s(M))), H〉)

– case of the philosophers I and I + 1:

∀M.(〈true, put fork(s(s(M)), s(s(M)))〉 6→ 〈C, eat(I, s(s(M))), eat(s(I), s(s(M))), H〉)

iii) The Phase Space.

We consider the same structure P as previously:

– the monoid is {N, ·, 1}
– F = D(N) (the set of parts of N)
– O = {∅, {1}}

iv) The Valuation.

Let φ be an arbitrary bijection between natural numbers and prime numbers.
Now, let us define η as:

– η(fork(I,N)) = {φ(I)}

9

– η(eat(I, J)) =


{1} if I = 0 and J = 0
{φ(M) · φ(0)} if I = 0 and J = s(M)
{φ(K) · φ(s(K))} if I = s(K)

– η(put fork(I, N)) =




K∏
j=0

φ(j)

 if I = s(K)

{1} if I = 0

– η(I = N) =

{
{1} if I = N

∅ otherwise

v) Verify the Validity of the Constraint System (condition 1).

We can assume the very simple following axiomatization:

1. ∀X(true ⊃ X = X)
2. ∀XY (X = Y ⊃ Y = X)
3. ∀XY Z(X = Y ∧ Y = Z ⊃ Y = X)
4. ∀XY.(s(X) = s(Y) ⊃ X = Y)

The verification of the six first axioms is quite straightforward.

vi) Verify the Validity of the Program (condition 2).

– Validity of the rules eat0 and think0: Notice that for any M we have

η(fork(M, s(M))) ⊗ η(fork(0, s(M))) = {φ(M) · φ(0)} = η(eat(0, s(M))).

– Validity of the rules eatn et thinkn: Notice that for any K and any N :

η(fork(K, N)) ⊗ η(fork(s(K), N)) = {φ(K) · φ(s(K))} = η(eat(s(I), N)).

– Validity of the rule base case: Notice that for any for any N ze have:

η(put fork(0, N)) = {1} = η(1).

– Validity of the rule rec: The proof is by cases on the first argument s(I)
of the put fork constraint:
• s(I) = s(0): in this case notice that for any N :

η(put fork(s(0), N)) =

(
0Y

i=0

φ(i)

)
= {φ(0)} ⊗ {1}

= η(fork(0)) ⊗ η(put fork(0, N))

• s(I) = s(s(K)) for some K: in this case notice that for any N :

η(put fork(s(s(K)), N)) =

8<:
i=s(K)Y

i=0

φ(i)

9=; = {φ(s(K))} ⊗

8<:
i=s(K)Y

i=0

9=;
= η(fork(s(s(K)))) ⊗ η(put fork(s(K))

10

vii) Counter-example (condition 3).

We now have to present two counter-examples, one for each safety property.
First, we easily verify that (for any constraint multisets C and H):

– η(put fork(s(s(M)), s(s(M)))) =
i=s(M)∏

i=0

– η(eat(s(M), s(s(M))), eat(0, s(s(M))), C, H) ⊂ φ(0) · φ(M) · φ(s(M))2 · N
– η(eat(I, s(s(M))), eat(s(I), s(s(M))), C, H) ⊂ φ(I) · φ(s(I))2 · φ(s(s(I))) · N

Since φ(0), φ(M) and φ(s(M)) are pairwise distinct prime numbers we have∏i=s(M)
i=0 /∈ φ(0) ·φ(M) ·φ(s(M))2 ·N. Similarly since φ(I), φ(s(I)) and φ(s(s(I)))

are pairwise distinct prime numbers we have
∏i=s(M)

i=0 /∈ φ(I)·φ(s(I))2·φ(s(s(I)))·
N. By Proposition 1, we prove the two safety properties.

6 Conclusion

Relying on the linear logic semantics of CHR, we showed that the method de-
scribed by Fages, Ruet and Soliman in [FRS01] to verify safety properties of
(L)CC programs can be adapted to CHR programs as well. This adaptation is
straightforward as from the point of view of its linear logic semantics, CHR can
indeed be viewed as a subset of LCC. We have given a detailed explanation of
our method, illustrated with two examples.

Our result provides evidence that the linear logic semantics is a useful tool
for the analysis and verification of CHR programs.

While a fully automatic application of our method might not be feasible, it
should be possible to significantly speed up the process with a semi-automatic
system that propagates a given valuation of the facts over a program and checks
whether or not this valuation proves a certain property defined by the user. This
could be done with a specific finite domain solver implemented in CHR and
optimized for our purpose. Such a system could spare the user the tedious and
error-prone process of propagating a valuation manually.

For the future, further investigation of the apparently close relationship be-
tween CHR and (L)CC as well as the relationship between CHR and algebraic
structures such as the phase semantics seems a promising approach and will
hopefully produce further useful results with respect to analysis and verification
of CHR programs.

Acknowledgments

We are grateful to Sylvain Soliman for the useful discussion about the phase
semantics of linear logic.

This work was funded in part by the Madrid Regional Government under
the PROMESAS project, the Spanish Ministry of Science under the TIN-2005-
09207 MERIT project, and the IST program of the European Commission, under

11

the IST-15905 MOBIUS, IST-215483 SCUBE, and ITEA 06042 (PROFIT FIT-
340005-2007-14) ESPASS projects.

Hariolf Betz is being funded by the University of Ulm under LGFG grant
#0518.

References

[Bet07] Hariolf Betz. A linear logic semantics for constraint handling rules with dis-
junction. In Proceedings of the 4th Workshop on Constraint Handling Rules,
pages 17–31, 2007.

[BF05] Hariolf Betz and Thom W. Frühwirth. A linear-logic semantics for constraint
handling rules. In Proceedings of CP 2005, 11th, pages 137–151. Springer-
Verlag, 2005.

[FA03] T. Frühwirth and S. Abdennadher. Essentials of Constraint Programming.
Springer-Verlag, February 2003.

[FRS01] François Fages, Paul Ruet, and Sylvain Soliman. Linear concurrent constraint
programming: operational and phase semantics. Information and Computa-
tion, 165(1):14–41, February 2001.

[Frü98] Thom Frühwirth. Theory and practice of constraint handling rules. Journal
of Logic Programming, Special Issue on Constraint Logic Programming, 37(1-
3):95–138, October 1998.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1), 1987.
[Gir95] Jean-Yves Girard. Linear logic: its syntax and semantics. In Proceedings of

the workshop on Advances in linear logic, pages 1–42. Cambridge University
Press, 1995.

[Oka94] Mitsuhiro Okada. Girard’s phase semantics and a higher-order cut-elimination
proof. Technical report, Institut de Mathématiques de Luminy, 1994.

[Rue96] Paul Ruet. Logical semantics of concurrent constraint programming. In Pro-
ceedings of CP’96, 2nd International Conference on Principles and Practice
of Constraint Programming. Springer-Verlag, 1996.

[SR90] Vijay A. Saraswat and Martin C. Rinard. Concurrent Constraint Program-
ming. In POPL’90: Proceedings of the 17th ACM Symposium on Principles of
Programming Languages, 1990.

[SRP91] Vijay A. Saraswat, Martin C. Rinard, and Prakash Panangaden. Semantic
foundations of concurrent constraint programming. In POPL’91: Proceedings
of the 18th ACM Symposium on Principles of Programming Languages, 1991.

12

